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Can cosmic neutrinos be detected by bremsstrahlung from a metal?

Safi Bahcall
Department of Physics, Stanford Uniuersity, Stanford, California 94305

Andrew Gould
Institute for Aduanced Study, Princeton, New Jersey 08540

(Received 23 July 1990)

We examine the proposal of Loeb and Starkman to detect cosmic-background neutrinos by
coherent bremsstrahlung from electrons in a neutral metal. We show that the positive ions in the
metal exert a restoring force which suppresses the radiation by —10

I. INTRODUCTION

Loeb and Starkman have recently proposed a method
for detecting cosmic-background neutrinos. ' The
method relies on the coherent interaction of neutrinos
with bulk matter to get an enhanced cross section for
neutrinos bouncing off a slab of metal. The neutrinos ac-
celerate conduction electrons which then radiate low-
energy photons. Loeb and Starkman calculate the pho-
ton production rate assuming free electrons and find a
signal which is small but in principle detectable. In Sec.
II we present a simple picture of the soft-photon produc-
tion as the classical bremsstrahlung of a lump of charge
which has been given some momentum perpendicular to
the slab by the reAection of a neutrino. In Sec. III we
show that this agrees with the soft-photon limit of the
quantum calculation. In Sec. IV we show that the
positive-ion background suppresses the motion of elec-
trons, reducing the production rate of photo ns by
(co/co ) —10,where co is the photon energy and co is
the plasma frequency of the metal.

The presence of large restoring forces in the metal sug-
gests that detecting the cosmic-background neutrinos
through bremsstrahlung from a neutral object is not pos-
sible, independent of the particular geometry or material
used. It may, however, be possible to detect the neutri-
nos from the bremsstrahlung of a charged object.

II. CLASSICAL PICTURE FOR SOFT PHOTONS

A neutrino scattering off a charged particle accelerates
it and causes it to emit radiation. The radiation at low
frequency depends only on the momentum transfer to the
particle, Ap, and not on the details of the interaction:

= in(b, p)i (2.2)

where o. is the cross section for scattering off a single
particle, n(b, p) is the Fourier transform of the number
density n (r), and b,p, the momentum given to the slab by
the neutrino, is an implicit function of the outgoing neu-
trino solid angle 0 . The total cross section for a neutri-
no incident at angle 0 to scatter off a large, thin, uniform
slab is

(0)=f dQ
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where k =(E,k) is the initial neutrino four-momentum,
k' is the final neutrino momentum, Ap=k' —k, A is the
slab area, a is the slab thickness, and n is the number den-
sity of particles, each with weak vector charge gt, . [The
weak charge appears as

many particles acting as a lump. In the soft-photon limit,
the probability distribution for radiation is obtained by
multiplying the classical radiation distribution (2.1) by
the probability that the neutrino will scatter.

The probability for a neutrino to scatter off an extend-
ed object, a slab in this case, is found by summing the
scattering amplitudes off individual charges times the ap-
propriate phase shift for each scatterer:

da(ap) d3, „(,), i~t' '
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(2.1)
GF-&= ' ' ' + ~—el„(gv gA'r5)WA" Y(1 r5')0. .

where co is the photon energy, e is its polarization vector,
Q is the particle's charge, and m its mass. (The umts
used in this paper are fi=c =kit =1, e =—„', . ) Since the
formula depends only on the charge-to-mass ratio, a
given momentum transfer will generate the same photon
spectrum whether the scattering is off one particle or off

For the coupling of neutrinos to bulk spinless matter, g~
may be set to 0.] For coherent scattering, the translation
invariance requires Apii =0, so the neutrino is rejected at
the angle 0 . The term in square brackets is m for non-
relativistic neutrinos and 2E sin 0 for relativistic neutri-
nos.
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What are the scatterers in a thin metal slab that con-
tribute to the photon production? Loeb and Starkman
argue that they are the conduction electrons. The bound
electrons are coupled to the ions with energies —1 eV so
that at the low frequencies characteristic of the cosmic-
background neutrinos they do not oscillate freely and
their contribution to the bremsstrahlung radiation is
strongly suppressed. Only the free electrons have any
hope of decoupling their motion from that of the slab.
Restricting the calculation to these electrons implies that
n =n„ the conduction-electron density, and that
gI =(4sin 8~—1)/2+5,' where 8~ is the weak angle
and 5,' takes account of charged-current interactions in
the case of electron neutrinos.

We can treat these conduction electrons as a lump ini-
tially at rest, even though they have huge Fermi momen-
ta, since they are exchanging momentum among them-
selves on a much faster time scale than they are with the
incident neutrino [(1 eV) '((hp ']. This is the same
reason that nuclei may be treated as single-point particles
when they interact with sufficiently low-frequency neutri-
nos. The slab, ho~ever, cannot be treated as a point par-
ticle since it is larger than a neutrino wavelength; its
cross section must include the Fourier-transform factor
in {2.2).

For the bremsstrahlung radiation we may also treat the
electrons as a lump. The radiation formula (2.1) is valid
as long as the photon wavelength is larger than the size of
the system which is accelerated. For this problem, the
size of the electron lump which receives momentum from
the neutrino can be seen from Eq. (2.2) to be of order

v

k k'

v
k'

(b)

FIG. 1. Feynman diagrams (following Ref. 1) for bremsstrah-
lung in scattering of neutrinos o6' an "electron lump" for both
weak-interaction (a and b) and magnetic-moment (c and d) pro-
cesses. The electron lump is spinless and is therefore shown as a
scalar. The neutrino four-momentum transfer is q

—=k' —k and
the electron-lump three momentum transfer is Ap=p' —p. The
photon momentum is I =(co, I ).

