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We consider the flavor-diagonal neutrino—two-photon vertex in the standard model. Whereas for
massless neutrinos this vertex is of order Gpap,/m}, for massive neutrinos a contribution to this
amplitude of order Gram,/m? is identified and calculated. This contribution can be thought of as
arising from a triangle graph containing electrons. The neutrino—two-photon vertex also gets a
significant contribution from a second-order effect if the electromagnetic moments are anomalously
large, as recently proposed to solve the solar-neutrino problem. The effects of the neutrino—-two-
photon vertex on neutrino-photon scattering and on photon pair annihilation into neutrinos are cal-
culated for situations that may be of astrophysical or cosmological interest. The long-range force
between a neutrino and a charge arising from two-photon exchange is also discussed.

I. INTRODUCTION

The study of neutrino interactions with photons has a
long history. Early work on this topic was done in the
context of what was believed in the 1960s, namely, that
neutrinos had zero mass and that their interactions were
invariant under the operation

(1.1)

V——"YsV,

where v is any neutrino field. This has the well-known
consequence that matrix elements of the electromagnetic
current operator j, satisfy

vlj, vy =Fay,(1—ysu’ . (1.2)

Here the form factor F is a function of momentum
transfer g2 which vanishes when ¢?=0. In particular,
this implies that matrix elements of the magnetic moment
operator, both diagonal and off diagonal in neutrino
flavor, vanish.

A similar analysis can be given for matrix elements of
two powers of the electromagnetic current, which govern
such processes as neutrino-photon scattering. It was
shown by Gell-Mann! that for theories in which massless
neutrinos interact locally with charged leptons, this ma-
trix element vanishes when contracted with the wave
function of physical photons. Later, calculations were
carried out in which the local interaction assumption is
relaxed but the neutrinos are kept massless.? In such
theories, including the standard model in which the neu-
trinos interact directly with gauge bosons, there is a
neutrino—two-photon matrix element, but this is second
order in the Fermi constant. Furthermore, the invari-
ance of (1.1) implies that the matrix element is propor-
tional to an extra power of the neutrino momentum. The
result of these two effects is that any massless
neutrino—two-photon interaction is extremely small.

The situation for neutrino-photon interactions changes
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dramatically if the neutrino has a small mass. It is well
known that in such theories neutrinos can have magnetic
moments proportional to their mass.® It is less well
known that the neutrino—two-photon vertex also is very
different when the neutrino has a small mass. In particu-
lar, this vertex is nonzero even in the local theory, and no
longer proportional to an extra power of neutrino
momentum. Notice was made of this fact by Crewther,
Finjord, and Minkowski,* who calculated the amplitude
for the massive neutrino—two-photon vertex. We have
independently calculated this amplitude and verified their
result.

All this work has been done within the context of the
standard model, the only deviation, if one considers it a
deviation, being the introduction of a mass term for neu-
trinos. Recently, to provide an exotic solution to the
solar-neutrino problem, there has been a great deal of in-
terest in the possibility that neutrinos have electromag-
netic moments much larger than predicted by the stan-
dard model.> One previously unnoticed consequence of a
large neutrino electromagnetic moment is the enhance-
ment of the neutrino—two-photon vertex via a second-
order effect in the moment. This occurs because the
magnetic-moment interaction, just as a mass term,
violates the condition given in Eq. (1.1). Here we will cal-
culate the neutrino—two-photon vertex due to the elec-
tromagnetic moment and show that it can be larger than
the standard-model contribution for a wide range of neu-
trino masses and moments.

The expressions for the neutrino—two-photon vertex
can be used to calculate several physical processes. The
simplest is the Compton scattering of photons by neutri-
nos, and the crossing-related annihilation rate for pho-
tons into neutrino pairs. The latter may be of astrophysi-
cal interest in connection with the possible cooling of
stars by neutrino pair emission. These processes were
considered long ago? in the context of higher-order ma-
trix elements studied earlier for massless neutrinos and
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found to be extremely small. Furthermore, in those
theories the neutrino pairs are emitted with opposite heli-
cities, and there is no change in helicity when a neutrino
scatters a photon. On the other hand, we will see that the
two-photon amplitude due to the neutrino mass is such
that in the high-energy limit, the pairs are emitted with
the same helicities, and neutrino-photon scattering al-
ways involves a change in neutrino helicity.

