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Sum rules for Higgs bosons
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We exhibit the sum rules for Higgs-boson couplings required by unitarity. We give explicit re-
sults and applications for an SU(2) X U(1) electroweak gauge theory with arbitrary Higgs multiplets.
As an example, we examine the constraints on nonminimal Higgs sectors should a single neutral
Higgs boson with the standard-model coupling strength to the ZZ channel be observed in Z decays.

I. INTRODUCTION

The construction of consistent quantum field theories
containing massive vector bosons presented a major chal-
lenge to theorists in the 1960s. In general, such models
are nonrenormalizable. Moreover, the tree-level ampli-
tudes for scattering processes exhibit bad high-energy be-
havior; i.e., they increase with the center-of-mass energy,
in violation of unitarity. It was later shown that spon-
taneously broken gauge theories [with the possible addi-
tion of massive U(1) vector bosons] are the only renor-
malizable and consistent quantum field theories involving
massive-vector-boson states. Soon after, it was estab-
lished that such theories are also the unique class of
theories involving vector bosons in which the tree-level
amplitudes for all scattering processes do not grow with
the center-of-mass energy. ' Such a result is possible be-
cause relations among parameters of the theory imposed
by the gauge invariance are precisely what are needed to
cancel out bad high-energy behavior among tree-level
Feynman diagrams. That is, the required cancellation of
bad high-energy behavior leads to a series of sum-rule re-
lations among various coupling constants of the theory.
Some of these sum rules were examined more explicitly in
Ref. 3. Nevertheless, the actual physical content of these
sum rules has remained somewhat obscure and is difricult
to extract from the existing literature. Since experimen-
tal accessibility of Higgs bosons is now significant, it
seems important to give in more explicit fashion the vari-
ous sum rules, and demonstrate their utility in a few
selected scenarios.

In the literature, the unitarity constraints have been
utilized in two different ways. First, one must demand
that all tree-level amplitudes exhibit good high-energy be-
havior; i.e., they must approach a constant value (or else
vanish) at infinite energy. Second, unitarity imposes an
upper bound on the value of this constant. This bound

can be translated into a bound on (a combination of)
Higgs-boson masses or Higgs-boson self-couplings. '

However, in this paper we are only interested in the im-
plications of the former requirement, namely the sum
rules for Higgs-boson couplings that arise as a result of
the cancellation of high-energy growth of the tree-level
amplitudes.

In Sec. II we present the general unitarity constraints
which follow from the 2~2 tree-level scattering process-
es involving scalar and vector bosons in an arbitrary
spontaneously broken gauge theory. In Sec. III we write
down the additional unitarity constraints which arise
when one adds fermions to the theory. We then turn to
practical applications of these unitarity sum rules in the
case of the standard SU(2)XU(1) electroweak theory
with conventional fermion multiplets but with arbitrary
Higgs multiplets. In Sec. IV we explicitly write out the
Higgs-boson-coupling sum rules which follow from uni-
tarity for tree-level amplitudes involving three or four
vector bosons. (Sum rules resulting from the scattering of
two vector bosons into scalar bosons are relegated to the
Appendix. ) In Sec. V the corresponding sum rules in-
volving Higgs-fermion couplings are examined. Specific
applications of these sum rules that may be relevant for
experiments in the near future are discussed in Sec. VI.
In particular, we examine the constraints on nonminimal
Higgs sectors should a single neutral Higgs boson (tb )

with the standard-model coupling strength to the ZZ
channel be observed in Z~ff+P or e+e ~Z+P .
Our conclusions are given in Sec. VII.

Ii. UNITARITY CONSTRAINTS ON PROCESSES
iNVOLVING SCALAR AND VECTOR BOSONS

The unitarity constraints on which we shall focus in
this section derive from the tree-level scattering ampli-
tudes for AA ~AA, AA ~AP, and AA ~PP, where
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A Ab A: tg b I(p pb ) g
—p+(pb —p ) g/3

+(p, —p, )pg, ],
Aa Abri: 'gab(gaj3 ~

Aa Abf ilj' gabij gap

(2.1)

where g,b, is real and antisymmetric in its indices, g,b; is
symmetric under interchange of a and b, g„" is antisym-

