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This is the second of two papers devoted to the study of baryogenesis at the end of extended
inflation. Extended inflation is brought to an end by the collisions of bubble walls surrounding re-
gions of true vacuum, a process which produces particles well out of thermal equilibrium. In the
first paper we considered baryogenesis via direct production and subsequent decay of baryon-
number-violating bosons. In this paper we consider the further possibility that the wall collisions
may provide a significant density of primordial black holes and examine their possible role in gen-
erating a baryon asymmetry.

I. INTRODUCTION

This is the second of two papers (we shall refer to the
first' as I throughout) in which we examine whether the
out-of-equilibrium conditions automatically generated at
the end of extended inAation provide suitable conditions
for baryon-number violations to occur. Extended
inAation is a recent revival of the spirit of Couth's origi-
nal' inAationary cosmology where the Universe is
trapped in a false-vacuum state. In Guth's picture this
induces exponential growth in the scale factor and solves
various cosmological problems. InAation ends via the
quantum-mechanical formation of bubbles of the true
vacuum by tunneling; such bubbles form with a charac-
teristic size determined by microphysics (provided gravi-
tational corrections are small). The bubbles then grow
until they collide with adjacent bubbles, and this
disperses the coherent energy in the bubble walls. With
exponential inflation, this scenario is Aawed because the
exponential expansion of the false-vacuum region generi-
cally dominates over bubble formation and so inAation
never ends. Extended inAation solves this difficulty by
invoking modified gravitational theories in which the
gravitational constant may vary; in such theories the
inAationary expansion is a rapid power law rather than
exponential, and this ensures that the bubble nucleation
rate always eventually overcomes the expansion and
brings the inflationary era to a satisfactory end. The
difficulties of old inAation can also be circumvented in
this way in any power-law or slower than exponential
inAationary model driven by a suitable phase transition.

However, the extended inflation scenario has
difficulties of its own. It was quickly realized by Wein-
berg and by La, Steinhardt, and Bertschinger, that the
original (and probably simplest) extended inAation model
based on a Jordan-Brans-Dicke theory fails because bub-

bles nucleated early in inflation have time to grow to
large sizes. The true vacuum within these large bubbles
does not have time to thermalize before radiation decou-
pling and would create excessively large distortions in the
microwave background. In order to avoid this conAict
other models have been suggested, ' with the common
theme of arranging that the production of bubbles early
in inAation is suppressed. Bubbles formed sufficiently late
in the inAationary era do not have time to grow to unac-
ceptable sizes before wall collisions bring inflation to an
end. This seems to be an essential feature for any suc-
cessful extended inAation model, and in this and the
preceding paper' we have invariably assumed that this re-
quirement is met, although we will not require recourse
to a specific model.

In I we outlined the observational status of the baryon
asymmetry, and we ask the reader to refer to it for de-
tails. In order to explain why the present state of the
Universe consists essentially entirely of baryons rather
than antibaryons, it is postulated that in the very early
Universe a small excess of baryons over antibaryons was
created, with the subsequent annihilations leaving the
baryons we see today as a residue. This asymmetry is
best denoted by a quantity B, called the baryon number of
the Universe, which is defined as the ratio of the baryon-
number density to the entropy density s. This quantity is
constant in the late evolution of the Universe and is con-
strained by primordial nucleosynthesis' to be in the
range B =(3—7) X 10 ". Since inflation generates a
large thermal entropy it is necessary that the baryon
asymmetry be formed after inAation is over.

As discussed in I, there are two standard scenarios for
baryogenesis. ' In I we considered the decays of massive
particles (taken to be Higgs bosons) whose decays violate
baryon number. These massive bosons were created by
the collisions between bubble walls at temperatures low
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enough to ensure that no thermal production of Higgs
particles occurred, giving a picture different to the con-
ventional one where Higgs bosons leave an original state
of thermal equilibrium and then decay. The net baryon
asymmetry produced per Higgs-boson decay is
parametrized by a fraction e which is in principle deriv-
able from the degree of CP violation in the theory con-
sidered; ultimately the value of B can be determined.
This paper considers the second scenario, which involves
the violation of baryon-number conservation in black-
hole decays.

One of the implications of the "no-hair" theorems of
black-hole physics is that black holes have an indeter-
minant baryon number: baryon number is not conserved
in black-hole evaporation. In 1975 Hawking suggested
that evaporating primordial black holes (PBH's) might
radiate an excess of baryons over antibaryons. ' This
idea was taken up again in the context of grand unified
theories (GUT's) by many people. ' ' The violence of
bubble-wall collisions may well produce a significant
number of black holes as well as relativistic particles, be-
cause of the gravitational instability of overdensities gen-
erated by the collisions. When such black holes decay by
the emission of Hawking radiation, they may emit
baryon-number-violating Higgs particles whose decays
generate the baryon asymmetry.

The mechanism of baryogenesis by evaporation of pri-
mordial black holes divides into two subcategories. ' In
the first version, evaporation occurs while radiation dom-
inates the energy density of the Universe, with the black
holes providing the baryon asymmetry but with the en-
tropy arising from the background radiation. Since radi-
ation energy density falls off faster than that of matter,
the contribution of the black-hole energy density becomes
more important as time goes by. If the time until radia-
tion domination is less than the black-hole lifetime, we
get a second version of the mechanism where the black-
hole density dominates at the time of evaporation; in
such models the black holes provide both entropy and
baryon number. This latter class also covers the possibil-
ity that so many black holes may be formed that they
dominate the energy density of the Universe immediately.

