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(D,D,+) = VV decays in two models: An SU(3)-symmetry model
and a factorization model, with final-state interactions
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We have studied all decays of the kind (D,D,.+ )~ VV in two models: an SU(3)-symmetry model
with nonet symmetry and a factorization model, and the inclusion of final-state-interaction phases.
We show that the factorization model makes predictions in agreement with data, with fewer free pa-
rameters. Detailed predictions for all decay modes are made and the two models contrasted.

I. INTRODUCTION

In this paper we have studied the decays of the D
mesons (D,D+,D,+) into two vector mesons in two
different schemes: (i) an SU(3)-symmetry scheme and (ii)
a facorization model, with final-state-interaction (FSI)
phases, for Cabibbo-angle-favored, -suppressed, and
-doubly-suppressed decay modes. There is a paucity of
data on (D,D,+ )~ VV decays but we have utilized what-
ever data are available at this moment to determine, and
restrict, the parameters of the models. It is hoped that
this study will prove to be a useful guide to future experi-
ments, particularly high-statistics experiments with fu-
ture machines such as ~-charm or B factories.

In Sec. II we have investigated an SU(3)-symmetry
scheme and made detailed predictions for all the
Cabibbo-angle-favored, -suppressed, and -doubly-
suppressed modes in nonet symmetry. Given the state of
experimental data, we did not consider it worthwhile to
discuss nonet-symmetry breaking. We have also dis-
cussed the pitfalls of this model.

In Sec. III we have discussed (D, D,+)~ VVdecays in a
factorization scheme with FSI phases. To keep the
description simple, we have ignored the annihilation am-
plitude. In any case, data at present do not warrant the
inclusion of an annihilation amplitude.

In Sec. IV we have discussed the merits and demerits
of the two descriptions. In our opinion, the factorization
model fares much better, in particular, in describing the
(tb-co) sector. The reason, as we discuss in detail in Sec.
IV, being that dynamical symmetries such as the
conserved-vector-current (CVC) hypothesis are easily im-
plemented in the factorization scheme, where one deals
with matrix elements of currents. In the symmetry mod-
el, as also in diagrammatic approaches, implementation
of such symmetries is not natural and, at best, imple-
mented in an ad hoc manner.

II. (D, D,+ )~ VV IN SU(3) SYMMETRY WITH FSI

Because of the identity of the particles in the final
state, the SU(3) structure of the decay amplitude parallels

that of (D,D,+)~PP (P=pseudoscalar meson) decays
discussed by us in Refs. 1 and 2. Only the symmetric 8,
and 27 representations of V V are allowed. In nonet
symmetry, the decay amplitude is written as [see also
Refs. 3—5 for SU(3) analysis in the charmed-meson sector]

A(D~VV, nonet sym)=c(V, V'P )H(b, )

+d(V, V'P )H(b, )

+e(P V' V, )Ht(b, )

——'(V-V"P')H' . (1)

There are three independent parameters, c, d, and e, in
the model. In nonet symmetry where Vb represents a no-
net of vector mesons, the trace of Vb does not vanish;
hence the last term, which arises from the 27 representa-
tion of V V. H~b,

~
is the weak spurion belonging to the

6* representation of SU(3) and H
t „,I

to the 15 represen-
tation. For Cabibbo-angle-favored decays, H&, =H», for
Cabibbo-angle-suppressed decays, H&, =H, z

—H» and
for doubly-Cabibbo-angle-suppressed decays, Hb, =H, 2.