A is any vector boson, and P is any Higgs boson. We will
display the sum rules for these three cases in terms of the
Feynman rules for various trilinear and quartic interac-
tions. Our conventions are as follows. We indicate vec-
tor bosons by indices a, b, c,d, e and Higgs bosons by in-
dices i,j,k; the indices label boson states of definite elec-
tric charge g. By convention, we shall use a and i to la-
bel the antiparticle states of opposite charge to a and i,
respectively. Vector bosons are defined so as to have nor-
mal Hermiticity: e.g. , W+ = ( W )* and Z =Z*. The
Hermiticity properties of a given Higgs boson are
specified by a phase g defined by (P~)*=il;P, ~, where Q
is the charge of the Higgs boson. Associated with gauge
boson a is Lorentz index o, , and so forth. The Feynman
rules (with all momenta assumed to be incoming) are

metric under interchange of i and j, and g,b; is sym-
metric under interchange of a and b as well as under in-
terchange of i and j. In addition, the various couplings
defined in Eq. (2.1) are nonzero only if electric charge is
conserved at the vertex. Finally, Hermiticity implies

gabi Ii gab i (2.2)

gaij Ii QJ aj i Ii Ij ai J (2.3)

If CP is conserved in the Higgs sector, then the Higgs
phases can be chosen so that g„, g,b;, and g,b,

" are all
real. In this convention, for any neutral Higgs state i,
il; =+1 is simply the CP quantum number of p;. Conse-
quently, using Eq. (2.2) and the reality of g,b, , we see that
g, =0 if g, = —1; i.e., there is no tree-level coupling of
CP-odd neutral Higgs bosons to vector-boson pairs. '

Similarly, Eq. (2.3) implies that a ZP;P coupling can be
nonzero only if P; and P have opposite CP quantum
numbers. Finally, we note that for charged Higgs bo-
sons, the sign of g is model dependent and depends in
part upon the representation of the Higgs bosons in-
volved.

Using Eqs. (2.1) we compute the tree-level scattering
amplitudes AA ~ AA, AA ~AP, and AA ~PP. By
demanding the cancellation of bad high-energy behavior,
as described in Sec. I, we obtain three master sum rules:

2, Ab —+A, Ad.

(M, Mb )(M, —Md2)—
gbg ~ M, +

e e

(M, Md )(M, —Mb )—
gadegcbe e +

e

(2.4)

A, Ah~ A, P,'
g g„,gb~(M, +Mb+M, +Md 2M, ) —g g—k(g, bkg „g,dkg „)—;--

e k

gabe g
~2 M2+~2

2M gace gebI
M, —M, +I,

ghee geai
e

lk ( gcik gabk gbik gack )
k

(2.5)

A, Ab ~P,.P,'
lkgaikgbkj 2gabij 4 ~ 2 2 2 gabegeij

k e e e
(2.6)

In Eqs. (2.4) —(2.6), the prime on a gauge-boson sum indi-
cates that only gauge bosons with nonzero mass are to be
summed over. Note that due to the conventions de-
scribed above, our results differ slightly from those given
in Refs. 1 and 2. We will examine specific consequences
of these general sum rules in Sec. IV.

the Feynman rules for the relevant trilinear interactions.
We augment the conventions of Sec. II by labeling fer-
mion states with indices m, n, p, and the corresponding
antiparticle states with rn, n, p. We define the required
fermionic couplings as

III. UNITARY CONSTRAINTS
ON PROCESSES INVOLVING FERMIONS

A,f f„: iy„(g, „P~+g PR),

0;f f.: i(g,'—„Pi+g,' „P~), —
(3.1)

The unitary constraints on which we shall focus in this
section derive from the tree-level scattering amplitudes
for FF~ A A and FF~ A et, where F is any fermion. We
will display the sum rules for these two cases in terms of

where Pz I ——( I+@~)l2 are the usual right- and left-
handed projection operators, and all particles are taken
to be entering the vertex. As before, the various cou-
plings defined in Eq. (3.1) are nonzero only if electric
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charge is conserved at the vertex. Note that Hermiticity
implies

L, R L, Re
gamn ganm

gL, R gR, L+
imn ~ inm

(3.2)

If CP is conserved, then the phase conventions of the
fields can be chosen such that g ' and g. ' are real. As
a result, for CP-conserving Higgs-fermion interactions,

g, =g, g, , which implies that CP even -(g; =+1) neu-

tral Higgs bosons have only scalar couplings to ff,
whereas CP-odd (g; = —1) neutral Higgs bosons have
only pseudoscalar couplings to ff.

Using Eqs. (3.1), we compute the tree-level scattering

L L L L L
gbmpgapn gampgbpn X gabage mn

P e

(3.3)

and an identical equation obtained by replacing L by R in
Eq. (3.3).

