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In this paper, we quantify the degree of fine tuning required for successful inflationary scenarios.
We define a "fine-tuning" parameter X to be the ratio of the change in the potential AV to the
change in the scalar field (hl(); i.e., A, measures the required degree of fiatness in the potential. For
a quartic polynomial potential, the quartic coupling constant X~ is bounded by ~A, ~ ~

~ 36K,. For a
general class of inflationary models involving a slowly rolling field, we find that the potential must
be very Aat, with a fine-tuning parameter A, ~10 —10 . The recently proposed "extended"
inAationary scenario is even more tightly constrained, with A, ~ 10

I. INTRODUCTION

where H=R/R is the Hubble parameter, R is the scale
factor of the Universe, R (t, ) is the scale factor at the be-
ginning of inflation, and y ( =H during the inflationary
epoch) is given by

y= +8nGp„, /3 . . (1.2)

During this period of exponential expansion, a small
causally connected region inAates to become large
enough to encompass the entire observed Universe, and
presumably much more. The tremendous expansion can
explain the observed homogeneity and isotropy of the
Universe, it can dilute the overdensity of magnetic mono-
poles predicted by many particle theories, and it predicts
a geometrically flat (i.e. , k =0) universe. A successful
resolution to these cosmological problems requires that
the scale factor must increase by at least a factor of 10
i.e., at least 60 e-foldings must occur. The period of ex-
ponential expansion must be followed by a period of
thermalization, in which the vacuum energy density is

The inflationary universe model' was proposed to solve
several cosmological problems, including the horizon
problem, the fatness problem, and the monopole prob-
lem. During the inflationary epoch, the energy density of
the Universe is dominated by a (nearly constant) false-
vacuum energy term p =p„„and the scale factor of the
Universe expands exponentially:

yt. t —
t,. )H =8irGp/3 —R (t) =R (t, )e

P+3HQ+ I Q+ =0 . (1.3)

converted to radiation.
In the original inflationary model, the Universe super-

cools to a temperature T &( T, during a first-order phase
transition with critical temperature T, . The nucleation
rate for bubbles of true vacuum must be slow enough that
the Universe remains in the metastable false vacuum long
enough for the required -60 e-foldings of the scale fac-
tor. Unfortunately, the old inAationary scenario has been
shown to fail because the interiors of expanding spheri-
cal bubbles of true vacuum cannot thermalize properly
and produce a homogeneous radiation-dominated
universe after the inflationary epoch.

Soon after the problems of the original inAationary
scenario were discovered, they were overcome by the de-
velopment of the new inflationary universe. ' In this
model it is assumed that the diagram of the effective po-
tential (or free energy) of the inflation field 1b has a very
Rat plateau, and the field evolves by "slowly rolling" off
the plateau. In this case, the phase transition can be
second order or only weakly first order. Assuming that
the scalar field in some sufficiently large region of space
(approximately horizon size) settles into a state that is not
too inhomogeneous and for which the average value of itj

is near the peak of the plateau, then inflation will begin.
The metric in this region will (locally) approach the de
Sitter form, and then the evolution of P is determined by
the equation of motion
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6p

P hor

H=0. 1 (1.4)

where (6p/p)~h „ is the amplitude of a density perturba-
tion when its wavelength crosses back inside the horizon
(more precisely, the Hubble distance) after inAation, and
the right-hand side is evaluated at the time when the Auc-
tuation crossed outside the Hubble distance during
inflation. While this formula was derived originally in
the context of new inAation, it applies to any model in
which the end of the inflationary epoch is in some way
triggered by a slowly rolling field g. The quantum fluc-
tuations in the motion of the field 1( cause the hypersur-

Here we have neglected the spatial gradient term because
it is suppressed by e ' during the inAationary epoch.
In this "slowly rolling" regime of growth, the energy den-
sity of the Universe is dominated by the vacuum contri-
bution (p =p„,))p„d) and the Universe expands ex-
ponentially; the 1 1( term is usually unimportant during
this slowly rolling phase of evolution. It is generally also
true that the 1( term is negligible, at least in the early
stages of the slowly rolling regime. This means that the
motion is overdamped, and is controlled entirely by the
force term (d V/dg) and the viscous damping term
(3Hitj). The neglect of g reduces the second-order equa-
tion (1.3) to a first-order equation, resulting in solutions
g(t) for which the only undetermined parameter corre-
sponds to a translation of the time variable. The field ap-
proaches the minimum of the potential (i.e., the true vac-
uum) and then oscillates about it, while the 1 it term gives
rise to particle and entropy production. In this manner,
a "graceful exit" to inAation is achieved.

Since the development of new inAation, a number of
other models have been proposed, including the chaotic
inflationary model of Linde, the extended inAationary
model of La and Steinhardt, the hyperextended model of
Steinhardt and Accetta, and the double-field inAationary
model of Adams and Freese. Like new inflation, all of
these models utilize a slowly rolling field.

The extended inflationary model revives some of the
aspects of the "old" inAationary models in that the
inAation takes place at a supercooled first-order phase
transition. The essential difference is that gravity is de-
scribed not by general relativity, but by Brans-Dicke
theory, in which the scalar curvature J7 of gravity is cou-
pled to a scalar field. This leads to a power-law behavior
for the expansion of the scale factor, circumventing the
problems of old inAation. However, studies' '" of bubble
nucleation, collisions, and percolation place significant
restrictions on the allowed range of parameters for the
model. Hyperextended inflation is a generalization that
utilizes more complicated couplings of the rolling field to
gravity. In both models, the field which couples (non-
minimally) to gravity evolves through a slowly rolling
equation of motion.

All known versions of inflation with slowly rolling
fields tend to overproduce density fluctuations, unless the
potential for the slowly rolling field is chosen very care-
fully. In particular, these models predict' density Auc-
tuations with amplitudes given by

face of the phase transition to be nonuniform, resulting
eventually in density perturbations with magnitude given
by Eq. (1.4). In the case of extended or hyperextended
inAation, or double-field inAation, the perturbations of
Eq. (1.4) would be superimposed with perturbations
caused by the collisions of bubbles, so the expression in
Eq. (1.4) would be a lower limit on the full spectrum of
perturbations.