Nonet-symmetry breaking could be introduced by writ-
ing

A (D ~ VV, broken nonet sym)

= A (D~ V8 Vs)

+( V~ VkP )(aH(i ]+bHtt
~

) (2)

where A (D —+ Vs V8) represents the decay amplitude to
vector octets only and is obtained from (1) by using Vb as
traceless tensors, so that, in particular, the last term in (1)
does not contribute. The amplitude for the decays in-
volving an SU(3) singlet V& arises from the last term of
(2). In a broken-nonet-symmetry model there are five pa-
rameters (a, b, c, d, e). The relation between (a, b) and
(c,d, e) in nonet symmetry is
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2a= — —c,V'3

b= — d+-= 2 e
V'3 5

(3)

In Tables I—III we have listed the decay amplitudes for
Cabibbo-angle-favored, -suppressed, and -doubly-
suppressed decays of D, D,+, and D in nonet symmetry.
We have also shown the isospin split of the decay ampli-
tudes and introduced FSI phases in column 3 of these
tables. Nonet symmetry could be broken by allowing a
and b to take on arbitrary values. Throughout our dis-
cussion we have used ideally a mixed singlet and octet,
such that

A (D +K— p+)= —[ A3/2exp(i5~~/p )v'3
~ K+& A', /2exp(i5~1/2 )],

A (D ~K *
p )= —[&2A 3/p exp(i 53/p )

3

—A 1/2

exp�(

1 5,&z ) ],
A (D+~K" p+)=&3A3/&exp(i5~&/2 )

and derives

r:3 3/2 / 2 1 /2 0.29+0.077

37'~ (5~ —5~ ) ~ 90'

(6)

P = Vs cos9 v
—

V0 sin 9 1, ,

co = VssinO~+ Vocos|9~,

with

tan91,=, 9V= 35.3' .1

2'

(4)
Our tabulation of D ~pK * decay amplitudes in Table I
uses a definition

A (D ~K p+ ) =—[ A 3/2exp(i53/2 )
3

K )fc+2( A 1/2 xp(i51/2 ) ]

The following analysis is presented in nonet symmetry
only.

First we notice from Tables I—III that only certain
combinations of parameters are determined by data. For
example, D~pE * decay amplitudes are determined by
the parameters 3:—c+d +e/3, r:—4e/3A and

pK pK pK=~1/2 ~3/2

0 e0 0 KK* p )= I:A3/2 xp(i53/2
3

~ pkK *—A1/2exp(i5~1/z ) ],
A (D+~K * p+)= A3/2exp(i53/2 )

so that

A1/P =(3/2) A 1/2

(8)

(51/2 and 53/2 being isospin —,
' and —', FSI phases. To

determine these parameters we use Mark III Collabora-
tion data:

and

A 3/2 +3A 3/p (9)

B (D ~K* p )=6.2+2.3+2.0%%uo

B(D ~K *
p )=1.9+0.3+0.7&o,

B(D+~K *
p )=4.8+1.2+1.4% .

r = A3/z/A1/& =&2r'=0. 41+0.11 .

We use B (D+ ~p+K '
) in (5) to determine e and then

we use (9) to determine A =(c+d+e/3) from r. Our
solution is (c, d, and e are expressed in units of 10"/

1/&
)

The Mark III analysis employs the definition of iso-
spin amplitudes [primes are used here to distinguish these
amplitudes from the ones introduced in Eq. (8) to follow]

I.I
=78+14,

I
A

I

—=c +d +e/3=250+80 .
(10)

TABLE I. Cabibbo-angle-favored (D,D,+)~ VV decay amplitudes in the nonet-symmetry model.
Symbols: A —=c+d+el3, B—:c —d+e/3, r =4e/3A, p =4el3B, 5~ =5)~& —5~3/2, 5~~= 5P' 5$~, — —
5 =50»» —5»» . FSI=final-state interaction. A factor of cos~gc is omitted; co and P are
ideally mixed.