Next, we demand the cancellation of terms in the am-
plitudes for FF~ 33 which grow as E. We are then led
to the sum rules

amplitudes for FF~ A A and FF~ A P. Individual
terms in the amplitude for FF~ 3 A can grow as fast as
E, as the center-of-mass energy E increases. The cancel-
lation of the terms which grow as E is guaranteed by the
gauge group structure of the fermion representations. In
our notation, these conditions simply read

f f„~A,Ab

R L + R L L L R R
P gampgbpn gbmpgapn mgampgbpn ngbmpgapn ~

+ g' g.b,
M —M +M

2M2 ngemn mge mn 2 ~ 1kgabkgkmn '(m ~ —m L
)

e k

(3.4)

and an identical equation obtained by interchanging L and R in Eq. (3.4). It is of interest to specialize the above equa-
tion to the case of n =m and a = b. Taking Eq. (3.4) in this special case, subtracting the same equation with L and R in-
terchanged, and using Eq. (3.3) to eliminate g,g g ', we end up with

(3.5)

Using Eq. (3.2), we see that for a CP-conserving Higgs
sector the right-hand side of Eq. (3.5) vanishes. As a re-
sult, it follows that

g rlkg„„(gk„„—gk„„)=0 (CP-conserving case) . (3.6)
k

This result is consistent with our observation in Sec. II
that there is no tree-level coupling of a CP-odd neutral
Higgs boson to vector-boson pairs.

Finally, we demand the cancellation of terms in the
amplitudes for FF~ A P which grow as E. (There are no
terms which grow as E in this case. ) The resulting sum
rules are

2M2 gaei nge mn mge mn ~ Ikgaikgkmn(m —m )
—~

k

IV. SUM RULES
FOR HIGGS-BOSON —GAUGE-BOSON COUPLINGS

In this section we apply the sum rules of Eqs.
(2.4) —(2.6) to an SU(2)XU(1) gauge theory with arbi-
trary Higgs multiplets. We note that g + =gc w and

g + ——gsw ——e, with cw—=cos0w and sw=sin0w. Inw w y
the results quoted in this section, we shall not assume the
standard mass relation mzc w

=Iw since this relation
does not in general hold in models with Higgs bosons in
triplet or higher representations. However, a phenome-
nologically viable model must approximately satisfy this
relationship; thus, in practical applications of these sum
rules to future data, making use of mzcw=mw is ap-
propriate.

We first examine the 2 2 ~3 A sum rules obtained
from Eq. (2.4). By examining the various index choices,
only two nontrivial sum rules are obtained:

L L R LX gi mp gapn gamp gipn (3.7) a =d = 8'+, b =c = 8'

and an identical equation obtained by interchanging L
and R in Eq. (3.7).

As in Sec. II, the prime on the gauge-boson sums above
indicates that only gauge bosons with nonzero mass are
to be summed over. We will examine specific conse-
quences of these general sum rules in Sec. V.

g (4m w 3cwmz ) g 7Ikg ~ — p

X Ikgw+w+y gw-w y++ '
k k k

(4.1)
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a = 8 +, b = 8', c =d =Z:
2 2 4 2

w z™w y 9kgw+w —yog
k k ~k

~ )kgw+zy gw zd+ '

k k k
(4.2)

Note that if CP is conserved then the sum over pk runs
only over CP-even, gk=+1, neutral Higgs bosons. If
one chooses one of the indices of Eq. (2.4) to be a photon,
the sum rule immediately simplifies to 0=0. This is a re-
sult of electromagnetic gauge invariance, which implies,
for example, that g + =0.

W Pky
We next examine the A 3 ~ AP sum rules obtained

from Eq. (2.5). By examining the various index choices,
four nontrivial sum rules are obtained (not including
charge-conjugated versions of sum rules listed below):

V. SUM RULES
FOR HIGGS-BOSON —FERMION COUPLINGS

In this section we apply the sum rules of Eqs. (3.4) and
(3.7) to an SU(2)XU(1) gauge theory with arbitrary
Higgs multiplets. In our analysis, we will suppress the
complication of multiple quark generations, and will em-
ploy first family notation (u, d) when needed. Our re-
sults will also apply to the Higgs-boson couplings to lep-
tons if one replaces (u, d ) with (v, l ) and uses the ap-
propriate values for the fermion quantum numbers.

We first apply the FF—+AH sum rules to an elec-
troweak model with standard-model fermion and vector-
boson content, but with an arbitrary Higgs sector. By
checking all possible index combinations in Eq. (3.4) (and
in the equation related to it by interchange of L and R),
we find

L R
ikgabkgk~~ g fkgabkgk~~

k k

a = W, b = W', c = W+, i =P,
+

C2g wgzw p,. ~ Rkgw y+y gw w
k

2m
5 5-

—gg, M, m„
mn abmw

(no sum over a), where

(5.1)

~ ikgw y+y'gw w+y' '
k i k k

(4.3) g~

g /C

a =8'—,
a =Z (5.2)

a = W+, b = W+, c =Z, i =P,

gcw 2

a=W+, b=W, c=Z, i =/, :

2mz
W gzzgo g W+ W

—
Po 2

i mw
+ ikgzy' y'gw+w.