The neutrino Compton amplitude can also be used to
calculate a long-range interaction between neutrinos and
charged particles such as electrons. This interaction was
estimated long ago also,® based on the Compton ampli-
tudes derived in Ref. 2. The form of the potential be-
comes much simpler if the Compton amplitude due to
neutrino mass or moment is used, and its magnitude is
much larger, but it is unclear whether it is large enough
to observe.

II. THE NEUTRINO-TWO-PHOTON VERTEX

The neutrino—two-photon vertex gets a contribution
proportional to a single power of Gy if the neutrino has
nonzero mass. This contribution can be depicted by the
Feynman diagram in Fig. 1, where the intermediate
(W,Z) have been contracted to a point. As pointed out
by Rosenberg’ in the present context and later by Adler?
and by Bell and Jackiw’ in the context of the axial-vector
anomaly, care must be taken to ensure that the amplitude
calculated from the triangle graph is gauge invariant.
Using the results of Rosenberg, we find

V2e2Grc,m,
(2m)*
X#,(py)ysu,(p, )eopaﬁklakzlsfg)ef)A 3

SN mass =

(2.1)

which agrees with Ref. 4. The superscript on ™
denotes that this is the contribution to the amplitude aris-
ing from nonzero mass, to be distinguished from the con-
tribution arising from nonzero magnetic moment dis-
cussed below. In Eq. (2.1), ¢, depends on neutrino flavor,
with |c,|*=1 for all three species; the momentum is rout-
ed as in Fig. 1, and €'!),€'?) are the polarization vectors of
the two photons. We note that because of the y5 and the
€7PB M™3s ig a scalar, which if it were written in coordi-
nate space would be proportional to the product E-B. In
Eq. (2.1), A; is a function of the momentum transfer
t=(p,—p,)®. We will need 4, in two limits, where
|t] <<m? and where m3, >>|t| >>m2. In the first case we
find

2
lim A, — 22

> for |z <«<m?, (2.2)
e
whereas for the second case
limA4,—— for mg, >>t|>m? . (2.3)

Note that in either case /M™% contains only a single
power of Gp. The terms we have neglected by contract-
ing the (W,Z) lines to a point in Fig. 1 and by ignoring
graphs in which photons attach to W lines will contain

7(1‘1) 7(ka)
e
e e
v(py) v(p2)

FIG. 1. To leading order in G, the Feynman graphs contrib-
uting to the neutrino—two-photon vertex can be collapsed to
this triangle graph.

two powers of Gr. Provided that the neutrino mass is
not extremely small, these corrections will be negligible in
the energy range of interest to us. The relevant criterion
for the neutrino mass is approximately that

m,/E,>m2/mk . (2.4)

For neutrino energies E, on the order m,, this condition
will be satisfied if the neutrino mass is greater than 10™*
eV.

For the case |t]<< mez, we can think of M™2* as
representing a mixed electric-magnetic polarizability of
the neutrino. Analogous terms have been identified for
other particles.!®

It is worth noting the reason why a neutrino-photon in-
teraction through a term such as ™ can arise for mas-
sive neutrinos even in a local theory. The original argu-
ment of Gell-Mann can be paraphrased as follows. In a
local theory, the neutrinos enter the matrix element for
Y +y-—v+7¥ only as a product of spinors with no addi-
tional factors of neutrino momentum; that is, the interac-
tion is an s-wave interaction. Conservation of angular
momentum implies that the total neutrino spin must
equal the total photon spin along the same direction. But
in the center-of-mass system, the total photon spin must
equal zero or two units. Thus the total spin of the spin-1
neutrino and antineutrino must be 0. On the other hand,
for massless chiral particles a (left-handed) neutrino and a
(right-handed) antineutrino must carry opposite helicity,
and so sum to one unit of spin in the center-of-mass sys-
tem. Therefore, the process ¥ +y —v—+%¥ cannot occur.
However, if the neutrino has mass, then the helicities of v
and ¥V can be the same, and the total spin can be zero
units, allowing the process to occur. This is what hap-
pens for the matrix element JI ™%,

Finally we note that, unlike the magnetic moment
operator, the amplitude for neutrinos to scatter off pho-
tons is nonzero for Majorana neutrinos as well as for
Dirac neutrinos.