In the next section we shall briefly outline some impor-
tant parameters relating to extended inAation. For more
details concerning these the reader should consult I. We
then go on to estimate the baryon asymmetry generated
for the different versions of this black-hole-inspired
mechanism. The final section demonstrates some typical
numbers and compares the results with those obtained
via the direct production mechanism.

the bubble wall thickness is

and the energy per unit area of the wall is

g 1 /2 3
CTp

(2.2)

(2.3)

As shown in I, a typical bubble experiences little growth
between nucleation and percolation. The physical size of
the bubble will grow with the scale factor; we shall as-
sume, in line with I, that at the end of extended inAation
all bubbles are of size o;R, .

In I, we calculated the baryon asymmetry produced via
the production and decay of baryon-number-violating bo-
sons. Using the information about the bubbles given
above, we obtained the result that

—I /4 g
—I /4gl /4

O ~ HO' (2.4)

where g, is the effective number of degrees of freedom in
all species of particles formed during thermalization (g„
would be expected to be of order 100 in a grand unified
theory) and fH is the fraction of baryon-number-violating
Higgs particles formed in the wall collisions. If the typi-
cal energy of particles formed in the collisions exceeds
the Higgs-boson mass then f Hg /0g„wh reegH is the
number of Higgs degrees of freedom. This result is useful
for comparison with those we shall derive in the next sec-
tion for the case where a significant density of black holes
are produced in the wall collisions. Note that we shall
use different subscripts on B to distinguish the baryon
asymmetry obtained in different situations.

units k&=A=c =1 mp]=G =1 2X10 QeV
throughout).

( 1) o o, the energy scale for spontaneous symmetry
breaking (SSB), i.e., the vacuum expectation value (VEV)
of the scalar field.

(2) A, , a dimensionless coupling constant of the in(laton
potential. We will assume that the potential is propor-
tional to A. .

(3) g, a dimensionless number that measures the
difference between the false- and the true-vacuum energy
density via p z =gXo 0, g must be less than unity for
suScient inflation to occur, and this is also precisely the
condition that allows the thin-wall approximation (dis-
cussed below) to be made.

In terms of these variables, the size of nucleated bub-
bles (in the thin-wall approximation) is

(2. l)

II. EXTENDED INFLATION PARAMETERS

The details of the end of extended inAaton depend pri-
marily on various parameters of the inAaton potential.
These determine the duration of inAation, but more im-
portant for our purposes they determine the details of the
bubble nucleation including the typical bubble size and
the energy density of the bubble walls. Without specify-
ing a particular inAationary model, we can identify
the important parameters as follows (we use

III. BARYOGENESIS
BY BLACK-HOLE EVAPORATION

We consider the possibility that the formation of pri-
mordial black holds may have led to significant baryo-
genesis. There are two possible sources for the formation
of small primordial black holes. First, holes may form
via the gravitational instability of inhomogeneities
formed during the thermalization phase, particularly dur-
ing the wall collisions themselves where we can expect
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Pti(tRH) =(1 /3)P(tRH )
—g, T
30

(3.1)

PBH( RH ) /P(tRH ) MOnBH(tRH )

where TRH is the reheat temperature, Mo is the initial
mass of the black holes formed (for convenience we will
assume that they all have the same mass), and nBH is the
number density of black holes. The time t~H can also be
expressed in terms of p(tRH):

2
3 mph

32~ p(tRH )
(3.2)

(For matter domination, the factor 3/32m is replaced by
1/6m). From H, „d and p we also define a "horizon mass"
at the end of inAation:

4~ 3
Mhor P(tRH )(2tRH )

3
r 1/2

m pi

P'"(tRH)
(3.3)

(The right-hand side is the same in the matter-dominated
case. ) Mh„represents the mass within the "physics hor-
izon, " at the end of inflation, and plays the same role as
the mass within the horizon in the standard FRW model.

high local densities to prevail, and second, there is the
possibility of trapped regions of false vacuum (within
their Schwarzchild radii) caught between bubbles of true
vacuum.

Unfortunately, the technical details of even estimating
the typical number density and mass of the black holes
formed by these processes are quite dificult. Some pro-
gress in this direction was made by Hawking et al. ,

' in
the context of the original inAationary scenario, and more
recently Hsu has examined black-hole production from
false-vacuum regions in extended inflation. In order to
keep our discussion on a more general footing, we shall
for now simply assume that some fraction /3 of the energy
after collisions is in black holes, while the remaining 1 —

/3

is in radiation, ' and later consider the various outcomes
implied by the differing values of P.

The stage will be set for baryogenesis at the end of ex-
tended inflation. At the end of extended inflation, the ex-
pansion rate of the Universe is H, „d, and from H,„„we
can define a characteristic timescale at reheating, which
formally represents a patching of a radiation or matter-
dominated Friedmann-Robertson-Walker (FRW) cosmol-
ogy onto the inflationary one. For a radiation-dominated
universe this is t~H ——H, „d/2, while for matter domina-
tion we have tRH-—2H, „d/3; we will refer to tRH as the
time at the end of infiation. We shall derive equations
below for the case of patching to a radiation-dominated
universe, pointing out any differences that matter dom-
ination implies.

The total energy density at the end of extended
inflation is partitioned between the energy density of ra-
diation p~ and black holes pBH:

P( RH) PR( RH +PBH( RH

Once formed, the black holes evaporate at a rate given

Pl
m4

BH
BH

(3.4)

which leads to a time dependence of the black hole mass
of

MBH(t) =MO ge m Pl(t tRH )

It is convenient to define a black-hole lifetime,

Mo/g m p
3 4

(3.5)

(3.6)

The evaporation ends at time t BH
= t RH +~.