k i k k

~ )kgw yoy+&w+zy
k i k k

2mz
2 &w+w+y + ik&zy y++gw+w. +y2mw k i k k

J

~ )kgw+d y+gw+zy
k i k k

(4.4)

This result is easy to understand. Since the left-hand side
of Eq. (3.4) is independent of the Higgs representations of
the model, one may choose to evaluate Eq. (3.4) in the
case of the minimal Higgs structure of the standard mod-
el. That is, the bad high-energy behavior of the s-channel
Higgs-boson-exchange contributions to FF~AA in a
model with an arbitrary Higgs sector either must exactly
cancel if f Wf„, or must match the corresponding con-
tributions of s-channel neutral-Higgs-boson exchange in
the minimal standard model (with one neutral Higgs sca-
lar P ) if f =f„. Indeed, we may easily reproduce Eq.
(5.1) in this manner. Employing the notation introduced
above, and using the index 0 to denote the P, the vector-
boson couplings to P are

(4.5) gab 0 ga a (5.3)

and a =Z, b = W, c =Z, i =P,+:
2mz

wgw zp. 2 ~ ~kgw p. (PgzzqPi 2mw i k k

gmn
mn6

w
(5.4)go—

n+ ')«zd, +y gzw y+ . --
k i k k

where g, is defined in Eq. (5.2). The left- and right-
handed fermion couplings to P are equal:

L R
go— go— =go—,with

(4.6)

Note that in both AA ~AA and AA —+A/ sum
rules, couplings to Higgs bosons with more than two
units of charge do not appear. The 3 A ~PP sum rules
are more complex, and involve, for example, the quartic
HAPP couplings as well as the various trilinear Higgs-
boson —vector-boson couplings. In addition, sum rules
can be derived which involve the couplings of Higgs bo-
sons of all possible integer charges. The detailed presen-
tation of these sum rules is given in the Appendix.

where mn is the mass of the fermionic state labeled by in-
dex n. The following result is then obtained:

L R
gabOgOmn ~ Ik gabk gkmn ~ Ik gabk gkmn

k k

(5.5)

L, R~ ~kgw zp gp ud
k k k

(5.6)

Although this result is trivial in multidoublet models,

which is precisely the sum rule obtained above. As a sim-
ple example, we have
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where there are no tree-level W ZP+ couplings, ' this
sum rule imposes interesting constraints in models with
more complicated Higgs sectors.

We next examine the FF~ AP sum rules given in Eq.
(3.7). Again, we will specialize to an electroweak model
with standard-model fermion and vector-boson content,
but with an arbitrary Higgs sector. We examine the basic
index choices of interest. (Charge-conjugated versions of
the sum rules presented below can be easily obtained. )

m =n, a =Z, i =go:

gm„

2 2mw2 ZW d, 7kgzg. g+gP di k k
(5.12)

In deriving the above equations, we have used Eq. (A2) of
the Appendix. Note that these equations are trivial for
the two-Higgs-doublet model which possesses only one
physical charged Higgs pair (i.e. , the equations reduce to
0=0), but are nontrivial for models with more extended
Higgs sectors.

mWn, a =8', i =P,

mug
n t +g o-

2mz 0;f„f„
L

Ikgzpopog po f f
k i k k n n

(5.7)

gmd

2+2m 2 w w d', Q2 dt, dd

Lg RkgW —yoP+gP du
k i k k

(5.13)

—g T &gzzfo
n R

2mz
+g 0 —f0;f„,

R
gkgzgogog Pof f r

k i k k n n 2 W+W b, Q2 d uu

where m„ is the mass of f„and T„=+—,
' for up-type

(down-type) fermions, respectively. In deriving Eq. (5.7),
we have used gz —gz =gT„ /cw. If we add the two

equations above, we obtain a particularly simple form:
3L

gTn p S
d f f ~~k ZA'k 4kf„f„ (5.8)

gm„
2 gzw d. ~ ~kgw d. p g& uu4mzcw i k ~k

(5.9)

gm„
gzw+d, QQkgw+d—, dog yo „—„V—

4mzcw

(5.10)

where we have used gwff, = —g/&2 and gwff, =0, as

are appropriate in the standard SU(2) X U(1) model. In a
model with only Higgs doublets (and singlets),

g + =0, and the above sum rules take on a particu-
I

larly simple form.

m =n =d, a = W'+, i =P,

This case yields two sum rules which are analogous to
the ones just presented. The first is obtained from Eq.
(5.9) by replacing m„with md and g 0 with g 0- . The