Now we turn to the neutrino—two-photon vertex when
the neutrino has an anomalously large electromagnetic
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moment. Such an interaction can be written as

Lig=35F,,v;0o""(A;;+B;ys)v; , (2.5)
where i,j label the different neutrino generations,
F,,=9,4,—9,4,, and the matrices 4 and B have di-
mensions of e /m. Hermiticity of the interaction requires
A to be Hermitian and B anti-Hermitian; CP invariance
requires the matrices to be real. So assuming CP invari-
ance, A is a real, symmetric matrix and B is a real an-
tisymmetric matrix. This interaction can generate a
neutrino—two-photon vertex through the Feynman graph
in Fig. 2. In this figure, the indices on the neutrinos label
the generation. The off-diagonal amplitude with i)
gives a contribution to the decay of a heavy neutrino into
a lighter one and two photons, a process examined in de-
tail in Ref. 11. It is straightforward to check that, for al-
lowed values of 4 and B and reasonable mixing angles,

J

e(”"k?em“k;
2

i

Jpmoment — ;

il—i(p2>

mr—m2—2p, -k,

7(k1) 7(kz)

vi(py) Vk Vj(Pz)

FIG. 2. The contribution to the neutrino—two-photon vertex
arising from a nonzero electromagnetic moment. The graph
with k, and k, interchanged must also be considered.

this contribution is smaller than the one studied in Ref.
11 in the relevant mass regime, so we will focus on the di-
agonal case, i =j. In this case, assuming CP invariance,
we find

X {( Al%( +BI%< )(pl ——kl )}\[(g,uagvﬁ_gpﬁgva +ie,uva[37/5)7/7»+iT,u,vaB}\]

+2 A4, Bi(py — k) M(8,58 va —81av8)Y sV A" i€uvap? A T iT uvap V']

+( Az%c _Bx%c )mk(gpagvﬁ—gpﬁgva +i€uva67/5_isuvaﬁ)}ui(pl )

plus a set of terms with k; and k, (along with €'’ and
€?) interchanged. Here the intermediate neutrino
species k must be summed over. The tensors S and T are
defined as '

S,uvaBEguao'vﬁ_l_gv/}o-;wz_gvao'pfj_gyﬁava 2.7

and

Tuvaﬂ}»Ezo‘uv(ganﬁ_gABYa)_SyvaﬁYA . (2.8)

One interesting limit of this amplitude is the nonrela-
tivistic limit, wherein there exists a neutrino species with
a mass m; larger than any other mass or energy under
consideration. Then the last line of (2.6) gives the dom-
inant contribution, and after including the contribution
from the k,<>k, piece, the nonrelativistic amplitude is
simply

—2i( A% —B%)

moment —
MR =
my

E(I)ak?‘e(Z)ykz

X ﬁi(pZ )(g,uagvﬁ_gufjgva

+i6#m/37/5)ui(p1) . (29)
The y5 piece here couples the neutrino to FF=E-B, so
this part adds to the amplitude due to the mass in Eq.
(2.1). The relative magnitude of the contribution from
the moment compared with that from the mass is

(2.6)

107 %,
A

mmass
moment
MER

~10° (2.10)

2
m,mj

)
where m , is the mass of the neutrino of interest and m,
is the mass of the heaviest internal neutrino in Fig. 2. We
have normalized 4 by 107 '© Bohr magnetons, because
that is roughly the upper limit arising from experiments.
We see, therefore, that if the off-diagonal magnetic mo-
ment is sufficiently large, there is a wide range of neutrino
masses for which the moment-induced contribution to
the two-photon vertex is the dominant one.

The g,,,8.,5—8.p8vo term in (2.9) has no analogue in
M3, it couples #u to F?=E?— B2 The consequences
of such a coupling for the long-range force on neutrinos
will be discussed in Sec. IV.