The allowable amplitude of these density perturbations
is highly constrained by measurements of the isotropy of
the microwave background, which indicate that

P (g 5~]p—5

P hor

on scales of cosmological interest. ' For all models of
inAation with which we are familiar, the coupled con-
straints that the Universe must inAate sufficiently and
that the density perturbations must be sufFiciently small
require the potential V(P) to be very Aat (see, e.g. , the pa-
per by Steinhardt and Turner' ).

In this paper we attempt a systematic, quantitative
study of the fine tuning necessary for any model of
inflation that utilizes a slowly rolling field. Specifically,
we will derive some general bounds on a "fine-tuning pa-
rarneter" A, that we define by

where 5 Vis the decrease in the potential V(itj) during the
inAationary epoch (or some specified part of it), and b, 1(j is
the change in the value of the field g over the same
period. The parameter k is thus the ratio of the height of
the potential to its width (for that part of the potential in-
volved in the specified time period), so it measures the de-
gree of Aatness of the potential. We show in Appendix A
that if the potential is a quartic polynomial, then a bound
on k (for any time period) can be used to place a bound
on the usual quartic coupling constant k; specifically,
specifically,

(1.7)

where the quartic term in the Lagrangian is written as

While we refer to A, as a "fine-toning" parameter, we
do not mean to suggest that a very small value of A, im-
plies that any particular model is unacceptable. The
reader will of course draw his/her own conclusions, but
in our opinion it is reasonable to hope that the required
small value of A, might some day be explained by a deeper
understanding of the underlying particle physics.

The bulk of the paper will concern inAation involving
one or more scalar fields that are not coupled to gravity,
and which satisfy two conditions. First, we will assume
that the evolution during the relevant time period
satisfies the density perturbation constraint of Eqs. (1.4)
and (1.5), leading to

H /it~105.
Second we will assume tIiat during the early stages of
inAation, the itj term of Eq. (1.3) is negligible (along with
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the I P term), so that the evolution of g is overdamped.
This leads to the equation of motion

3Hd& =—
dt

(1.9)
dV

The consistency of neglecting the P term then leads to a
constraint on the potential,

d 1 dV
dt 3H dg

( dV
df (1.10)

which we will call the overdamping constraint. [Equa-
tion (1.10) is sometimes called the "slowly rolling" condi-
tion, but we prefer to avoid this phrase because it sug-
gests a constraint on it rather than g. While it would be
reasonable to assume that the left-hand side of Eq. (1.10)
is much less ( «) than the right-hand side, we will rely
only on the weaker ( &) constraint as shown. Note also
that Eq. (1.10) is a necessary but not a sufhcient condition
for the negligibility of g—even if Eq. (1.10) were written
with a « symbol, it would not by itself imply that the g
term could be neglected in Eq. (1.3).] Using these two
constraints, we will establish general bounds on the fine-
tuning parameter A, , defined for the time period during
which the constraints are valid. In addition, we will
derive bounds on A, for the case of extended inflation.

This paper is organized as follows. In Sec. II we for-
mulate the problem for what we call standard inflationary
models: models involving any number of scalar fields
that are not coupled to gravity, and that obey the density
perturbation and overdamping constraints. This includes
the standard versions of both new inflation and chaotic
inflation. In this section we define notation and trans-
form the problem into a mathematically convenient form.
In Sec. III we complete the derivation by finding bounds
on the fine-tuning parameter A. . We consider first the
general case of scalar fields satisfying the density pertur-
bation and overdamping constraints. We then consider
the special case of a constant Hubble parameter H, such
as in the double field model, for which a stronger bound
can be derived. In Sec. IV we find upper limits on A. for
the case of extended infiation. We then conclude (in Sec.
V) with a discussion of our results and possible directions
for future work.

dx:—dn Hdt
N

(2.1)

The variable x thus ranges from 0 to 1 during the
relevant time period. We will also introduce the notation

F(x)=- dV (2.2)

where the letter F is chosen to suggest a force.
In the newly defined notation, the overdamping con-

straint is written as

H — (3SF,
dx H

(2.3)

and the density perturbation constraint is

3H /F(106 . (2.4)

Furthermore, the quantities 6 V and b, i)'j can be written as

b, V= —f (F /H )dx,
3 0

(2.5a)

bf= —f (F/H )dx .
3 0

(2.5b)

We have chosen our sign convention so that 5 V is a posi-
tive quantity and so that x =0 at the beginning of the
constrained time period.

Since it is convenient to deal with dimensionless quan-
tities, we rescale the functions F(x) and H(x). To do
this, we let x denote the value of x in the range [0,1] such
that the quantity H /F, which appears in the density per-
turbation constraint, is maximized. (If the maximum is
not unique, we can choose x to be any of the maxima. )

We then introduce the dimensionless functions

Mpc (the size scale corresponding to a galactic mass).
This range spans a factor of 3000 in physical size and cor-
responding to N =ln(3000) = 8 e-foldings of the
inflationary epoch. ' Thus, the physical requirements of
inflation imply that N = 8.

The relevant time variable for an inflationary epoch is
the number n of e-foldings since the beginning of the
epoch. We will therefore adopt a new time variable x
defined by

II. FORMULATION OF THE PROBLEM
FOR STANDARD INFLATIONARY MODELS

f(x):F(x)/F, —

h (x) =H(x)/H,
(2.6a)

(2.6b)

In this paper, we will derive a set of upper bounds on
the degree of fine tuning required for a fairly general class
of inflationary scenarios which utilize a slowly rolling
field itj. The degree of fine tuning will be measured by the
parameter A, , defined by Eq. (1.6). In this section we will
consider an inflationary scenario involving an arbitrary
number of scalar fields that are not coupled to gravity,
and which satisfy the density perturbation constraint of
Eq. (1.8) and the overdamping constraint of Eq. (1.10).
We will assume that both constraints hold for a period of
X e-foldings.