Pk lfQ k

second is obtained from Eq. (5.10) by replacing m„with
md, g o with g odd, and g& d

with —gfk QQ k ~t. du du

mWn, a =Z, i =P,
gmd

2&2m 2
(5.11)

which relates the pseudoscalar (P) and scalar (S) Higgs-
fermion couplings. In particular, if CP is conserved, this
sum rule is trivial if P, is a CP even scalar-. If P, is CP
odd, then we can set gk =1 and the sum runs only over
CP-even Higgs scalars.

m =n =u, a = W+, i =P,

R
/kg W

—
dod, +g

d,
—d„

k i k k
(5.14)

Note that if CP is conserved, the left-hand sides of the
two sum rules above vanish for a CP odd -scalar P, = A

and one obtains two rather simple sum rules for g
and gR,

This completes our enumeration of the Higgs-boson-
coupling sum rules in the SU(2) X U(1) gauge theory.

VI. APPLICATIQNS

In practical applications of the sum rules, important
simplifications result in the case where the Higgs sector is
CP conserving, in which case, as noted in Sec. II, the
Hermiticity phases g; defined earlier are +1 in the con-
vention where the g's are taken to be real. For instance,
if we recall that g 0=+1 if g + 0 and g 0 are

ZZQ, .

nonzero, it is obvious that the first term on the right-
hand side in Eq. (4.1) is positive definite. Similarly, by
noting that g + =q +g + and g W W

=g ++g + +, it is apparent that the second sums

on the right-hand side of Eqs. (4.1) and (4.2) are positive
definite. However, not all terms in the sum rules have a
definite sign. For instance, the first term of Eq. (4.2) does
not have a well-determined sign, since the 8 +8' and
ZZ couplings of a neutral Higgs boson could differ by an
overall sign. " Another important simplification results
from the observation (noted in Sec. II) that g 0 0%0 re-zpo)0

quires g og 0= —1. It then follows that for a CP-even
t J

neutral Higgs boson (21,=+ I), the first term on the
2

right-hand side of Eq. (4.5) is always zero.
If we do not assume that CP is conserved in the Higgs

sector, then one can obtain unitarity constraints on the
size of various CP-violating phases. A number of very in-

teresting sum rules of this type have recently been de-
rived by Weinberg. ' However, for the sake of simplicity,
we shall continue to assume here that CP is conserved.
In almost all phenomenological applications involving
the direct production of Higgs bosons, this should be a
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very good approximation. Moreover, for the remainder
of this section, we will also assume that the Higgs sector
is such that p =m w /(c wm z ) = 1 (this latter relation be-
ing experimentally verified at the 1% level). Indeed, if
one simply sets m~=c~mz in the sum rules, one is
guaranteed that any Higgs sector respecting these sum
rules must satisfy p= 1, and consequences thereof.

As a first illustration, we prove that (when p= 1) dou-
bly charged Higgs bosons with 8'—8' —+ couplings can be
present (implying triplet or higher Higgs representations)
if and only if there is one or more singly charged Higgs
boson(s) with nonzero W~Z coupling(s). (This result was
originally proved in Ref. 13 by another technique. ) It
will be useful to define

Even if ~g p~ =gmz/cw, it is clear from the sum

rules that there are many remaining options. Equations
(4.1) and (4.2) imply that a non-standard-model value
and/or sign for g + o is possible so long as there are
neutral and charged Higgs bosons with appropriate cou-
plings present. Indeed, in order to make any further
statements, additional experimental information is re-
quired. Let us thus imagine that the W+ W P coupling
is also determined to have standard-model strength
(~g + p~=gmw), perhaps by measuring production
cross sections at a hadron collider via 8 8'fusion. While
it would certainly be tempting to conclude that the
minimal standard model is correct, this need not be the
case. The sum rules of Eqs. (4.1) and (4.2) reduce to

gzzyO, .
:gmz

l

gW+W yO.
=g ~ W+W yO.

l l

(6.1)
2 2

gw+w y'„~gw+w+y,
pO ~pO k

(6.4)

First, we note that if g + =0 for all Pk, then Eqs.
k

(4.2) and (4.5) imply that g;A, + p= 1 and Eq. (4.1)
l

then requires that +kg + + =0, implying that all
k

such couplings must vanish. Working in the reverse
direction, we note that if there are no nonzero
W+ W+P couplings, then Eq. (4.1) can be rewritten as

+ p= l. We next multiply Eq. (4.5) by g +
l l

and sum over i, and use Eq. (4.3) (neglecting the doubly
charged Higgs term) to simplify the result. Eliminating
gi, g + from the latter result using Eq. (4.2) we ob-

k

tain

w+w y' w+w y' zzy'
I

(6.2)

Combining g,.A, + p
= 1 with Eq. (6.2), we obtain

l

g;A w+ w- pA, ZZ
p= l. If this is substituted into Eq. (4.2)

we find that gkgzw &+
=0 is required, implying that all

k

O'Z couplings to singly charged Higgs boson must be
zero. Equation (4.5) then requires that A, w+w &p=kzz p

l l

for all i. That is, in models with p=1 and no tree-level
ZW~P couplings, we have

P7l
2 2 2 ~ 2

gw w p,.
™wr+gzzpo 2

l l CW
(6.3)

Of course, all these results are those expected for a model
in which only neutral members of doublet (and, possibly,
singlet) Higgs fields acquire nonzero vacuum expectation
values.