Black holes radiate as blackbodies with temperature
TBH:m p& /877 MBH . This allows us to calculate what is,
for our purposes, the most important quantity: the num-
ber of particles emitted during the course of the evapora-
tion. Let us first calculate the number of particles emit-
ted while the black hole is between the temperatures T
and T+dT. The change in mass of the black hole dM,
which is the amount of energy radiated as particles, is
given by

dM=
2

mvi 1 1

8w T T+dT (3.7)

Each emitted particle has energy 3T (the mean energy of
a particle in a Maxwell-Boltzmann distribution at tem-
perature T), so the number of particles emitted between
those temperatures is just

2
mp)dN=

24~T T
1

T +dT
mvi",dT

24wT
(3.&)

Integrating this, we find that the number of particles
emitted as the black-hole temperature increases from its
initial temperature To ~ is

4~MON=
3m p)

(3.9)

Note that this gives the total number of particles emitted.
A fraction fIt of these will be Higgs particles. To deter-
mine the appropriate form for fH, the initial temperature
of the black hole at formation may be important. If it is
less than the mass of the Higgs boson, m~, then the
thermal spectrum in the initial phase of the evaporation
will not include the Higgs boson as the typical energy is
not high enough to produce so massive a particle. Only
when the black hole temperature has increased to m&
will the thermal radiation include a significant fraction of
Higgs bosons. This can lead to an overall suppression in
the number of Higgs bosons produced during the com-
plete course of the evaporation. Discussion of such a
suppression will mostly be reserved for the conclusions.
Once the temperature is high enough to radiate Higgs bo-

and the expression for the mass as a function of time be-
comes

M (t) =MOI 1 —(t —
tRH )/r]'



43 BARYOGENESIS IN EXTENDED INFLATION. II. 987

sons, we expect that the energy of radiated particles will
be distributed evenly amongst all radiated species, so that
fH is a constant given by gH Ig, as discussed in Sec. II

Black-hole evaporation affects the evolution of both
components of the total mass density. Since the hole
mass is decreased by evaporation, the evolution of the
black-hole energy density, which in the absence of eva-
poration would be that of nonrelativistic matter
(pNR~a, where a is the scale factor), is altered. The
production of radiation from the hole evarporation also
modifies the evolution of radiation energy density, which
normally scales as a . Of course, the departure of the
energy densities from the normal evolution is most pro-
nounced around the time t —t RH +~. An exact treatment
of this effect is given in the Appendix, where a network of
equations is derived describing the evolution of the
different components of the energy density and also the
evolution of the baryon asymmetry. In order to under-
stand the general results, let us for the moment ignore the
complication resulting from the decrease of the hole
mass. In Sec. IV we will discuss the inclusion of this
effect.

Two different situations arise, depending on whether
black holes or radiation dominates the energy density of
the Universe at the time the holes evaporate. ' If P( —,',
then the evolution of the scale factor is that appropriate
to a radiation-dominated universe, i.e. , a(t) —t'~, and
the energy density of black holes goes as a ~ t
while that of radiation goes as a ~ t . Therefore, pro-
vided their lifetime is sufFiciently long, black holes will
come to dominate the Universe at a time
t„=t R(H1

—p) lp, and hence if ~& t —tRH, they will
come to dominate before their evaporation. If P) —,',
black holes dominate even initially.

Equation (3.9) gives us the number of Higgs particles pro-
duced during the evaporation of a single hole (we leave
consideration of a suppression due to the black holes be-
ing initially too cool to radiate Higgs bosons for the con-
clusions). Hence the number density of Higgs bosons
produced in the evaporation is

nH( BH ) fH+nBH( BH )

4&Mo PBH(rRH ) rRH
=fH

3m pi MO tBH

3/2

(3.12)

4n tRH
nB(rBH )=&fH

2 MopBH(rRH )

mpl tBH

3/2

(3.13)

The radiation density meanwhile has been dropping as
I /t, so we have

tRH
PR( BH) PR( RH)

~BH

2

(3.14)

from which we obtain the radiation temperature at the
evaporation time as

T'(&BH ) = 30
PR(rBH )

g~ 7T

(3.15)

Notice here that we have assumed all the particles are
produced at the end of the evaporation, ' however, if the
baryon number has the same scaling with time as the
black-hole energy density then this assumption gives ex-
actly the correct result.

With the assumption that each Higgs-boson decay gen-
erates a net baryon number e as mentioned earlier (see I
for a defintion of e),

A. Evaporation before domination The entropy density in the Universe at t = t BH is

tRH

1 —2/3

p2
(3.10)

We fi.rst examine the case where black-hole evapora-
tion occurs before domination. This corresponds to small
P and initially light black holes, with

=2'
(rBH ) gs T (rBH )

45

2 2

45
g*lp~(&BH)j'" 2

3/4

(3.16)

3
a(&RH)

a(tBH)
3/2

nBH( BH ) BH( RH )

tRH
nBH(rRH ) (3.1 1)

Since the black holes never dominate, the Universe ex-
pands like a radiation-dominated universe, with a ~ t'
If the black holes evaporate before domination, their ra-
diation will not significantly change the background en-
tropy density.

The number density of black holes will be diluted by
the effects of expansion, scaling as a . Notice that this
result is exact regardless of whether or not the holes are
losing mass through evaporation, which leads to the ener-

gy density in holes falling off somewhat faster than this.
At the time of evaporation tBH, the number density of
holes is

which ultimately leads to a baryon asymmetry of

1/4
01 45m&fH—

gg mpi

1/2

Mo
X

Mho.

1/2

(1—P)
(3.17)

where we have used Eq. (3.3). Note that the penultimate
factor gives the initial black-hole mass as a fraction of the
horizon mass.