III. COMPTON SCATTERING
AND PAIR PRODUCTION

Armed with the amplitude of (2.1), we can now calcu-
late the cross sections for various physical processes in-
volving photons and neutrinos. Two of possible impor-
tance are Compton scattering —y +v—y +v— and pair
production —y +y —vv.

For the cross sections we need to square the amplitude
in (2.1), sum over final spins and polarizations; and aver-
age over initial spins and polarizations. A short calcula-
tion shows that
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1 a’Gicim?

M 2
2 el 3278

spins, polarizations

“(—t)34%, 3.1)
where again the four-momentum transfer is defined as
t=(p,—p,)%. The subscript ¢ identifies this as the ampli-
tude for Compton scattering: vy—wvy. The pair-
production amplitude squared is related to this by letting
—t—s where s is the center-of-mass energy squared.
Therefore,

a’Gicim?

./’/L 2
| 3270

% S Y5342 . 3.2)
spins, polarizations

The cross section for the reverse process vw—yy con-
sidered in Ref. 4 is more subtle; it is necessary to specify
the helicity of the incoming neutrinos. In Ref. 4 all neu-
trino states are summed over, which somewhat obscures
which states are contributing. In order to see this better,
let us first consider the ultrarelativistic limit in which a
negative (positive) helicity state is a purely left (right)
chiral neutrino. Since the two-photon-neutrino vertex
produces (or annihilates) neutrinos of the same chirality,
the cross section for a negative-helicity neutrino and
negative-helicity antineutrino to annihilate and produce
I

1 d°p, d3k2
a(v vy )=
ey 2p 2k, f (2m)*2p, f (2m)*2k,
a’Gieim?
e (1—c0s6)=3.65X 1072 cm
167°
where 0 is the angle between p; and k;; i.e., cos6=—1 in

the center-of-mass frame. This expression is generally
valid since cfZ} for all three neutrino species. An im-
portant feature of this cross section is that, unlike the or-
dinary weak cross section, it is constant at high energies.
This is particularly relevant for cosmological considera-
tions. Since this reaction flips the helicity of the neutri-
nos, Compton scattering in the early Universe is one way
of producing positive-helicity neutrinos. Our present un-
derstanding of primordial nucleosynthesis is compatible
with observations only if positive-helicity neutrinos are
not abundant at the time of light element production.
Since this cross section is small, though, and does not in-
crease with increasing energies, very few positive-helicity
neutrinos are produced via this process even at the high
temperatures expected in the early Universe.!?
Parenthetically we point out that there are several oth-
er processes that might be effective at producing
positive-helicity neutrinos in the early Universe. These
include electron-neutrino scattering via photon exchange
if the neutrino dipole moment is large enough;'® plasmon
decays ¥ —vV again for a large neutrino dipole moment,
electron-neutrino scattering via W and Z exchange due to
the small positive-helicity component of massive left-
handed neutrinos,'* and decays of mesons into neutrino-
antineutrino pairs. All of the amplitudes for these pro-
cesses are proportional to G (since they are weak pro-

2m)**p, +k,—p,

two photons can simply be obtained by integrating Eq.
(3.2) over the photon phase space. However, a much
more common situation is one in which only negative-
helicity neutrinos and positive-helicity antineutrinos ex-
ist. Then, since the incoming v’s have opposite chirali-
ties, the annihilation cross section vanishes. If we move
out of the ultrarelativistic regime and include the effects
of the mass, then a negative-helicity neutrino, for exam-
ple, has a right chiral component suppressed by a factor
of m/E, so the cross section for v(—)v(+)—yy is
suppressed relative to the reverse process by a factor of
order (m /E)>.