Irl =bp '. By momentum conservation, co(bp, so the
electrons radiate as a point lump.

The cross section for soft bremsstrahlung is therefore
given by the product of Eqs. (2.1) and (2.3) with
g/m =e/m, and n =n, :

d crb„(8,)
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Sum ng over photon angles and polarizations and making the assumption that the sl.ab is thin compared to a neutrino
wavelength, we find

d~b„(8.)
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where the upper and lower forms refer to the limits of nonrelativistic and relativistic neutrinos, respectively.

III. QUANTUM-MECHANICAL CALCULATION

For the quantum calculation we consider the two diagrams Figs. 1(a) and 1(b). The incoming and outgoing charged
"particle" is a lump of N electrons with electric charge Ne, weak charge Xgv, mass Xm„and spin zero. The arbitrary
size X disappears from the final result. Squaring the matrix element At„+JR», averaging over initial and summing
over final neutrino helicities, and including the phase-space factors gives, for a point particle,

bren 1 e [2(B k)(B k') —(k k')B ](Ap)
dQ&~d inc@ d Qz 32~4 NgVGF

m, Ikllk' ~pl
(3.1)

where we have kept only the nonrelativistic electron-lump terms. Here Ap is the diff'erence between the lump's final
and initial momenta, k and k' are the initial and final neutrino momenta, and 8 is a timelike vector associated with the
neutrino momentum transfer, q =k' —k,

B = —e.q=e Ap, 8=0 . (3.2)

[We introduce the vector B because we will later refer to Eq. (3.1) with B'WO. ] The slab is not a point but a continuous
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dcrb„ (8 )

d lncodQ

uniform distribution of electrons so we multiply by the square of the Fourier transform of the slab, as was done in the
previous section. Inserting the lump density n =n, /X and integrating over 0&, we find

gg2 e [2E~E~ k k'](E bp) sin~(asap/2)
n, NvGF (3.3)8~' (asap/2)

where now Ap =Ap z. In the soft-photon limit,
E', ~E, ~k'. z~ ~bp/2, and Eq. (3.3) agrees exactly with
the classical bremsstrahlung expression (2.4).

Loeb and Starkman consider the same diagrams and
perform a similar summation. (This is not obvious be-
cause they have chosen different integration variables and
have left their result as a numerical integral. ) However,
they let the in-coming charged particles be the individual
conduction electrons and do an incoherent average over
initial spins. This is inconsistent with the electrons'
coherent interaction. Following Loeb and Starkman's
prescription yields Eq. (3.1), but with B'=cue'. In the
soft-photon limit, the components B' become negligible
compared to B and the two results coincide.

IV. ELECTROSTATIC FORCES IN THE SLAB

In this section we consider the electrostatic forces in-
side the slab arising from the motion of the electron
lump. As a result of the refIection of the neutrino, the
electron lump, initially at rest, gets pushed straight down
into the slab. When the electrons have moved a distance
Az, there is a residual surface density of ions on the top,
o. =hzn, e, and an oppositely charged surface density on
the bottom of the slab which generate an electric field
4m.o.. Since the charge-to-mass ratio is e/m„ the force
per unit mass is just copLalz& where co =4mn, e /m, is the
plasma frequency. The relative motion of the electrons
perpendicular to the slab is therefore constrained by a
harmonic-oscillator potential whose characteristic ener-
gy, ~, is 5 orders of magnitude higher than that of the
driving force. The amplitude of the induced electric di-
pole is reduced by a factor (co/co ) relative to the free
case. The radiated power is therefore suppressed by a
factor (co/co ) —10 . A rigorous analysis using
Maxwell's equations with a driving force shows that the
problem is truly electrostatic and therefore yields the
same result.

Although a coherent interaction requires that the final
momentum of the e1ectrons be perpendicular to the slab,
the electrons in their intermediate state can move trans-
versely. The transverse momentum is equal to that of the
out-going photon, I~~, and the power radiated due to elec-
trons free to move only in this direction is given by Eq.
(3.3), with ( e b,p )~ ( E I

~~

).
The transverse motion of the electrons generating the

radiation is not free, however. Roughly speaking, the os-
cillation of a lump of electrons inside the metal causes
charges to pile up, generating a restoring force. An emit-

ted photon of energy co and momentum I is generated by
motions perpendicular to I on a scale -cu '. Charges
pile up in the transverse direction on a distance scale- l, '. A lump of electrons with volume l, a moving a
distance hx generates a charge Q = n, el, 'a b,x at each of
its two sides. Up to factors of order unity, the potential
energy is Q I, and the force per unit mass is co l,ab, x.
This estimate gives, just as for the perpendicular motion,
a harmonic-oscillator restoring force and a corresponding
suppression in the emission rate of co /(co a cos 0 ). A
rigorous analysis using Maxwell's equations yields exactly
this result although, in the Maxwell picture, the electric
fields are induced rather than electrostatic.

Multiplying the bremsstrahlung cross section (3.3) by
these suppression factors gives

2

gv fk/'
(4.1)

E2

independent of the slab thickness and the number density
and mass of the electrons. Very little bremsstrahlung is
produced because the neutrino probes the slab on a scale
on which the slab is neutral.

Loeb and Starkman also considered the case where the
neutrino interacts with the slab through a magnetic mo-

ment, Figs. 1(c) and 1(d). The motion of electrons in the
slab is suppressed, independent of the details of the driv-

ing force, so the decrease in the photon production rate is
the same as for the weakly interacting case discussed
above.

In this paper we considered only perfect conductors. It
is easy to see by considering the forces on an oscillating
dipole that imperfect conductors cause an additional
suppression [I+(coy/co„„) ] ', where y is the damping
constant and co„„is the frequency of the restoring force.
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