In the Appendix, we demonstrate how this result may
be obtained from the evolution network of Eq. (A13).
The approximations of this subsection are equivalent to
ignoring the last term in the B ' equation and keeping
Rz = 1. Simple integration of the network equation for B
leads directly to Eq. (3.17).



988 BARROW, COPELAND, KOLB, AND LIDDLE 43

B. Evaporation after domination

~B ~fH+nBH(tBH ) (3.18)

This time, though, the entropy is also determined by the
other black-hole evaporation products, as they provide
the dominant contributions. Here we must make an ad-
ditional assumption that all the black-hole energy density
is transformed to radiation at the evaporation time. In
reality, radiation will be produced throughout the eva-
poration, and because radiation dilutes more rapidly than
black holes our approximation will tend to overestimate
the entropy density and hence underestimate the baryon
number. However, in the light of Eq. (3.4) we can see
that most energy is transferred near the evaporation time
and so this approximation should give fairly accurate re-
sults. Assuming that all the black-hole density goes into
entropy, we obtain

3/4
277 1 /4 30

PBH( BH ) (3.19)

leading to a baryon asymmetry of
3/4

4m 45
3 2~2 30 AH 2

g„' pI3H(tBH) . (3.20)
Pl P1

Substituting for pBH and t leads to

45m M M0 0

Pl P1

' —1/2

1/2

(3.21)

This expression is very similar to that obtained in the
"evaporation before domination" scenario; in particular,
the black-hole mass appears in the same functional form,
and the prefactors are all the same with the exception of
the /3 term, which naturally has changed as we move to a
different physical situation. The last factor demonstrates
how a long black-hole lifetime dilutes the baryon asym-
metry obtained; if ~ is very small this factor is just equal
to one, while for ~))tRH we get a reduction in the
baryon asymmetry by a factor of about
QMO /Mh„m p&g„. Clearly, this factor can be important
for long-lived (initially massive) black holes. These are
also exactly the type of holes that one might expect to

We now consider the second possibility, that holes
evaporate after they dominate the energy density. This
divides into two further cases; in the former, black holes
come to dominate at time t, as defined earlier, while in
the latter black holes dominate immediately after forma-
tion

In the first of these cases, once t ) t~ the scale factor
evolves as appropriate for a matter-dominated universe,
a (t)-t ~, and so pBH(t) =pBH(t, )/(t„ lt) and
pz(t) =pz(t, )/(t„ lt), with the energy densities equal
at t, .

As before, the evaporation of a single black hole gives a
baryon number

1 45m
&B2= &fH—

Pl P1

—1/2

XP'" 1+
tRH

(3.22)

which is just Eq. (3.21) multiplied by [P/(1 —P)]' . This
factor represents the dilution of the black-hole energy
density up to domination. As expected, Eqs. (3.21) and
(3.22) match in the case of marginal domination where
/3= —,'. The P dependence in Eq. (3.22) simply reffects the
fraction of the horizon mass contributed by black holes.
It differs from Eq. (3.21) because here there is no evolu-
tion in the initial radiation-dominated phase, and, hence,
no era of dilution before domination. In the case of Eq.
(3.21) an extra multiplier of [(1—p)/p]'~ is needed to
account for the evolution in the initial radiation-
dominated phase.

We also draw the reader's attention to one slight sub-
tlety relating to this final answer; for this final case we
must patch a matter-dominated rather than radiation-
dominated Friedmann universe onto the end of extended
inflation. As discussed around Eq. (3.2), we must then
use a slightly different formula to obtain tRH from the en-
ergy density. The expression for the horizon mass is
however the same.

This completes the set of results for the different re-
gions of domination, and is summarized in Table I.

Note that to obtain the results of Table I we have not
yet assumed that an era of extended inAaton has oc-

survive long enough to come to dominate even if P is
originally substantially less than —,'.

We note here that in the Appendix we demonstrate
that the result of Eq. (3.17) gives an absolute upper bound
on the baryon asymmetry for a given P, and Mo that may
be obtained when we consider the full network evolution
equations. [Of course, having chosen P and Mo we have
determined which physical situation we are in, so Eq.
(3.17) may not be applicable; nevertheless, it still gives the
upper bound for those parameter values. ] This is con-
sistent with the last factor in the above expression always
being less than 1, and is easily understood by realizing
that producing the entropy later from the black-holes
means that up until evaporation the energy density
representing what will become entropy has fallen off only
as a, whereas if it where in the background it would be
falling as a . Therefore, models where the black holes
provide entropy lead to a greater entropy, and hence
smaller baryon number, than models where the entropy is
associated with the background. We also remind the
reader that we have had to make approximations to ob-
tain Eqs. (3.17) and (3.21). Despite this, they match on
the border where domination occurs (p= —,') in the case of
very fast evaporation (&=0), which is precisely what one
would expect of exact results.

We now examine the second case of black-hole dom-
ination, that in which the black holes dominate even ini-
tially. The black-hole energy density is now given by
pB„(t)=pBH(tRH)(tRH/t) . Equation (3.20) still holds,
and now the substitution gives

- 1/4 1/2 1/2
M0 0

Mh„
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TABLE I. Results for the baryon number produced by
black-hole evaporation depend upon P (the fraction of the ener-

gy of the Universe in black holes at t = t«, where t R„ is taken
to be the end of inflation), t~ (the time at which the black holes
dominate the mass of the Universe), and ~=M B„/g ~ m „~ (the
lifetime of a black hole of mass MBH).

B=n~/s

baryon asymmetry obtained in the previous section, ex-
cluding only the P factors, and the dependence on the
black-hole lifetime (itself dependent on the initial mass).
We introduce parameter p=M0/Mh„. We expect p to
be less than 1, though nothing prevents it from being
much smaller. Using the formula for Mh„, Eq. (3.24), we
have

p(

p) 1

tRH

w) r —
tR.