In general, we want the density perturbation constraint
to apply for physical size scales (at the present epoch) in
the range 3000 Mpc (the horizon size) down to about 1

= 3
+3

3H
'
J[f,h],F (2.7)

where

f (f '/h ')dx
J[f,h]=

f (f/h )dx
(2.8)

But the density perturbation constraint implies that
3H /F (106, and so

where the overbar refers to the value of the function at
x =x. Using the definition (1.6) of A, with Eqs. (2.5) and
(2.6), one has
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3006 J[f,h] . (2.9) p (x)) h (x)

and the overdamping constraint

(3.3a)

Notice that A, is proportional to 6 and inversely propor-
tional to N (although the limits on the functional J also
depend on N se—e Sec. III).

In order to derive an upper bound on the fine-tuning
parameter, we must derive an upper bound on the func-
tional J [f,h], subject to the constraints

1 dp

p dx
(3.3b)

In addition, we know that there exists a point x C [0, 1]
such that

h ( x) /f ( x) & 1 Vx E [0, 1] (2.10a) p(x)=h(x)=1 . (3.3c)

&3N Vx&[0, 1] .
1 dj' 1 dh

f dx h dx
(2.10b)

The first of these inequalities is related to the density per-
turbation constraint, but more precisely it follows from
the rescaling of the functions relative to the maximum
value of H /F. The second inequality is the overdamp-
ing constraint. We also know that there exists a point
X E [0,1] such that

f (x)=h(x)=1 . (2.10c)

Notice that for the fiducial case of a constant Hubble
parameter ( h = 1) and a linear potential (so that
f = 1 =const), we have J = 1. For this case, the fine-
tuning parameter A, ~3005 1V; i.e., the parameter de-
pends on the square of the density perturbation limit 6
and the inverse cube of the number N of e-foldings. In
order to obtain numerical values for our limits, we will
consider a representative case in which 6= 5 X 10 and
%=8; the resulting fiducial value of A, is —10

III. CONSTRAINTS ON STANDARD INFLATIONARY
MODELS

Using the formulation of the problem given above, we
will now find upper limits to the fine-tuning parameter.
We will first consider the general problem, in which both
f and h are arbitrary functions to be chosen independent-
ly. We will then consider the special case of a constant
Hubble parameter (h =1), for which a somewhat
stronger bound can be derived.

A. The general problem

The fine-tuning parameter k is bounded by Eq. (2.9), so
we must derive an upper bound for the functional J [f,h ]
of Eq. (2.8), subject to the constraints of Eqs. (2.10).

It is convenient to define
1/2f (x)

(3.1)

leading to the equivalent problem of finding an upper
bound on

In order to maintain some physical intuition, one should
remember that p ~ v'd g/dt .

One can see immediately that the functional J [p, h] is
maximized by choosing h (x)=p (x) to saturate the densi-
ty perturbation constraint (3.3a):

J'p'dx
Jlp h]-KIpl=--

p dx

6K
5p (x) , [(p )p'(x) —(p') ],

p
(3.5)

where we have used the notation
1

( . )—: dx
0

(3.6)

Thus, the functional E can be increased by increasing
p (x) for any x such that p (x))p and/or lowering p (x)
for any x such that p (x) &p, where

( ')
(p)

Thus, a stationary point of K [p] can be found by set-
ting p(x)=const, from which it follows that p(x)=p
This stationary point is consistent with the constraint
(3.3b), but it is easily shown that it is a minimum and not
a maximum. To see this, we can calculate the second-
order variation of K:

K[p(x)=p +5p(x)]=1+6 +O(5p ) .
J'm

The maximization of K [p] is reasonably intuitive,
since one can think of p (x) as a probability distribution.
In this language one is trying to maximize the fourth mo-
ment of the distribution while keeping the normalization
fixed. It is well known that this is accomplished by
choosing the distribution to be as nonuniform as possible,
and in this case the limit on nonuniformity is imposed by
the constraint (3.3b). Thus, one expects the optimum to
be a function which is as sharply peaked as the over-
damping constraint allows. We will show that this expec-
tation is correct.

Formally, one can attempt to maximize K [p J by calcu-
lating its functional derivative, initially ignoring the con-
straint (3.3b). One finds

1 4
p dxJ [p, h]=

(p /h)dx
4

subject to the density perturbation constraint

(3.2)
(3.8)

The second-order variation is therefore positive unless
the variance of 5p (x) vanishes; this happens only if
5p (x) =const, in which case the functional K is un-
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changed to all orders.
Since the vanishing of 5K/5p(x) leads to a minimum

but not a maximum of K [g], we next look at the boun-
daries of the allowed region of function space. We con-
sider therefore a trial function that saturates the con-
straint (3.3b):

p (x) =p, (x) =poe (3.9)

p(x)=p„(x)+5p(x) . (3.10)

We are interested only in variations that satisfy the con-
straint (3.3b), which implies that

[
3Nx/25

( )])0
dx

(3.1 1)

where po is an arbitrary constant. (Note that
p =p0e+ " would also saturate the constraint, and
that it would give the same value for the functional K [p].
Thus there is no need to consider both the growing and
decaying exponentials. ) To see if p, (x) might maximize
K [p], we consider a small variation

27NJIp h] —KIp. ]=
32

e
—6N

( 1 e
—3N/2)4 (3.17)

Since we are interested in reasonably large values of N,
the factor in large parentheses can be approximated by 1.
For the case of N =8, for example, this results in an error
of relative magnitude 2. 5 X 10 . With this level of accu-
racy one could combine Eq. (3.17) with Eq. (2.9) to obtain

5'=6.3X10 ',
8

(3.18)

where we choose 6=5 X 10 to obtain the numerical
value.