The cross section for neutrino Compton scattering can
be obtained from Eq. (3.1) by integrating over phase
space. We will evaluate it in the high-energy limit:
E(py)~p,>>m}. In this limit we can take the high-|¢|
limit of the Feynman integral, (2.3). Even at high ener-
gies, || can be very small (corresponding to forward an-
gle scattering), so at first it may not appear valid to use
this limit. However the amplitude squared is already
proportional to t3, so it vanishes at small momentum
transfer. As a result, the small |z| part of 4; does not
contribute at high energies, and we are justified in taking
the limit above. With this, the cross section is

kl)% 2 |‘/M“c lz

2
x l (1—cosf) ,

15

10

(energy loss) (erg/sec cm®)

10

log

-2.0 -1.0 e.e
log, (T/m,)

FIG. 3. Energy-loss rate of a star at temperature T due to
photon pair production of neutrinos. The solid lines give the
exact rate for two different values of the neutrino mass. The
dashed lines are the small m, approximation of Eq. (3.6)
wherein the rate falls off simply as m2.
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cesses) times m, (since this is the only way a right-
handed neutrino enters in the standard model). Dimen-
sionally, then, it is apparent that the cross sections for all
these processes go simply as (Gpm,)* at high energies;
they are typically not dangerous if the neutrino mass is
not too large. This is true in the standard model, where
the right-handed neutrino appears in the Lagrangian only
via its mass term (coupling to a Higgs boson). However,
extensions of the standard model wherein the right-

3
1 d'p; d"p,
(yy —ww)=
7YY=V 2k12k2f(2Tr)32E(p1)f(27r)32E(p2)
2 2 172
a’Gieim? s3 ) 4m;,
115273 2k k,m} s

2

m,

m
=5.08X107°* cmz[

s
2k kym}

2m)*8*p,+p,—k,—k,
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handed neutrino has other couplings may be severely
constrained by primordial nucleosynthesis.

The cross section for pair production is obtained in a
similar fashion. This process is of potential importance
as an energy-loss mechanism in stars, where temperatures
are typically beneath the electron mass. Therefore, the
energies involved are smaller than m,, and we can safely
take the small ¢ limit of A4;, (2.2). Then using (3.2) and
integrating over phase space gives

3 3,

4m

2 1/2
Y ] . (3.4)
S

As an example of when such a process might be relevant, let us consider a star of temperature 7. Photons exist in the
star with the Planck distribution f(k)=2(e*/T—1)"!. These photons are typically trapped for long times because their
mean free paths are so short. Neutrinos, on the other hand, escape freely from stars. The production of neutrinos by
photons is therefore an energy-loss mechanism for the star. The rate at which energy is lost can be obtained by in-

tegrating f (k) and f(k,) times the cross section times the energy loss over all momenta:
3 3
energy loss _ 1 d’k, 2 d’k, 2 k _
== +ky)ol )
time volume f m)? JiT_ f (27)3 ekz/T—l( 1tk Jolyy —vv
?G2c2m? dk1 d , 4k, k, am2 '
- - + S 1——— 3.5
T 184327 m4f f /T l(k‘ kz)f4m3, ds s s 3-5)

The factor of 1 in front of the integrals on the first line avoids double photon counting. This expression for the energy-

loss rate simplifies when the neutrino mass is very small. Then all the integrations can be performed and

. energy loss _ 20£(5)E(6) @°Gics sm2T"
lim — =
small m , time volume ! mé
2
—1.0x100—& | Zv | T
seccm® | m, m,

This can be compared with the energy-loss rate calculat-
ed by Rosenberg for the density dependent process
YN —Nvv (where N is a nucleus). He found that at a
density of 5 cm™3, the energy-loss rate is
2.3X10%(T/m,)'° ergsec™ ' cm 3. So pair production of
neutrinos causes greater energy loss than the process
YN —Nvv for large enough temperatures and neutrino
masses. At low temperatures the rate of Eq. (3.6) falls off
very rapidly, while at high temperatures of the order of
the electron mass, ordinary weak processes are much
more effective than photon pair production in producing
neutrinos. There may be an intermediary temperature re-
gime, however, in which pair production by photons is
the dominant energy-loss mechanism. All the other pro-
cesses which lead to neutrino emission become ineffective
at very low densities, while photon pair production is in-
dependent of density. Therefore, the most likely stars to
be dominantly affected by this process are those with in-

11

f

termediate temperatures and very low densities.

For such a process to be effective, a large neutrino
mass is needed. Therefore, the limit m,—0 cannot be
taken in evaluating the above integrals. Instead, the s in-
tegral in (3.5) can be calculated analytically. The remain-
ing double integration has been performed numerically
and the energy-loss rate is shown as a function of temper-
ature in Fig. 3 for various values of the neutrino mass.