Independent of ~

Eq. (3.17)

Eq. (3.21)
Eq. (3.22)

(4.2)

We can now compare the differing black-hole cases in
turn, via the expression

curred; all we have assumed is that at some time tRH a
fraction P of the energy density is in black holes. Because
we are assuming that this occurs after extended inflation,
one further piece of information can be used —the energy
density at the end of inflation is known in terms of the
inflation parameters. (However, to get the reheat temper-
ature we need to know P as well, as only the energy densi-
ty in radiation contributes to TRH. ) This gives us an ex-
pression for the horizon mass Mh„which can be substi-
tuted into the expressions we obtained above for the
baryon asymmetry. Recalling that thermalization distri-
butes the energy in the bubble walls throughout the
volume of a bubble, we have (using the parameters of Sec.
II)

p(rRH ) /k&0

and hence Mh„ is given by

3/3/32~g
—1/2g —1/2m 3 /tr2

(3.23)

(3.24)

Although we included numerical factors in the preceding
discussion, the quantities derived from extended inflation
are less well known and hence some of the expressions we
shall use henceforth are approximate. Substitution of Eq.
(3.24) into the various answers, Eqs. (3.17), (3.21), and
(3.22), gives us the baryon asymmetry obtained at the end
of extended inflation for the differing physical situations.

IV. DISCUSSION, COMPARISONS,
AND CONCLUSIONS

1 45m.B—: E'
0

1/2M 1/2I Pl hor

(4.1)

This combination appears in each of the formulas for the

Here we examine typical numbers for the baryon asym-
metry. For ease of comparison, we shall express the vari-
ous results from the black-hole mechanism as ratios of
the result expressed in Eq. (2.4) for the baryon asymmetry
B0 produced by the direct production mechanism. ' For a
typical GUT theory Bo —10 e(g/A, )'/ . For sample pa-
rameters this implies a small e, perhaps of order 10, in
order to give the observed asymmetry B —10 ' . Note
that here we assume that the fH are the same in all cases;
i.e., we have not yet incorporated any suppression of
Higgs-boson production.

To aid comparison, we define the quantity B:

B0 2 00
(4.3)

First consider the case where black-hole evaporation
occurs before domination. This corresponds to p( —,

' and
a short black-hole lifetime. We obtain from Eq. (3.17) the
simple expression

B0

IP1
(4 4)

The domination then evaporation" cases allow a similar
comparison, e.g. ,

Ba& Pl p)81
( 1 P)1/4g —1/2 Pl

B0 0 tRH

—1/2

(4.5)

'(o o/m p, ) P32&g ~
(4.6)

For simplicity of discussion, we shall insert some plau-
sible values for the various inflaton parameters; results
for other values can be obtained by a suitable scaling.
We choose

g, =100, /=10

10 00:10 mp]
(4.7)

These values give, for Eq. (4.3),

—10pa.B 4

0
(4.8)

Although it seems from this that the black-hole mecha-
nism has the possibility of generating a much greater
baryon asymmetry than the direct production
mechanism's Bo (by choice of a sufficiently large p), recall
that we must use the j3 and p values appropriate to each
regime. These will contribute to reduce the actual asym-

for the first case and the same expression with (1 —/3)'
replaced by /3' for the second.

To get a better feel for the meaning of p, we now exam-
ine when p is of such a value as to give holes of an in-
teresting lifetime. As we know the horizon mass, we can
determine both tRH and the evaporation time ~ for the
black holes, the former being a function solely of the
inflaton parameters, the latter being a function of p.
Equations (3.3), (3.6), and (3.23) lead to the ratio
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metry obtained; for example, for B~ we much choose
p(0. 5, but then also we must choose p small enough so
that the black holes do not come to dominate.

Using the sample values from above, we obtain

tRH
1012 3 (4.9)

p
1 —2p tRH

(4.10)

That this ratio must be greater than one gives a lower
bound on ~, and hence p, which must be satisfied in order
for black holes to come to dominate. Equally, it gives an
upper bound on p which must obey for the "evaporation
before domination" result B~ to be applicable.

These bounds on p for a given /3 allow us to calculate
the maximum baryon asymmetry that can be obtained by
each of the expressions within their range of validity; we
do this for our sample parameters. The value of p corre-
sponding to the bound in the above expression is just

1/3
1 —2P

2
(4.11)

In the "evaporation before domination" scenario, for a
given P the maximum asymmetry is obtained when p sat-
urates this bound. Hence the maximum asymmetry ob-
tained from Bz is at the value of P which maximizes

Hence only when black holes have masses such that
p) 10 are the lifetimes sufficiently long that the final
factor in the expression for B~ becomes important for
those choices of parameters.

We can also calculate the black-hole lifetime required
in order for black holes to dominate, which requires
'7 ) t —tRH. We obtain

ately; here no bound on p arises, since the black holes no
longer have to survive long enough to come to dominate.
In this case p can, in principle, be as small or large (up to
its maximum value of 1) as we like. Notice that there is a
trade-off between the terms in the expressions for B~.
We can write Bz ~ p( 1+cp )

' for some constant c.
Asymptotically, B~ ~ p and B~ ~ p ' for small and
large p, respectively. In fact, baryon number production
is most efficient at an intermediate value of p—=p where
rltRH =2 (true for any model parameters); for our sam-
ple parameters this once more corresponds to p of
around 10 and hence we find, as in the previous case,
that at best Bg2 o.Bp. Lighter or heavier holes will lead
to a smaller asymmetry, particularly in the latter case, as
we shall shortly see there is an additional temperature
suppression. The P factor plays little role here as it is
simply /3' where P P

I —,', l I.
Similar criteria also apply to the remaining case, where

black holes come to dominate. Again the P factor is
unimportant; the remaining terms are exactly as in the
domination immediately case, and hence the upper limit
on the baryon asymmetry is the same. However, we have
to take one more thing into account, for in order for the
B~, equation to apply p must exceed the lower limit from
Eq. (4.10). If p„ is greater than that bound, then the
analysis is just as before. However, if the bound is larger
than p~ then the maximum asymmetry that may be ob-
tained will occur when this bound is just met, and will be
smaller than that obtained if p=p, were allowed. Again
temperature suppression may also be important, as we
now discuss.