Since we have gone through a complicated series of
transformations in order to simplify the problem, it is not
obvious what form the physical functions should have in
order to maximize A, . It is therefore instructive to trans-
form the optimal solution back to the original notation.
After some algebra one finds that the optimal potential is
simply

The variation of K [p] can then be calculated by using
Eq. (3.5):

V(it)= —,'k (g Po) + V—o,
where

(3.19)

K [p„+5p ]=K[p„]+J [p, ]5p(x)dx,6E
o 5p(x

(3.12) 2025
2

(3.20)

where

5K 81K
5p(x)

and go and Vo are arbitrary constants that may be chosen
to be zero. The optimal behavior for the Hubble parame-
ter is

4( I e
—3N/2)e —9Nx/2

( 1 e
—6N) ]

(3.13)

H(t)= H
1+—,

' Ht

where

(3.21)

To see the role of the constraint (3.11), we can integrate
by parts to get

K[p, +5p]=K[p„]—f dx 8'(x) [e N /25p(x)],
1 d

0 dx

(3.22)

and M is an arbitrary constant with the units of mass.
The beginning and ending times of the inflationary period
are given by t~ =0 and

where

(3.14)
t = (e —1).2

3H
(3.23)

IV(x )
—J

—3Nx'/2d6K
o 5p(x')

—Z [(1 e
—3N/2)(1 e 6Nx)—

( 1
—

6N)( 1
—3Nx/2)

]

27N

8p (1
—3N/2)5

(3.15)

(3.16)

During this time the scalar field g evolves according to

1+ ,'Ht— (3.24)

B. Constraint with constant Hubble parameter

Notice that the potential in Eq. (3.19) is typical of a
chaotic inflationary model, but chaotic inAation predicts
a time dependence of the Hubble parameter that is
different from Eq. (3.21).

Note that IV(0) = 8'( I) =0, so there are no surface terms
in Eq. (3.14). It is shown in Appendix 8 that IV(x) ~0,
so one can see from Eqs. (3.11) and (3.14) that K [p] is de-
creased by any allowed variation, and hence p ~ (x) is at
least a local maximum.

It is a little harder to show that p „(x)provides a global
maximum for K [p], so we relegate this derivation to Ap-
pendix C. Making use of the result, however, we have

h (x)=1 ti'x E [0, 1] . (3.25)

This form of the problem is applicable, for example, to
the model of "double field inflation" which has recently

We now consider the restricted problem in which the
Hubble parameter is constant during the inAationary
epoch, i.e.,
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J [f]= j 'f 'dx
4 ~

f dx
(3.26)

Since f is a bounded function, it must attain a max-
imum value f, over the interval [0,1]. Since f is also
positive definite, we can bound the numerator in Eq.
(3.26) by

I f dx~f„J fdx, (3.27)
0 0

which implies an upper bound on the functional J of the
form

been proposed. In this case we will not solve the optimi-
zation problem completely, but instead we will derive a
bound on A, .

For this case the functional J can be written

then taking the cube root:

J[f]~3% . (3.34)

We now have the desired upper limit on the fine-tuning
parameter:

9006 5g 10
—8

+2 (3.35)

where the approximate equality corresponds to the
choice of parameters %=8 and 5=5X10 . Note that
this bound is about a factor of 20 Inore stringent than the
bound obtained in the general case.

IV. EXTENDED INFLATION

For the case of extended inflation, '" the action of the
theory has the form

J[f]~
f dx

3 ~ (3.28) ~ = ~(q, y) =Id'x& g —y'W ——a Pa~q
1 2 1

8S

We can now find an upper limit to the functional I [f] by
placing a lower limit on the functional

Llf]—:j f dx . (3.29)
0

We first use the constraint [Eq. (2.10a)] from density per-
turbations that f ~ 1, so

Llf] —1. (3.30)

Now let x„denote the value of x where f (x) attains its
maximum value f„. Since the function f (x) cannot de-
crease faster than allowed by the overdamping constraint
(2.10b), the integral in Eq. (3.29) must obey the bound

I f dx~f, I dxe

1 —3%(x —x + )+ dxe

fg —3Nx~ —3N(1 —x„)
3N

2 —e * —e (3.31)

L [f]~ (1—e )=3' 3N
(3.32)

In using the approximate equality, we are being slightly
imprecise. In most cases of interest, however, N ~ 8, so
the neglected term is ~ 10

We now have two lower limits on the functional L [f]
[see Eqs. (3.30) and (3.32)]. Both of these limits must ap-
ply for any value of f„. These lower limits on L [f] im-
ply the following upper limits on J [f]:

Using elementary calculus to show that the function
above attains its minimum value when x~ =0 or x ~

= 1,
one has

—&(g)+X((t), (4.1)

where 1/8b is the nonminimal coupling coefficient, ' A is
the scalar curvature, g is the rolling field that couples to
gravity, and P is the matter field(s) that drives the
inflation. For internal consistency we are using a nota-
tion different from the original authors —our g corre-
sponds to the P of the original papers, and our P corre-
sponds to the original o. In addition, we have chosen to
use a standard normalization for both the i( terms in the
Lagrangian and for X(P), so our g is equal to P//16ir in
the original notation. (Ref. 17, on the other hand, uses
the same normalization that we do. ) Since the value of
the fine-tuning parameter k depends on the normalization
of g, it is important to us that the normalization is stan-
da1 d.

Notice that the bounds for the fine-tuning parameter k
derived in the previous sections do not apply in this case,
since the coupling of it to gravity gives it an equation of
motion more complicated than Eqs. (1.3) or (1.9). We do
not have a general argument that covers cases of this
type, but we can still place a bound on X for the extended
model by means of an explicit, model-dependent calcula-
tion.

For extended inflation, the time dependence of the field
P and the scale factor R can be solved directly. Let

MH= "
(4.2)3 mp

where mP is the effective Planck mass at the beginning of
the inflationary epoch (taken as t =0), and MF is the en-
ergy density of the o.-field false vacuum. Then the
relevant solution can be written

1/2

J[f] f„and ~[f] 2

27N
(3.33)

it(t) = b

2~
Ht

mp 1+ a (4.3a)

A bound independent of f~ can be obtained by multiply-
ing the square of the first inequality by the second, and

R (t) =(1+Ht/a)" +'~',

where a—:&(3 +2b ) ( 5+6b ) /12.

(4.3b)
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1/2 b +1/2

Before going on, we write down several relations for fu-
ture reference. From Eqs. (4.3) it follows that R is related
to /by

Universe as P Tp. Parametrizing the present Hubble pa-
rameter and radiation temperature by

Hp =hp X 100 km sec 'Mpc '=2. 13hp X 10 QeV,

mp
(4.4)

Since g determines the temporary value of the Planck
mass, we can write

Tp:&p X 2 ~ 74 K:2.36TpX 10 "GeV

we will take hp= —,
' and ~p=1 to obtain

(4.13a)

(4.13b)

g(0) =&b /2~ m p,
g(t, )=v b/2~ME,

(4.5a) P=162hp/rp=80 .