So far we have worked in the context of the standard
model. As mentioned in Sec. II, extensions of the stan-
dard model could have much larger neutrino mixed po-
larizabilities. We can place a model-independent limit on
the neutrino mixed polarizability by rewriting some of
the above formulas. First, we define the neutrino mixed
polarizability a, as the coefficient in front of the ampli-
tude

p/J'k k 6(1) (2)

M=ai,(p,)ysu,(p,)e 3.7)
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According to (2.1) the standard-model value of the polar-
izability is

aSM=V2aGrc,m, A /(47°) . (3.8)

In general, the polarizability depends on the momenta; in
the standard model, for example, 45 depends on s for the
pair-production process. However, we may assume that
at energies lower than the electron mass, it is constant (as
in the standard model). If we make this assumption, then
the energy-loss rate due to pair production in general can
simply be read off from (3.6); we need only multiply by a
factor of (a,/a3M)’.. As an example of a limit which
emerges from such considerations, let us consider red gi-
ants. Sutherland et al.!’ restrict the energy loss due to
neutrinos escaping the core to be less than 5X10%
ergem 3sec”!. In the core the temperature is approxi-
mately T~1.6X10® K=.027m,. Therefore, using (3.6)
we find

a,<7X10*%aM(m, /m,)=4X10"1" MeV ™3 . (3.9)

Finally we note that the neutrino—two-photon vertex
induced by a large (but within experimental limits) elec-
tromagnetic moment does not violate the limit (3.9).
Indeed, it does not significantly affect any of the rates we
have calculated in this section. For example, using the
nonrelativistic limit (2.9), we get a contribution to the
cross section for pair production of order

2__p2y2.2
moment(,]/,)/_)vv)~———(A B )S (310)

g m]f
which is equal to 107% cm?—much smaller than that
due to the mass-induced amplitude—for an intermediate
neutrino mass and center-of-mass energy of order m,
even if the moments 4 and B are taken to be as large as
10~ '° Bohr magnetons. The cross section for Compton
scattering of neutrinos off photons induced by a large
magnetic moment is similarly small.

IV. LONG-RANGE FORCES ON NEUTRINOS

Because of the neutrino Compton matrix element
M™%, neutrinos will experience a long-range force aris-
ing from two-photon exchange in the presence of a
charged spin-1 particle, analogous to the familiar disper-
sion forces of atomic physics. A general formalism for
calculating such forces from the Compton amplitude has
recently been given,'” and that formalism could be ap-
plied to the present case. However, for the purpose of
obtaining the leading term in an expansion of the force in
inverse powers of the distance, it is easier to use a “classi-
cal” method discussed long ago.'¢

To do this we first infer from M™% an effective Hamil-
tonian for the interaction of a neutrino with external elec-

tromagnetic fields.
WS =Au,ysu,E‘B, 4.1

where

—am ,Gpc,V2
iﬁp; . 4.2)
127mm;

A

The additional factor of i in HJ#* is required to convert

from a matrix element to an effective Hamiltonian for a
spin-1 particle.

To get the leading term in the long-range potential act-
ing between a charge and a neutrino, we substitute into
HE* the electric and magnetic fields produced by the
charge. For a negative spin-1 charge of mass M and no
anomalous magnetic moment, these are given by

rp— 12
B:3prr Bre

o (4.3)
T

Here p is the magnetic moment vector of the charge,
given by u=—eS_ /M, where S, is the spin operator of
the charge. Note that in these units e%/47r=aq, the fine-
structure constant.

Substituting these fields into (4.1) we obtain a potential
acting on the neutrino:

2aS,r
Mr®

mass — =
2y _47Tuv7/5uv

(4.4)
So, for large r, this contribution to the two-photon-
exchange potential acting between a neutrino and charge
is proportional to the spin of the charge.

Because of the y 5 in V, that potential also depends on
the neutrino spin. In the nonrelativistic limit for the neu-
trino,

u,ysu,—S,Q/m, , (4.5)

where Q is the momentum transfer. Thus in the nonrela-
tivistic limit the potential acting between a neutrino and
a charge is

2ar S,'S.r*—6S, 1S, T

mass —

2 -
4 iMm,, 4778

(4.6)

We note that the factor of m, disappears from the final
answer for V)" in this limit.