As a second example of the utility of the sum rules, we
imagine that the Z factories at the SLAC Linear Collider
(SLC) and CERN LEP discover a single neutral Higgs
boson P with substantial ZZP coupling of magnitude
gmz/c~ as given by the standard model. We will not
consider sum rules which contain quartic couplings, as
these will surely be the last to be tested experimentally;
i.e., we focus only on the sum rules that can be expressed
in terms of trilinear Higgs-boson —vector-boson cou-
pling s.

and

2 2= 2
gw+ w-y&gzzyp„~ gw+zy„-

pO ~yO k

(6.5)

H~+W Z: —Q —', w', H W W+:

H5W W+: Q —,', H iZZ:

(6.6)

where we have defined e=sgn(gw~w — p/gzz p). These

equations make it clear that it is crucial to determine
whether or not there are any singly charged or doubly
charged Higgs bosons with 8 +—Z or 8'+—8 +—couplings,
respectively. We have already stressed that, if all
W+ W+P couplings are absent, then all W+ZP cou-
plings must also be absent (assuming p= 1), and vice ver-
sa. In this case, Eq. (6.4) implies that g + p=0 for

k

any /king, and Eq. (6.5) then implies that e= 1, i.e., that
g o has the same sign as g + o, as in the standard

model. However, this scenario is only the simplest of
many possibilities.

Let us give an explicit example of just how perverse na-
ture could be in satisfying the sum rules in a manner con-
sistent with the scenario just outlined. We consider an
example from the triplet model with a custodial SU(2)
symmetry constructed in Refs. 14 and 15 and explored in
greater depth in Ref. 13. In that model the physical
Higgs bosons are the H5++, H5+', H5 [belonging to a
fiveplet under the custodial SU(2) symmetryj, the
H3+', H3 (belonging to a triplet), and two singlet Higgs
bosons H, and H, '. If the doublet-triplet mixing angle of
the model (denoted by Oll ) is chosen so that
sly =—sinOll=+ —,'then the H, ' has standard-model cou-
plings (both in sign and magnitude). Nevertheless,
discovery of the H &' clearly would not imply that it is the
standard-model Higgs boson. Indeed, in this specific
nonminimal model, Eqs. (6.4) and (6.5) are satisfied due to
the cancellation of the various terms on the right-hand
side. Explicitly, we have the following additional cou-
plings (in units of gm w): ' '

H5++ W W: Q —,', H5ZZ: —Q —,
'

w
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2 R Lmfg~+ — p+ 2m gag (J 0
l

(6.7)

which is predicted to hold in the standard model (with
minimal Higgs structure). Then, Eqs. (5.13) and (5.14)
immediately imply that one or more charged Higgs bo-
sons with nonzero W+P P; couplings and appropriate
ff couplings must exist. For example, consider once
again the triplet model described earlier. As shown in
Ref. 13 (see also Ref. 8), H5 has a nonzero W+ W cou-
pling but no ff couplings. Equations (5.13)—(5.14) are
satisfied by virtue of the fact that the H3+ has both fer-
mion couplings and a nonzero coupling to W+H&. Con-
versely, H3 has nonzero ff couplings but does not couple
to W+ W . This implies that charged Higgs bosons
must exist which couple to fermion pairs. Indeed, in the
model, it is the H3+ that has g „- AOandg + 0%0,03 du 3 3

and which thereby allows the sum rules of Eqs. (5.13)
and (5.14) to be satisfied.

It is easily verified that these couplings give zero when in-
serted on the right-hand sides of Eqs. (6.4) and (6.5).

Of course, such perversely fine-tuned scenarios are not
likely to arise in nature, in which case the first-discovered
neutral Higgs boson will not have exactly standard-
model-like W W and ZZ couplings if there is a non-
minimal Higgs sector. The sum rules will then provide a
guide as to what remains to be searched for. For exam-
ple, if a neutral Higgs boson or a set of neutral Higgs bo-
sons are found such that +kg + 0 )g mii, then Eq.

k

(4.1) would imply that doubly charged Higgs bosons with
WW couplings must be present. This is what would
occur in the triplet model just discussed. Conversely, if a
number of Higgs bosons are discovered with couplings
that satisfy the coupling constant sum rules given in this
paper, this will provide a strong indication that all the
Higgs bosons connected to the gauge sector have been
found.