(4.5b) We thus obtain the condition of sufficient infiatjon.

(4.14)

where t, denotes the time at the end of the inflationary
epoch, and ME is the value of the Planck mass at that
time. ME is usually assumed to be near the present value
of the Planck mass Mp, but in this calculation we will al-
low for the possibility that it might be significantly
difterent. (Such a difference would occur if the field f
continued to evolve after the end of inflation, settling into
the minimum of its potential at a later time. ) Combining
Eqs. (4.4) and (4.5), one has

b+1/2

(4.6)

R ( t ) KMF MP

13Tp mF
(4.15)

Using Eq. (4.4) to relate the ratio of scale factors to the
ratio of scalar fields, the condition for sufficient inflation
can be rewritten as

(This result agrees with Ref. 11, except that the authors
of Ref. 11 approximated P and ir by unity. )

Combining Eqs. (4.6) and (4.15), one has
( b + 1/2 ) /( b —1/2 )R t a.M M

e
RE PTP ME

where R~ —= 1 denotes the value of the scale factor at the
beginning of infiation (t =0). It will also be useful to
have an expression for the Hubble parameter:

1/( b —1/2)
Q(t, ) trMF Mp

f(0) /3Tp ME
(4.17)

where

KH

1+(Ht/u)
KH

R 1/(b+1/2) (4.7)
~MF Mp

pTp ME
—1 . (4.18)

Combining this bound with Eq. (4.5a), one has
1/2 1/( b —1/2)

b
mp2'

b +1/2
(4.8)

We now want to invoke the condition of sufficient
inflation in order to determine the required number of e-
foldings during the inflationary epoch. Following Ref.
11, the condition of sufficient inflation can be written

R(t, )

Rp

TQ

MF
(4.10)

and the condition of sufficient inAation becomes

R(t ) HE Tp

R~ Hp MF

We then write the Hubble parameters as

8~ vMF2 4
8~ & Tp

2 4

H~= and Hp =
mp Mp

(4.1 1)

(4.12)

where we have written the present energy density of the

(4 9)
HpR p H~ R~

where Hz =~H is the value of the Hubble parameter at
the beginning of inflation, and Hp and Rp are the values
of the Hubble parameter and scale factor, respectively, at
the present epoch. If we assume that the Universe has
evolved adiabatically since the end of inflation, then

For later use we note that Eq. (4.17) can also be combined
with Eq. (4.5b) to obtain

1/2 1/( b —1/2)
pTp ME

~MF Mp
(4.19)M 1—2'

We must now place a bound on the change in the po-
tential. Since AV is the change in the potential of the g
field during inflation, and since the energy density is dom-
inated by the false vacuum energy density MF of the
second field P, we have

6 V(P) ~ MF . (4.20)

We can thus express a limit on the fine-tuning parameter
through

4~2 MF

b m P

1/( b —1/2)
~MF Mp —1
pTp ME

(4.21)

In order to obtain a bound on A, , we must limit the
range of the energy scale MF. We could invoke the obvi-
ous limit that MF ~mp, i.e., the energy scale of the
inflation field cannot exceed the Planck mass. ' Howev-
er, the vacuum energy density MF must also exceed the
kinetic energy of the de Sitter space fluctuations in both
g and P. Using this constraint, " the bound is found to
take the slightly stronger form
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4 ( 3
MF

2

4
mp (4.22)

an equation that holds for any time during the
inflationary epoch. With the two equations above, the
density perturbation constraint can be written as

aMF Mp

pTO ME
(4.23)

Combining Eqs. (4.21) and (4.22), we obtain the limit on
the fine-tuning parameter

2 1/( b —1/2) —4
3 —1

4b

&p 4~aa2 MF &Mp MF2

=0. 1
h., &3b M,' pT, M,

2/( b —1/2 )

(4.29)

The weakest bound will occur for the smallest allowed
value of the inflation scale MF. Assuming that baryo-
genesis can take place at the weak scale but not below it,
we take MF ~ 100 GeV. As discussed in Ref. 11, the pa-
rarneter b is constrained to lie in the range 1.S & b & 2S in
order to achieve a successful extended inAationary
scenario. For the upper encl of this range, b =2S, we ob-
tain

X&3.2x10 ', (4.24a)

where we have taken ME =Mp for the numerical exam-
ple. For the lower end of the range b = 1.S we obtain

a &9.7x10-" . (4.24b)

If, on the other hand, one assumes that inflation takes
place at the grand-unified-theory (GUT) scale of
MF = 10' GeV, then these bounds become stronger:

A, & 1.3 X 10 (for b =25),

A, &9.7X10 ' (for b =1.5) .
(4.25)

1

H(t„)R(t„) (4.26)

To evaluate the right-hand side of this equation, use the
adiabaticity condition (4.10) to eliminate Ro, and then
use Eq. (4.6) to eliminate R (t, ). Use Eq. (4.12) to elimi-
nate Ho, and Eq. (4.7) to eliminate R (t„). The resulting
equation can be solved for H ( t „):

1/2 2 1/( b —1/2)
MF ItMF Mp

ME pTO ME
H(t )=~ 8m

(4.27)

i// can be obtained by differentiating Eq. (4.3a), using Eq.
(4.2) for H. The result is

1/2
4b MF
3 (x

(4.28)

To limit AV we have so far used only the mild con-
straint that the de Sitter space quantum ffuctuations in i//

and P cannot contribute more to the energy density than
MF. A significantly stronger bound can be obtained by
applying the density perturbation constraint of Eq. (1.8):
H //& 106.