Mode

~co%

~g+~ Qp

~COP

Amplitude in
nonet symmetry

A (1+r/2)
—(1/&2) A (1 —r)
(1/&2) A (1+r/5)
2e
Forbidden
—B(1—p)—4e /5
—&ZB (1—q/10)

Amplitude with FSI phases

A exp(i5r1~z )[1+r /2 exp( —i5~ ) ]
—(1/&2)A e p(i5x$ z )[1—r exp( —i5~ )]
( 1/&2) A exp( i5) q~ )( 1+r /5 )

g )fC

2e exp(i5~3/p )

—B exp(i5& )(1—p)—4e /5 exp( i6~&~)
—&2B exp(i5~&")(1 —p /10)
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TABLE II. Cabibbo-angle-suppressed (D,D,+ )~ VV decay amplitudes in the nonet-symmetry model. Symbols as in Table I. A
factor of sinO&cosO& is omitted.

Mode

ppz*+z*-
~z "x*'

4p'
~cop

0

~a*+a "
~cop

D,+~p'X*+
+~+0

QIC
*+

~co%

Amplitude in
nonet symmetry

A (1+r/2)
A(1 —r)
—A (1+r/2)
0
(4e) /(5&2)
—A (1—2r/5)
2&2e/5
A (1+r/5)
—&2e
—B(1+p/2)
6e /5
—&2B ( 1 —17p /20)
(1/&2)B (1—p)
B(1+p/2)
—B(1—sp/5)
(1/&2)B (1+4p/5)

Amplitude with FSI phases

A exp(i5P')[1+(r/2)exp{ —i5~~)]
A exp(i5~~~)[1 r—exp( —i5~ )]
—(1/2)A(1+r /2)exp(i50 )[1+exp( i5— )]—(1/2) A (1+r/2)exp(i5o )[1—exp{ i5 —)]
(4e }/( 5&2)exp( i V&~)
—A exp(i6~& )(1—2r/5)
2&2e/5 exp(i50~)
A (1+r/5 }exp(t6"")
—&2e exp( i 5~&i')

—B exp(i6, )(1+p /2)
6e/5 exp(i6~i~}
—&2(B —17p/20)exp(i5~& )

{1/&2)Bexp(i5~&2 )[1—pexp( —i5~ )]
8 exp(i5~i~z )[I+p/2exp( —i5~ )]

B( 1 —S—p /5 )exp(i 5(~, )

(1/&2)B (1+4p/5)exp(i6]/2 )

8 =(430+' ) o (220+,') . (12)

The first solution uses r=0.4 and the second r = —0.4.
Henceforth we will assume the convention A) 0 and8)0. Sextet dominance, c ) (d, e), ensures that A and 8

The relative signs of e and A are not determined by data.
If we assume the relative signs of e and A to be even (i.e.,
r) 0) then 5i' is determined to be in the first quadrant
and given by (7). However, if we assume the relative sign
between e and A to be odd (r(0) then the phase angle
P' is in the second quadrant: 90'~ P' 143'. We
shall make predictions with both signs of r.

The parameter B=c —d+e/3 is poorly determined.
We have used the following ratio from the Amsterdam-
Bristol-CERN-Cracow-Munich-Rutherford (ACCMOR)
Collaboration to determine B:
8(D, ~E*+E* )/B(D, ~Per )=2.4+1.6 .

With e from (10) and 8(D,+~Pm+) assumed to be 3%%uo,

we obtain (in units of 10"/ MeV'/ s '
)

have the same sign. The errors in (12) are due largely to
the data in (11).

The parameter p =4e/3B which enters the description
of several amplitudes in Table I is poorly determined.
However, sextet dominance [c ) (d, e)] ensures that r =p.

Finally the parameters C:—c —d —e/3 and q—:4e/3C
only enter the description of doubly-Cabibbo-angle-
suppressed rates (see Table III) and are not determined
by any data. In principle, C can be derived from the
knowledge of B and e. However, the large uncertainties
in B make this exercise fruitless. Our predictions in the
double-Cabibbo-angle-suppressed sector are made in the
approximation. C= A and q=r, which would be a good
approximation if c were to be much larger than d and e.
Tables IV—VI summarize the predicted branching ratios
in nonet symmetry.

We comment below on some of the salient features of
these tables.