The potential (4.4) may be compared with other long-
range potentials that act on neutrinos. For massless neu-
trinos, there are two such potentials, both analyzed in
Ref. 6 (in addition to gravity which we do not consider
here). One arises from the neutrino Compton amplitude
that exists even for massless neutrinos, which is quadratic
in G;. This potential is noncentral and is proportional to
V;nV:O _ azGFEV

4 m%Vr4

4.7)

mass

This is much smaller than V737
mass

eventually gets larger than V7).

The other long-range interaction that occurs for mass-
less neutrinos arises from the exchange of neutrino pairs
themselves.® This is a central potential, proportional to
G2/r>. The two-neutrino-exchange potential between a
neutrino and electron is smaller than V3* at distances
smaller than about 1072 cm. Of course, at distances of
order m ;! the interaction due to neutrino pair exchange

at atomic distances but
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damps out exponentially, while the two-photon interac-
tion remains.

Finally, if the neutrino has a mass and is a Dirac, rath-
er than a Majorana particle, it can have a magnetic di-
pole moment proportional to the mass. This will also
lead to a long-range dipole-dipole interaction with a
spin-4 charge. That interaction is proportional to the
tensor operator

T=(S,-S.r*—3S,1S,1)/r?

as well as to the product u,u, /r®, where u is the magni-
tude of the dipole moment.

In the standard model, for a Dirac neutrino, u, has
been calculated,® with the result u,~em Gr. The magni-
tude of the corresponding long-range potential then goes
as

aGpm,/Mr? .

mass

This potential is smaller than V3* for separations less
than A .(am,/m,)"”?, where A, is the Compton wave-
length of the charge. If the charge is an electron and for
a neutrino of mass 1072 eV, this separation is about 1078
cm.

The neutrino—two-photon vertex Eq. (2.6) arising from
neutrino magnetic moments also generates long-range po-
tentials that can be even larger than that in Eq. (4.6).
Again the form of this interaction can be inferred directly
from an effective Hamiltonian corresponding to the
Compton amplitude in Eq. (2.9). This effective Hamil-
tonian may be written as

H:lé)ment:_ikﬁvuV(Ez—B2)+kﬁvysqu‘B . (4.8)
Here k is given by
A2 —B2
my

It is of interest to note that if the interaction (2.6) is
dominantly of the magnetic type, that is if 4 > B, then in
the effective Hamiltonian (4.8) the E? term appears with
a positive coefficient. This implies that the corresponding
electric polarizability of the neutrino is negative. This
would be an example of the phenomenon of “diaelectrici-
ty,” which is unknown in atomic physics, and not
definitely known to exist in any situation.

The final term in HT™™ is of the same form as HT*
of Eq. (4.1), and so the corresponding long-range poten-
tial will differ only in magnitude from Eq. (4.6). Howev-
er, the potential arising from the first term will be quite
different. That potential can again be found by substitut-
ing into HTR™™ the fields E and B given by Eq. (4.3).
The result is

e? 3e?

rt B 2M 2

Vrznoment — k

p = (4.10)
T

for a spin-1 charge. Since e?=4sma and k is also propor-
tional to e? when A, B are expressed in Bohr magnetons,
the factor of 167 disappears from the answer written in
terms of a.

We note that this potential is spin independent and
falls off as » ~* for large . Therefore, so long as k is not
zero, V3™ will be larger than V37 for sufficiently
large separations. For a neutrino magnetic moment of
107!° Bohr magnetons and an intermediate neutrino
mass of 1 MeV, the minimum separation for this to occur
is about 1077 cm.

We can also compare V5" with the potential

V;"),FO, quadratic in Gy, arising from two-photon ex-
change even for massless neutrinos. These two potentials
fall off as the same power of the separation, but depend
differently on neutrino energy. Their ratio is given ap-
proximately by

2

(m,/m;)Ym,/E) .

129:]

ypoment /7= 102! (4.11)

Therefore, if the intermediate neutrino mass m, is rela-
tively small and the neutrino energy is small, then
V5oment can be larger.