The initial temperature of the black hole depends on
the value of p, with more massive holes being cooler. As
stated earlier, if this temperature is below the mass of the
Higgs boson then the initial phase of evaporation will not
feature Higgs particles. The black-hole temperature is
given by

=(1 2/3)' /3' (1——/3) a, /3E [0, —,'] . (4.12)
Bp

The maximum value of the P factors is 0.652, obtained
for

2m p)
TBH

SmMBH

which leads to a ratio

(4.13)

P=( —11+V 153)/4=0. 342, TBH

mp)

I /2
p

~H
(4.14)

which implies for all the above that at best B~ -aBp.
For small p we just get B~ -p' aBO, provided we
choose p to optimize the asymmetry (for a given P). If p
is smaller than the optimizing value given above the
asymmetry obtained becomes yet smaller.

We comment here on the role of u, the expansion fac-
tor of a typical bubble. In calculating Bp, we made the
conservative though plausible assumption that only the
potential energy in the walls, a factor 1/o.' of the total en-
ergy, participated in baryogenesis. In black-hole forma-
tion, gravitational effect, all the bubble energy can parti-
cipate.

A similar comparison can be carried out for the "dom-
ination then evaporation" scenarios. Let us first consider
the second case where the black holes dominate imrnedi-

where we have written the Higgs-boson mass as
mH=A, H oo (guided by GUT). This gives a critical value

p„;„which p must be less than in order for Higgs-boson
radiation to occur. Using the sample parameters of Eq.
(4.7) and assuming A, H

—A, we get

T —10 p
mH

(4.15)

Hence only when p(10 is the black hole hot enough
to be radiating Higgs particles irnrnediately. For larger
p, one can expect an initial evaporation phase (during
which no Higgs bosons are radiated) until p, reaches p,,„;,.
Equation (3.9) tells us that N ~ Mo ~ To . Hence if p is
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greater than the critical value which allows the radiation
of Higgs bosons, then there will be a suppression of the
baryon number formed by a factor of (p,„;,/p) . Such a
suppression will occur in all versions of the black-hole
scenario, including the "evaporation before domination"
result. The number 10 given above is of course depen-
dent on the particular choice of parameters; the general
form of the suppresion factor can also be written as
[M ( T =m~ )/Mo j . It is coincidental that for our choice
of parameters p„;, is approximately the value of p re-
quired to make 7

The two different scenarios we have described also lead
to qualitatively different non-uniformities in the density
distribution of the Universe. In the case of "domination
then evaporation" the initial inhomogeneities in the
black-hole number distribution will lead to both non-
uniformity in the photon and baryon number distribution
following black-hole evaporation because both are deter-
mined by the black-hole evaporation products. The re-
sulting density perturbations will therefore be of a
quasiadiabatic nature. In the second case of "evapora-
tion before domination" evaporation products determine
only the baryon number irregularity, and hence if the ra-
diation distribution were initially smooth, the resulting
density perturbations would be of a quasi-isothermal
character.

One other feature of this model worth mentioning is
that a fraction of the rest mass of the black holes will
evaporate as gravitons. For black holes in the range
10' —10' g one finds that about 2%%uo of this rest mass is
emitted as gravitons. ' In versions of the model where
the black holes have dominated the energy density we
would therefore create an initial graviton abundance of
perhaps between 0.01 and 0.1 of that residing in photons.
Both gravitons and photons scale as a as the Universe
expands, leaving the ratio effectively constant; however,
the gravitons will remain collisionless after they form,
and hence their abundance will not be exactly thermal
(rather, it will be a superposition of different Planck spec-
tra with T —THH with a Bose-Einstein form). Because
gravitons are collisionless their temperature will not keep
pace with that of the thermal sea of interacting particles,
such as photons, into which massive particle-antiparticle
pairs will annihilate. Assuming the evolution is entropy
conserving then g;„,T will stay constant through annihi-
lation thresholds, where g;„, is the number of degrees of
freedom interacting with the photons. This will give the
photon an enhanced temperature over the gravitons by a
factor (g;„,/2)' where the 2 represents the photon de-
grees of freedom. Hence the fraction of the energy densi-
ty in gravitons relative to photons will be down by a fur-
ther factor of (g;„, /2) ~ over and above that at forma-
tion. The characteristic wavelength of such gravitons at
formation is expected to be the Schwarzchild radius of
the hole, so that X, -2MHH/I p] they will then be re-
shifted by the expansion to a wavelength today of
Ao=k„(1+z,„, ).

One might hope that black holes can produce a baryon
asymmetry after the electroweak phase transition and
thus avoid wash-out by the electroweak anomalous
baryon-number-violating current. Unfortunately, it can

be shown that this is not possible; in order to last until
the electroweak era, the black holes must be suSciently
massive that their initial temperature is well below any
conceivable Higgs mass, and so for most of their evolu-
tion Higgs bosons are not radiated. This leads to a large
temperature suppression in B, and an unacceptable value
of e ) 10 would be needed to match observations.
Hence, other methods of avoiding wash-out, such as gen-
erating a nonzero B—L as discussed in I, must be imple-
mented.