For the sake of definiteness, we will evaluate the densi-

ty perturbation constraint for perturbations on the scale
of the present Hubble distance. This requires us to evalu-
ate H /g at the time t „when these perturbations crossed
the Hubble distance during inAation, so t, is determined

by

[Equation (4.29) agrees with the results of Ref. 11, except
for minor differences: the earlier authors set p=a. = 1 and
M~ Mp they used Eq. ( 1.4) with a coefficient of order 1

instead of order 0.1, and they calculated i/ without apply-
ing a correction to compensate for the nonstandard nor-
malization that they used for it. j For b =1.5 we find
Mz &(Mz/Mp) X 1500 GeV, and for b =25 we find

Mz & (Mz /Mp ) X 3.8 X 10' GeV.
The bound on MF/ME can be turned into a bound on

A, by combining Eqs. (4.20) and (4.19) to obtain
1/( b —1/2 I

—4

(4.31)b' M4 ~Mp MF

Since the expression on the right-hand side is monotoni-
cally increasing with MF over the range of interest, ' the
bound on A, can be obtained by substituting the bound
(4.30) for Mz/Mz into Eq. (4.31). The resulting bound is
then

X&8.8X10 ' (for b =25),
A. &4. 1X10 (for b =1.5) .

(4.32)

Note that unlike the bound (4.23), this bound is indepen-
dent of ME, the value of the Planck mass at the end of
inAation.

Thus the constraint on A, for extended inflation is in
fact somewhat stronger than for standard inAationary
models. Intuitively, the stronger constraint can be attri-
buted to the fact that the Hubble parameter H is decreas-
ing with time. Since the conditions at the end of inflation
are essentially fixed by present conditions, the Hubble pa-
rameter in extended inAation models must be larger than
normal at early times. The H /g fluctuations are there-
fore more difticult to control, leading to the stronger con-
straint.

In the calculation above, we assumed that the density
perturbations in the extended inAation model could be
calculated using Eq. (1.4), which is not strictly accurate
when the field i/ is coupled to gravity. A valid calcula-
tion of the density perturbations can be performed by
working in the Einstein conformal frame. ' The resulting
correction factor, however, is of order unity and will not
significantly aAect the results of this paper.

which in turn can be written as a bound on MF iME.
1/(b + 1/2)

MF pTO

ME ~Mp
(b —1/2)/[2(b+ 1/2)]

(4.30)
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V. DISCUSSION

In this paper, we have defined a fine-tuning parameter
A, that quantifies the degree of Aatness required for scalar
field potentials in order to achieve successful inflation.
This parameter is appropriate for any inflationary
scenario which involves a "slowly rolling" scalar field. In
this study, we have also isolated the functional depen-
dence of A, on the parameters of the problem [see, e.g.,
Eqs. (2.9), (3.18), (3.35), (4.23), (4.30), and (4.31)]. In par-
ticular, A, -6 for models in which the scalar fields are not
coupled to gravity, so future limits on microwave back-
ground anisotropy will tighten our constraints on A, as
the square of 6-hT/T. For the extended inflation mod-
el A, varies as a fractional power of 6, where the power
varies from 1 to 2 over the allowed range of parameters.

We find that for a variety of cases, the fine-tuning pa-
rameter is confined to be quite small. For any
inAationary scenario in which the scalar fields are not
coupled to gravity and satisfy the density perturbation
and overdamping constraints [Eqs. (1.8) and (1.10)], we
find that A, ~ 6.3 X 10 . If the model also has a constant
value of the Hubble parameter 0 during inAation, then
A. ~ 3.5 X 10 . We have also analyzed specifically the
standard form of extended inAation and find bounds that
depend sensitively on the value of the Brans-Dicke
parameter' b. The parameter is restricted to the range"
1 5 b ~25 and we find that A, 4 1X10 for the
lower end of this range, and k 8.8X10 ' at the upper
end. Thus we find that extended inflation models require
a higher degree of fine tuning than standard models, and
that models with small values of b require particularly
large amounts of fine tuning.

Our derivation for the case of extended inAation relies
on the precise form of the proposed model, and is not
nearly as general as our treatment for models in which
the scalar field is not coupled to gravity. Perhaps this ap-
proach can be generalized in future work. The case of
hyperextended inflation is also very interesting; but since
this model allows for a wide variety of non-linear cou-
plings of the P field to the scalar curvature, we have not
yet investigated it. '

As mentioned in the Introduction, we do not mean to
suggest that a very small value of A, implies that any par-
ticular model is unacceptable. It is well known that there
are some very small dimensionless numbers in nature:
the ratio of the weak energy scale to the Planck scale is
about 10 ', and Yukawa coupling constant for the elec-
tron is about 10 . Since inflation seems to be the only
way to avoid the horizon, fatness, and magnetic-
monopole problems, it seems appropriate to hope that
particle theory will one day explain whatever fine tuning
of parameters is necessary for inAation to occur. In par-
ticular, we do not feel that the strong constraint on ex-
tended inflationary models is any cause to abandon them.
These models represent a genuinely novel approach for
the ending of inAation, and the consequences should be
thoroughly pursued.

As defined in this paper, A, is a ratio of energy densities
[i.e., b, V/(b, (t) ]. However, if we consider the energy

scale as the relevant physical quantity, we should con-
strain the ratio of energy scales; this ratio is k' and is
constrained to be less than 10 or maybe 10 . More-
over, since the ratio of the GUT scale to the Planck scale
is —10 and these two energy scales appear in the prob-
lem, the required "fatness" of inflationary potentials
could be a generic outcome of physics at these energies.

Although we do not want to discard inflationary mod-
els because they require very small values of k, we point
out that some types of fine tuning might be considered
preferable to others. That is, some types of fine tuning
might seem more likely to be susceptible to an explana-
tion from fundamental particle physics. For example, a
model in which A, is related to fine tunings that already
occur in particle physics models, such as the ratio of the
GUT scale to the Planck scale, might be considered
preferable to a model that requires a genuinely new fine
tuning. In the model of Ref. 22, these mass scales may
arise naturally in inflation with pseudo-Nambu-
Goldstone bosons. Alternatively, one might consider a
model which works for any A, in the range 0 ~ k ~ 10 to
be preferable to a model which requires X=10 . Hy-
perextended inAation has this appealing property, since
inAation can apparently occur with no potential at all for
the f field. In this case one might look for a fundamental
symmetry to force the potential to vanish.