We next turn to some consequences of the sum rules
involving Higgs-fermion couplings. Suppose that [in an
SU(2)XU(1) gauge theory] a charged Higgs boson is
discovered with tree-level couplings to ff. If this
charged Higgs boson is also found to have a nonzero
W+Z coupling of tree-level magnitude, then by Eq. (5.6)
there must be other charged Higgs boson which also cou-
ple to both W+Z and ff. Alternatively, when one or
more charged Higgs boson(s) is(are) present, Eq. (5.6) can
be satisfied if those Higgs bosons with quark couplings
have no W+Z coupling and vice versa. This is the case
in the triplet model with custodial SU(2) symmetry dis-
cussed just above. There, the H 5+ W Z coupling is
nonzero, but the H5+ has no fermion couplings, whereas
the H3+, which does have fermion couplings, has no cou-
pling to W+Z.

Many additional applications of the sum rules of Sec. V
are also easily derived. Let us consider an SU(2) XU(1)
gauge theory with one family of quarks and leptons, with
standard-model gauge-boson —fermion coupling s. Sup-
pose that a neutral Higgs boson P; is discovered which
fails to obey the relation

&II. CONCLUSIONS

In this paper we have explicitly exhibited sum rules for
Higgs-boson couplings to gauge bosons, scalar bosons,
and fermions which arise as a result of the requirement of
cancellation of (potentially) bad high-energy behavior of
the 2~2 tree-level scattering amplitudes. After present-
ing sum rules which are valid in any spontaneously bro-
ken gauge theory with arbitrary gauge group and matter
field content, we examined the consequences for the
SU(2) XU(1) model, with standard fermion content, but
with an arbitrary Higgs sector. We focused on the pre-
dictions of models with a CP-conserving sector which
satisfied the constraint of p—:m~/mzcos 0~=1. Exten-
sions of our analysis are straightforward. For example,
one could examine electroweak models with extended
gauge groups as well as extended Higgs sectors. One
would then be able to explicitly write out the more com-
plicated sum rules involving the coupling of Higgs bosons
and fermions to the new gauge bosons.

The Higgs-boson sum rules should play an important
role in elucidating the properties of the scalar sector of
the electroweak gauge theory. Even if it happens that a
neutral Higgs boson is discovered whose couplings to
8 + W and ZZ are equal in magnitude to those predict-
ed by the standard model, experimentalists will have ad-
ditional work to do. First, singly charged Higgs bosons
with W —Z couplings and doubly charged Higgs bosons
with W—W —couplings must be searched for and either
eliminated as a possibility or found. Once the full Higgs-
boson spectrum and its couplings to vector-boson pairs
are explored, it will be necessary to verify that the
vector-boson —Higgs-boson —Higgs-boson and fermion-
fermion —Higgs-boson coupling sum rules are satisfied.
Only then can we begin to become confident that the
structure of the Higgs sector is correctly determined and
is consistent. All of the examples described in this paper
make it clear that the sum rules allow one to determine a
great deal about the Higgs sector if even a single (rela-
tively light) neutral Higgs boson is discovered in the near
future, and its couplings to fermion and vector-boson
pairs can be determined with reasonable accuracy. If one
can experimentally verify that these couplings are not
those predicted by the standard model (with minimal
Higgs content), the sum rules discussed in this paper will
provide an important guide as to which additional Higgs
bosons (and with what couplings) still await discovery.
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APPENDIX: THE A A —+$Q UNITARITY SUM RULES

As noted in Sec. III, the A A ~PP sum rules are rather
complex, and involve the quartic HAP()I) couplings as
well as the A A()I) and APP trilinear couplings. Further-
more, unlike the sum rules considered in Sec. III, the sum
rules presented here can involve couplings to Higgs bo-
sons of arbitarary (integer) charge. Our strategy will be
to present sum rules involving neutral, singly, and doubly
charged Higgs bosons. We will then indicate how to gen-
eralize to higher charges.