To conclude then, we list the typical outcomes of the
mechanisms we have discussed, in comparison to the
direct production model. At best these models can gen-
erate an asymmetry of the same order of magnitude as
the direct production mechanism. However, one must
remember that for a range of inAaton parameters the
direct production mechanism will not work for example
the wall collisions may not be sufticiently energetic to
produce Higgs particles directly. In such cases the
black-hole mechanisms we have outlined may be the only
way in which to generate an asymmetry, especially in
cases where the reheat temperature is substantially less
than the Higgs-boson rest mass. We illustrate the out-
comes for the specific choice of inflation parameters given
in Eq. (4.7), though our methods as illustrated in this sec-
tion can be applied to any choice of parameters with ease.

The simplest version is "evaporation before domina-
tion, " with P( —,'. The holes must have a mass such that
the ratio given by Eq. (4.10) is less than one. Such holes
are probably light (and hence hot) enough for there to be
no suppression of radiated Higgs bosons, and hence the
asymmetry formed is very similar to that of direct pro-
duction. The asymmetry is substantially less, though, in
case where P or p are very small. In the first of the
"domination then evaporation" scenarios, P( —,

' but now
the holes are massive enough to last until domination,
with p greater than about 10 . Here there is the possi-
bility that the holes initially cannot radiate Higgs parti-
cles and there may be some suppression of baryon asym-
metry because of this. Thus the baryon asymmetry is
likely to be a few orders of magnitude less than direct
production, and hence if the model parameters allow
direct production, this mechanism operating on the
remaining 1 —P of the energy density will be the dom-
inant contributor. Finally, there is the version where
black holes dominate even initially. If the black holes
have p greater than about 10 the picture will be very
similar to that of the first "domination then evaporation"
scenario. However, here the black holes can be much
lighter, allowing them to radiate Higgs bosons immedi-
ately. If their initial mass is around p —10 a baryon
asymmetry of similar magnitude to that of the direct pro-
duction mechanism may be obtained. Note though that
the case of a long-lasting hole leads to a small asymmetry
in either of the "domination then evaporation' cases. Fi-
nally, throughout this paragraph a reduction in the
baryon asymmetry in one model as compared to another
can be interpreted as simply requiring a larger e.

For different model parameters the details may be
somewhat different when the constraints of lifetime and
temperature have been taken into account; in general for
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instance the critical values of p governing the tempera-
ture and lifetime behavior need not be as close as in the
case we have illustrated. However, the principles of es-
timating the asymmetry remain exactly the same as dis-
cussed in the preceding paragraph. This concludes our
investigation of baryogenesis after extended inAation, in
which we have outlined methods of estimating the baryon
asymmetry formed in wall collisions for a variety of
difterent mechanisms. Each of the models we have out-
lined appears to have prospects for generating a baryon
asymmetry of the correct order of magnitude to match
observations, depending of course on the degree of
baryon-number violation in the particle theory under
consideration. We have found here that in cases where
direct production of Higgs particles in the wall collisions
may occur, the asymmetry generated is generically
greater than that via the black-hole mechanism, so if
direct production is allowed this will be the dominant
contributor to the asymmetry. However, it is possible
that the inAaton parameters may not allow direct produc-
tion, in which case if there is a substantial production of
black holes they may provide a route to a baryon asym-
metry of the appropriate magnitude. For a discussion of
further relevant points such as the role of sphalerons and
of methods of avoiding monopole production, we refer
the reader to the final section of I.

ACKNOWLEDGMENTS

E.J.C. and A.R.L., and E.W.K. were supported by the
United Kingdom Science and Engineering Research
Council. E.W.K. was supported by the Department of
Energy and NASA (Grant No. NAGW-1340) at Fermi-
lab. E.W.K. would also like to thank John Barrow for
his hospitality at the University of Sussex where part of
this work was done.

MBH(t) =MD[1 —(t —
tRH )/r], (A 1)

where, as before, r=MO/(g, mp, ) is the black-hole life-
time. Now the black-hole energy density is
pBH(t)=nBH(t)MBH(t). Since the number density of
black holes scales as a and the mass as a function of
time is given in Eq. (Al), the black-hole energy density is

pBH(t) = [pp(tRH )][1—(t —
tRH )/r]' [a (tRH )/a (t) ]

APPENDIX A: DYNAMICAL EVOLUTION
OF BARYON NUMBER

This appendix includes a derivation of the rate equa-
tions which determine the evolution of the baryon num-
ber during black-hole evaporation. An examination of
the limiting cases of these network equations allows us to
regain the results outlined in Sec. III ~ To cast the equa-
tions in their simplest form several new forms of notation
will be introduced.

At t&H we start with energy densities
pB„(t«)=/3p(t«) in bl~~k holes and PR(t«)
= ( 1 —/3)p( t RH) in radiation. We denote the initial
black-hole mass as Mo. As discussed in Sec. III, the
black-hole mass as a function of t is

Of course, the factor pp(tRH) is simply the black-hole en-
ergy density at t&H. One can check that if the black
holes are given a thermal velocity then they still contrib-
ute a negligible pressure. This confirms that the black-
hole number density scales as matter, justifying the form
used above. We have here neglected accretion onto the
black holes from the background; in principle this may be
an important eA'ect at early times before the expansion di-
lutes the radiation. The amount of accretion presumably
will be proportional to the square of the Schwarzschild
radius of the holes, multiplied by some capture cross sec-
tion of order 1 and by the density of the background.
Rough calculations indicate that accretion would be
negligible at late times.