Much of the analysis in this paper has relied on the
simultaneous use of the density perturbation and over-
damping constraints. The two constraints, however, are
not at all on an equal footing. The density perturbation
constraint is clearly necessary for consistency with obser-
vation, but the overdarnping constraint is really a matter
only of computational simplicity. Thus, it might be in-
teresting to investigate models in which the overdamping
constraint is relaxed. This generalization would lead to
complications, however, since the relevant solutions to
the differential equations would then depend on an addi-
tional parameter. It can be said at least that our present
derivation makes only minimal use of the overdamping
constraint. If the overdamping constraint holds for just a
single e-folding during the same period that the density
perturbation constraint holds, then Eq. (3.17) leads to a
significant bound. Note also that Eq. (1.7) means that a
bound on k for any segment of the potential, no matter
how small, is enough to place a bound on the quartic
coefficient in the potential.
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APPENDIX A: BOUND ON THE
QUARTIC COUPLING CONSTANT

(z ~0,
18a+9P —5e (9,
—9a —4e ~ 36,
—2a —P+e(3 .

(A 1oa)

(A10b)

(A10c)

(A loci)

In the text we showed how to bound the fine-tuning pa-
rameter k defined by

(A 1)

where 6 V and b, itj are the change in the potential and in
the scalar field value, respectively, during the slow-rolling
portion of the inflationary period. In this appendix we
show that if V(g) can be described by a quartic polyno-
mial

By combining (A10a) and (A10c), one has iinmediately
that e + —9. Similarly, (A10b) and (A10d) can be com-
bined to give e(9. It then follows that ~e (9, and the
result (A3) follows by undoing the parameter definition
(A5).

The quartic coupling is the most interesting because it
is dimensionless, but bounds can similarly be obtained for
the other parameters in the potential. By straightforward
manipulations involving Eqs. (A6) and (A10), one can
show

V ( itj ) =const+ a/+ pifj +y p +eg

then the quartic coupling e is bounded by

/ef &9k .

(A2)

(A3)

—8+a(0,
—12 (P (22,
—30~@~30 .

(Al la)

(Al lb)

(A 1 lc)

V(0)—V(&f)
(&g)

a+ phd+ y(b p) +e(bp)
(b i')'

Redefining the parameters by

(A4)

One normally writes the quartic term as ,'A, f, so—

~A, ~~ (36K,. The inequality relies only on the assumption
that V(g) is monotonically decreasing over the interval, a
necessary feature of the slowly rolling solution [see Eq.
(1.9)].

Without loss of generality we can assume that the P in-
terval extends from 0 to Af, since the origin of f can al-
ways be shifted. While such a shift will change the values
of a, p, and y, the value of e will be unaff'ected. Then

It is often useful to know how strong a bound is, in the
sense of knowing how closely the bound could be saturat-
ed. For that purpose we have carried out a numerical
search, and discovered that the bound on

~
e

~
can in fact

be saturated from both sides. The value e= —9 can be
obtained with a=0 and P= —8, and the value e=9 can
be obtained with a= —4 and f3= 14. Although the extre-
ma were discovered numerically, it is nonetheless
straightforward to check analytically that, with these as-
signments, Eq. (A9) holds for all x E [0, 1].

Unlike the bound (A3), the bounds (Al 1) cannot be sa-
turated. Numerical studies show that cz must lie in the
range of about —6 to 0, p must be in the range of about—9 to 16, and y must lie in the range of about —20 to

a
A, (b,g) A, (b, itj)

(A5)

APPENDIX 8: POSITIVITY OF 8'(x)

In this appendix we show that W(x) ~0, where W(x)
is defined by Eq. (3.15). If we let

Eq. (A4) becomes

a+P+y+e= —1 . (A6)

In this notation the monotonicity of the potential can be
written

3N/2

3N(1 —x)/2

then W(x) can be rewritten as

(B1)

(B2)

=a+2Px+3yx +4@x (0,1 dV —
p 3(

A,(hitj)' d

where x:—i'/b, g can lie anywhere in the range

= ZA (A —1)(B—1)(A —B)(A +B
+AB+A+B+1) . (B4)

W(x)=ZA [(A —1)(A —B )
—(A —1)A —B)] (B3)

(A7)

O~x ~1 . (A8)

Using Eq. (A6) to eliminate y from Eq. (A7), one has
In the form above, W(x) is manifestly positive
semidefinite.

a(1 —3x )+Px(2 3x)+ex (4x —3)(—3x (A9)

The consequences of this relation can be extracted by
considering special values of x. Choosing, for example,
to look at x =0, —,', —,', and 1, one obtains

APPENDIX C: GLOBAL MAXIMIZATION OF K [p]

In Sec. III we showed that the function p„(x) defined
by Eq. (3.9) is a local maximum of the functional K [p]
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defined in Eq. (3.2), subject to the constraint of Eq. (3.3b).
In this appendix we show that it is in fact the global
maximum —it is unique up to the possibility of multiply-
ing by an arbitrary constant or performing a reAection
x —+1—x. To show this we will consider an arbitrary tri-
al function p, (x) that is not proportional to p, (x) or

p, (1 —x), and we will show that it can be modified in a
way that will increase K [p] while still maintaining the
constraint.

The first step in the modification procedure is to calcu-
late the quantity p of Eq. (3.7):

pi x dx
pm (C 1)

p) x dx
0

It was shown in Sec. III that K[p] is increased by in-
creasing p(x) for any x such that p(x))p and/or
lowering p (x) for any x such that p (x ) (p

In order to show that a variation increasing K [p] can
be carried out in a manner consistent with the constraint,
it is useful to first perform surgery on the function. If
p, (l) &p, (0), then define a new function p', (x)—=p, (1 —x), so p', (0) ~p', (I). We will drop the primes,
but will assume without loss of generality that

I I I
I

I I I
)

I I I
I

I I I
I

I I I

(a):

(b)