We begin with the 8'+8' sector. For this sector, it

will be useful to define the subsidiary quantity

fogy g=-ewgzygy-g+swg ~g~-g & (A 1)

where g &g&
g= —e2), Q5; . In the special case of i =j,

gzl, gl, g . 2
(1—2sw)2), Q,

l l 2c~
(A2)

so that f g —g 22);gQ. When iWj, only the Z term

contributes in Eq. (A 1). By examining the various index
choices, the following sum rules are obtained:

+ — ~ 0 ~ 0 1
1 1~j ' + ~kgw &l»i& gW ((t+P 2 gW+ W (()+W+ W ((&. 2g Wgzg. ((& 2gW W

k l k k J 4m~ l J l J J

1 & —1a TEE b Isz ) A
g

A. . ~ ~ g g g+ g
k i k k j J J

a = W+, b = W, i = (1) .. ,j=P;

1~ ~kg w &j& l& gW &j& p+ ~ ~ gkwhr &j&
gW

&)) &)) 2 gw+Zp gZWj k k i 4mz J l l J

where we have used Eq. (A4) to substitute for gw+ w +
l J

a —rr, u —rV, l —IP';, J —gj ~ ~ /kg~+~++~ ———g~ —~+++ —— ~gj ~++y ——
k i k k ~j l j

(A4)

(A5)

(A6)

where the first term is not present if there are no triply charged Higgs bosons;

a = W+, b = W, i =
()I&

.. ,j=
()I&,
++:

1
W+&. P+ W P P++ + 2)k +WP++l, lV /+++/ +

2 glV+ W+$ W W P++ P++P~j k k i i k k j 4m~ J I l J
(A7)

where we have used Eq. (A6) to substitute for g + &++ . Equation (A6) generalizes in obvious fashion to higher
l J

charge states, while the generalization of Eq. (A7) for Q )3 is

+ )kgw+y gy(g "gw y (g-"yg ~ lkgw+ygy 'g+ "gw y'g+ "y. g gfygy. g
k j k k i k k j l J

(AS)

Let us now turn to the 8'+8 + channel. Sum rules for the 8' 8' channel are obtained by charge conjugation of
the ones given below:

+ + 1
1~ ~kgw+&j& pglV+&l) ((&. . 2 gw+Zp. glV Z((& 2gW+ W

k i k k j 4mz l J l J

+ + ~ —— ~ 0 1
1= W &b = W &' 4»J 4j ' P 2)kgw+& — &+gw+& &o+ —

2 gw+ w—+&— gw+w —
&o zgw—+ w+l, ——

&o
&'

k i k k j 4m~ l J I J

and finally, for Q )3, we have the generalization of Eq. (A10),

1

gkgW+y gy(g —1)gw+y —(g —1)l(g —2) 2gW+ W+P —gP(g —2)
k i k k j l J

We turn next to the 8' Z initial state; 8' Z sum rules are obtianed by charge conjugation:

+ ~ — ~ 0 1 +—' c —1~j ' " lV+(l P ZP ((). 2 W Z&j& ZZ&j&. 2 W P. P. 2 W. Z&)l.i k k j 4mz J l J l J

+ ~ 0a = W, b =Z, i =ltd j =P, : ~ vlkgw+yol, gzy+y ~ 2)kgw+y yogzyoyo
k j k k i i k k j

1 1
W+8 ~r- -g Z. 2 8 Z~. ZZitl. ~ W4m~ J 4mz J l J

(A9)

(A10)

(Al 1)

(A12)

(A13)
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where we used Eq. (A12) to eliminate the quartic coupling in writing Eq. (A13).

a = W+, b =Z, i =P;,j=Pj+

1 +—' c —1

w+y y+ zy y+ z w+w+y .w zy .2 w w+y I+ &. w+zy.
k k J 4m~ I J I J I J

a = W+, b =Z, i =Pj+,j=P,
1

X Rkgw g g gzp +p X Vkgw y y—+gz—
y p

—
2 gw+ w p

—gw —
zp g wgw+&b~k k I k I k k J 4m I J I J

(A14)

(A15)

where we have, in the usual manner, substituted for the quartic coupling in Eq. (A15) using Eq. (A14). Generalization
to higher charges (Q ~ 3) is obvious.

m1 1J Pj ~ rlkg w+y Qy(Q 1)gzy (Q 1)y(Q ) ) 2gcwg w y Q (Q ) ) Tgw z Qy(Q 1)
k i k k j I ~J

a = re+, b =Z, I =y(I2 ",J =-y; I2.

~ )kgw+~(Q "y Q&zyQI Q+'.rjkgw+y QI,'Q "gzy 'Q "I,'Q " g wgw+I, Qy'Q.~j k k i k i k k j J

Finally, we can detail the ZZ initial state relations using just three equations:

a=z b=z 1+~J ~ jkgzp gPgzpop 2 gzzp gzzp 2gzzp qP
k 4~z

a=z b=z I. = + 1 —1~j ' ~ ~k zp+. p zp+p 2 zw p w+zp & zzp+pi k k j 4~~ i J I J

(A17)

(A18)

(A19)

the higher charge, Q 2 generalization of this last equation is

1g ")kgzyQI, QgzyQy Q —TgzzI)Qy (A20)

This completes our explicit enumeration of the 2 2 —+P(t unitarity sum rules.
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