For convenience we introduce a set of dimensionless
variables

~=a (t)/a(tRH )

x =(t tRH )/v,

R BH =PBH~ /[/ P( t RH ) j

RR =PR &'[(1—»P( tRH ) j

(A3)

RBH =(1—x )'/ (A4)

The energy density of radiation is diluted by the expan-
sion but is increased by energy fed in from the black-hole
evaporation according to

pR ~ pBH
BH

(A5)

which after some manipulation gives the evolution equa-
tion for radiation as (where primes denote derivatives
with respect to x)

(R~ )'=o. (1—x )
3(1—P)

(A6)

To complete this set, we need the equation for u, which is
just the Friedmann equation

2

a 8m
, (P~+PBH»

377l pi

(A7)

which after some manipulation leads to

g~ Mo(~')'=
3 2 10 2g~m pi

Note that during evaporation the new time variable x
simply goes from 0 to 1. The purpose behind the new
variables should be obvious. Until evaporation starts in
earnest, the evolution of the energy densities is simple:
p~ a and p» a '. By defining R~ and R» we
isolate the deviation from these simple scalings: R ~H and
Rz have been defined so as to be constant in the absence
of black-hole evaporation.

The evolution of the black-hole energy density now has
the simple form

(A2)
X R~ +o. 1— (AS)
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Having the equations governing the evaporation of the
black hole, we must now calculate the baryon number
produced during the evaporation. The baryon number is
generated by the decay of Higgs particles produced dur-
ing the evaporation, with a baryon asymmetry of e pro-
duced per Higgs boson. We shall assume that the only
source of Higgs bosons is in primary production from the
hole evaporation, and neglect any Higgs bosons later pro-
duced as the emitted particles thermalize. Further, when
the hole is at a temperature T we assume that the mean
energy of particles produced is just
(E)=3T=3mp~l8mMDH. The fraction of Higgs parti-
cles produced will depend on this temperature, as at low
energies there is insufficient energy to create a Higgs bo-
son. A typical form for this thermal suppression may be
f0=(gH/g )exp( —mH/THH), where gH is the number
of Higgs-boson degrees of freedom. This just says that at
high temperatures Higgs-boson production matches that
of other species, with Boltzmann suppression at low tem-
peratures.

We note here that in Sec. III we demonstrated that the
number of particles produced in the course of evapora-
tion from a temperature T is proportion to T . Hence if
we consider the particles emitted from when the tempera-
ture matches the Higgs-boson mass, we find that —,

' of
them will have energies between ma and 2mH. This rein-
forces the impression that secondary production will not
be important as most particles produced with energies
above mII have energies not far above the Higgs-boson
mass and hence their thermalization is unlikely to
prompt much secondary production.

The rate of particle production per hole is

M
3 TBH

S~g~ m p1
2

9 MBH
(A9)

from which we obtain the rate of Higgs-boson produc-
tion, and then the baryon-number production as

8~g, m P1
2

Na =efH
BH

(A10)

Converting from number per hole to number density and
letting the baryon number density evolve in an expanding
universe leads to the expression

For convenience we define the quantity B =n~ /pz
which is related to the baryon number B via
B =—43(30lvr g~ )' B. Rewriting the evolution of baryon
number in terms of 8 leads to

8' P —2B =FfH
g p (tRH )mPl Mo

(1 —P)

X(1—x)-'"R-'"—— ' B .
4 RR

(A12)

Equations (A4), (A6), (A8), and (A12) form a closed set
of equations to integrate to give the baryon number. The
input parameters are Mo, P, and p(taH). Rather than in-
put p(taH), it is more physical to input the horizon mass
at tRH from Eq. (3.3). The set of equations becomes

I

ns =efH pp(tRH)a m vl Mo(1 x ) 3 B9 Ct

(A 1 1)

mo M0

Pl hOI

R + P (1 —)'"
2ag„ 1 —P

1/2

1/2
0B'=

Mh„m p1

R~ = (1 —x)
3(1—P)
efH Mo

12

1/2

(1—P)3/4
327T

3
(1—x)

4 R~

(A13)

(BR~ )'= C(1 —x) (A14)

where C is a constant as seen from the preceding equa-
tion. This leads to

B(x)= [I—(1 —x)' '] .
3C

2R~~ (x)
(A15)

The baryon number at the end of evaporation is obtained
simply by substituting x =1 into the equation to get

The equations are to be integrated from x =0 to x =1,
with initial conditions a(0) =R~ (0)= 1, and B(0)=0.

Assuming fH to be constant (approximately true for
hot holes THH )mIt) this equation has an immediate first
integral via

B=3CI2Rz (x =1) and using the equation for B given
above. Note that R~ can only increase from its initial
value of 1, so putting in Rz =1 gives an upper limit on
the baryon number obtainable for a given set of parame-
ters. Notice further that this limit coincides with Eq.
(3.17) obtained in Sec. III for the case of "evaporation be-
fore domination. "

We have been unable to reproduce analytically the re-
sults for either of the "domination then evaporation"
cases from the network equations, a task made complex
because at the end of the evaporation we go back into a
radiation-dominated region from the era of black-hole
domination. Hence we cannot consistently neglect either
of the terms in the equation for o. for the entire evolution,
though perhaps good answers can be obtained by assum-
ing that the majority of the baryon asymmetry is pro-
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duced during the era of black-hole domination. A fur-
ther problem may be that f~ can no longer be regarded
as a constant if there is the possibility that the holes are
initially too cool to radiate Higgs bosons. Numerical

evolution of the network is another method of obtaining
results for this case, though this is hampered by the large
number of free parameters to be chosen (e.g. , e, Mo, P,
etc).
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