Finally, if there is an off-diagonal magnetic moment of
the type needed to generate Vzm;’me“t, then neutrinos may
also have diagonal magnetic moments of comparable
magnitude, in which case the dipole-dipole interaction
between this moment and that of a charge will exist. Un-
like V'Z“;me"‘, the latter will be proportional to the spin of
the charge, and so vanish for unpolarized charges. Note
further that if the source of V3™ is an off-diagonal
electric dipole moment, there can be no diagonal counter-
part so long as time reversal invariance is a good approxi-
mation. In that case the potential V3,’™" can be the
dominant long-range potential (other than gravity) that
acts on neutrinos.

ACKNOWLEDGMENTS

We would like to thank J. Bernstein, L. Brown. R.
Jackiw, J. Jubas, V. P. Nair, P. Osland, J. Shaham, and J.
Sucher for helpful discussions. S.D. would like to thank
the Center for Theoretical Physics at MIT and A. Guth
for their hospitality while some of this work was done.
The work of S.D. was supported in part by the U.S.
Department of Energy under Grant No. DE-FGO2-
84ER40158 with Harvard University. The work of G.F.
was supported by the Department of Energy.

IM. Gell-Mann, Phys. Rev. Lett. 6, 70 (1961).

2A. Tesoro, Columbia University thesis, 1967; M. J. Levine,
Nuovo Cimento A 48, 67 (1967).

3B. W. Lynn, Phys. Rev. D 23, 2151 (1981). See also B. W. Lee
and R. E. Shrock, ibid. 16, 1944 (1977).

4R. J. Crewther, J. Finjord, and P. Minkowski, Nucl. Phys.
B207, 269 (1982).

SM. B. Voloshin and M. L. Vysotsky, Yad. Fiz. 44, 845 (1986)
[Sov. J. Nucl. Phys. 44, 544 (1986)]; L. B. Okun et al., ibid.
44, 677 (1986) (44, 440 (1986)]; L. B. Okun et al., Zh. Eks.



920 SCOTT DODELSON AND GERALD FEINBERG 43

Teor. Fiz. 91, 754 (1986) [Sov. Phys. JETP 64, 446 (1986)].
For some specific models implementing this idea, see M. B.
Voloshin, Yad. Fiz. 48, 804 (1988) [Sov. J. Nucl. Phys. 48, 512
(1988)]; M. Leurer and N. Marcus, Phys. Lett. B 237, 81
(1990); H. Georgi and M. Luke, Nucl. Phys. B (to be pub-
lished); H. Georgi and L. Randall, Phys. Lett. B 244, 196
(1990).

6G. Feinberg and J. Sucher, Phys. Rev. 166, 1638 (1968).

7L. Rosenberg, Phys. Rev. 129, 2786 (1963).

8S. Adler, Phys. Rev. 177, 2426 (1969).

9J. S. Bell and R. Jackiw, Nuovo Cimento A 60, 47 (1969).

10G. Feinberg and J. Sucher (unpublished).

113 F. Nieves, Phys. Rev. D 28, 1664 (1983); R. K. Ghosh, ibid.
29, 493 (1984).

12At very high temperatures, comparable to the W mass, the
formula (3.3) breaks down because the amplitude was initially

derived assuming energies less than my. In fact, on dimen-
sional grounds, it is straightforward to show that the cross
section decreases with increasing energy above my,. There-
fore, this process is most effective at temperatures slightly
below my,.

133, A. Morgan, Phys. Lett. 102B, 247 (1981). See also M.
Fukugita and S. Yazaki, Phys. Rev. D 36, 3817 (1987).

14This process has been analyzed by K. J. F. Gaemers, R. Gan-
dhi, and J. M. Lattimer, Phys. Rev. D 40, 309 (1989), in the
context of Supernova 1987A. They also mention the possibil-
ity of placing limits on neutrino masses from the cosmologi-
cal argument.

I5p, Sutherland, J. N. Ng, E. Flowers, M. Ruderman, and C. In-
man, Phys. Rev. D 13, 2700 (1976).

16G. Feinberg and J. Sucher, Phys. Rev. 139, 1619 (1965).