I I I I I I I I I I I I I I I I I I I

A

I I I
I

I I I
I

I I I
I

I I I
I

1 I I

p)(0) ~pi(i ) . (C2)
Pm

Now define a new function pz(x), as shown schematically
in Fig. 1. Figure 1(a) shows the function p, (x), divided
into segments at the intersections of the curve with the
line p =p . Thus, for each segment one has either
p&(x) ~p or pi(x) ~p . The new function pz(x) is
defined by reordering the segments of p, (x), so that now
all the segments with p(x) ~p precede the segments for
which p (x) ~p . Segments for which p (x)=p are al-
lowed and can be placed anywhere, but we recall that we
have already shown in Sec. III that the constant function
is not the maximum of K [p]. Note that the value of p
given by Eq. (C 1) is unchanged by the transformation
from p, (x) to pz(x). Let x denote the value of x which
is the border between the segments with pz(x) ~p and
the segments with pz(x) ~p . The bottom line is that we
have constructed a function p2(x) that satisfies the con-
straint, and for which

I i s I s s

(b)
Xm
I

I
I

I
I
I

I I s si

A
I i i i I s

FIG. 1. A transformation of the function p, (x). The original
function p, (x) is shown in (a), and the transformed function

p2(x) is shown in (b). The transformation, which is explained in

the text, is used to show that a global maximum to the con-
strained variation problem has been found.

and

(C3)

p2(x) ~p for x (x
p, (x) p for x )x (C4)

The final step in the argument is to notice that since
the curve p2(x) is by hypothesis not proportional to
p, (x), there must be places in which the overdamping
constraint holds as an inequality. Suppose, for example,
that such a region occurs for x &x . One can then in-
crease the function in this region, thereby increasing the
value of K [p]. The increase is carried out so that p (x) is
held fixed at the right end of the region, but is increased
everywhere else in the region by an amount that varies
continuously. To maintain continuity one multiplies the

function to the left of the region by a constant amount,
increasing the value of K [p] even more. Note that multi-
plication by a constant does not aA'ect the constraint
(3.3b). If a region for which the constraint holds as an in-

equality occurs to the right of x, one can modify the
function by a similar transformation in which the func-
tion is decreased.

Thus, if p i (x) is not proportional to p, (x) or its
reAection, it is always possible to construct the function
p2(x) with the same value of K, and then to increase K by
the transformations described in the previous paragraph,
maintaining the constraint condition in all cases. It fol-
lows that p~ (or a function proportional to it or its
refiection) is the global maximum of the constrained vari-
ational problem.



976 FRED C. ADAMS, KATHERINE FREESE, AND ALAN H. GUTH 43

A, H. Guth, Phys. Rev. D 23, 347 (1981).
A. H. Guth and E. Weinberg, Nucl. Phys. B212, 321 (1983); S.

W. Hawking, I. G. Moss, and J. M. Stewart, Phys. Rev. D 26,
2681 (1982).

3A. D. Linde, Phys. Lett. 108B, 389 (1982).
4A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220

(1982).
5A. D. Linde, Phys. Lett. 129B, 177 (1983).
D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989); D.

La and P. J. Steinhardt, Phys. Lett. B 220, 375 (1989).
7P. J. Steinhardt and F. S. Accetta, Phys. Rev. Lett. 64, 2740

(1990).
8F. C. Adams and K. Freese, Phys. Rev. D 43, 353 (1991).
C. Brans and C. H. Dicke, Phys. Rev. 24, 925 (1961).
E. Weinberg, Phys. Rev. D 40, 3950 (1989).
D. La, P. J. Steinhardt, and E. W. Bertschinger, Phys. Lett. B
231, 231 (1989).

'~A. A. Starobinsky, Phys. Lett. 117B, 175 (1982); A. H. Guth
and S.-Y. Pi, Phys. Rev. Lett. 49, 1110(1982); S. W. Hawking,
Phys. Lett. 115B,295 (1982); J. M. Bardeen, P. J. Steinhardt,
M. S. Turner, Phys. Rev. D 28, 679 (1983);R. Brandenberger,
R. Kahn, and W. H. Press, ibid. 28, 1809 (1983).

' Many measurements of microwave-background anisotropy
have been performed, e.g. , S. P. Boughn, E. S. Cheng, D. A.
Cottingham, and D. J. Fixen, Rev. Sci. Instrum. 61, 158
(1990);E. S. Cheng, P. R. Saulson, D. T. Wilkinson, and B. E.
Corey, Astrophys. J. Lett. 232, L139 (1979); P. Lubin and P.
Meinhold (unpublished); see also the reviews of D. T. Wilkin-
son, Science 232, 1517 (1986); R. B. Partridge, IAU Sympasi-
um 124, edited by A. Hewitt, G. Burbidge, and L. Z. Fang
(Reidel, Dordrecht, 1987).

An entire set of constraints for the case of "new" inflation is
discussed in P. J. Steinhardt and M. S. Turner, Phys. Rev. D
29, 2162 (1984).

'5A more complete discussion of the number of e-f'oldings for
which the density perturbation constraint must be met can be
found in E. W. Kolb and M. S. Turner, The Early Universe
(Frontiers in Physics, Vol. 69) (Addison Wesley, New York,
1990).

The parameter b is often denoted in the literature by cu.

E. W. Kolb, D. S. Salopek, and M. S. Turner, Phys. Rev. D
42, 4042 (1990).
If the energy scale MF of the inflation field exceeds the Planck
scale Mp, then quantum gravity effects would be required in
order to produce a consistent theory. Since physics at the
Planck scale remains unknown at the present time,
inAationary scenarios are constrained to operate at energy
scales below mp.

' Differentiation shows that the right-hand side of Eq. (4.31) is
monotonically increasing in MF provided that
(MFMp/f3TDME) ) s 'I(b+

z )/(b ——') j
' . The right-

hand side of this inequality is found numerically to have a
maximum value (in the range b & —,') of 2.762, so the mono-

tonicity condition holds whenever MF )2. 762f3(Mz/Mp)TO
=10 ' (M /M ) GeV.

The Cosmic Background Explorer (COBE) satellite will place
interesting constraints on 5 in the near future, see, e.g. , G.
Smoot et al. , Astrophys. J. 360, 685 (1990).

'F. Accetta and P. Steinhardt (private communication) have
examined the constraint on X in hyperextended inflation
models. Using numerical calculations, they have found mod-
els in which the constraint on A, is relaxed by as much as
seven orders of magnitude for b =25; i.e., they find models
with A, -10 '. The study was not systematic, so it is conceiv-
able that the bound can be further loosened in yet other hy-
perextended models.
K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.
65, 3233 (1990).