(1) B(D,+~cop ) is almost certainly predicted to be
too large, even though no measurements exist. We point
out, and we later return to this point in Secs. HI and IV,

TABLE III. Double-Cabibbo-angle-suppressed (D, D,+ )—+ VV decay amplitudes in the nonet-
symmetry model. Symbols: C =c —d —e/3, q =4e/3C. The rest as in Table I. A factor of sin Oc is
omitted.

Mode

D —+p K*+
0~ 40

—+ Cc)K

D+ ~p+K
0~++

—+Q)K

D,+ X *+a*'

Amplitude in
nonet symmetry

A (1+r/2)
—(1/&2) A (1 —r)
(1/&2) A (1+r/5)
—C(1—q/2)
—( 1/&2) C ( 1+q)
—(1/&2) C (1—

q /5)
2e

Amplitude with FSI phases

A exp(i5~ix2 )[1+r /2 exp( i 5~ )]—
—(1/v 2) A exp(i 5~i&2 )[1 rexp{ i51' )]——
(1/&2) A (1+r/5)exp(i5", )
—C exp(i5f~, )[1—q/2exp( —i5~ )]—(1/&2)C exp(i5~i~2 )[1+q exp( —i 5~ )]
—( 1/+2) C ( 1 —

q /5)exp( i6& z~ )

2e exp(i6& )
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TABLE IV. Branching ratios (in %) for Cabibbo-angle favored (D,D,+)~VV decays in the nonet-

symmetry model. In units of 10" MeV' s '. 3 =250+80, B =430+,'40 with r=0.4 and 5~ =60
or 220+140 with r = —0.4 and 6~ =120.

Model

—+ coK

D+ K +0 +

D,+ ~K*+K *'

-0p'
~cop

Branching ratio (%) experiment

6.2+2. 3+2.0 '
1.9+0.3+0.7 '

4.8+1.2+1.4 '
B (D,+ ~K*+K ) =2.4+1.6

B(D, ~Per+)
B(D, ~Pp+) (1.8 b
B(D,+-Prr+)

Branching ratio (%) theory

Fitted ( A, 51' )

Fitted ( A, 6~ )

2.8+1 7 '
2.0+ 1.2
Fitted (e)

Fitted (B)

0.26+0. 10

62+'—40
16+18 f

'Mark III Collaboration, Ref. 7.
ACCMOR Collaboration, Ref. 8.

'Uses r =0.4, 3 =250+80.
"Uses r = —0.4, 2 =250+80.

ses r=0.4, B =430+
'Uses r = —0.4, B = 220+ ,'40.

that SU(3)-symmetry treatment or diagrammatic ap-
proaches' applied to D~VP decays, generate rather a
large value for B (D,+co~+) also. The problem with a
large value for B (D,+~cop+ ) in SU(3) symmetry has the
same origin, as we will discuss in Secs. III and IV.

(2) Among the Cabibbo-angle-suppressed rates,
B (Do~/pe) and B {D ~/co) appear to be strongly

suppressed. Nonet symmetry predicts B (D ~Pp )
=(0.38+0. 14) X 10 % while the ACCMOR Collabora-
tion gives B(D ~Pp )/B(D ~K rr+) =0.009+o'ooz.
Using9 B(Do~K ~+)=4%, one gets B(D ~Pp )

=(3.6+& 6) X 10 %. Thus the theoretical central value
is an order of magnitude lower than the experimental
central value.

TABLE V. Branching ratios (in %) for Cabibbo-angle-suppressed (D,D,+ )~ VV decays in the nonet-symmetry model. Parameters

as in Table IV. Also used r =p, 6)' =5~1&2 —
63&2 =60, 5 =50 —62 =60, 6 =50 —

6& =60. The first entry uses

r =p=0.4 (and B =430+140 if it enters the amplitude); the second entry uses r =p = —0.4 (and B =220+140 if it enters the amplitude);

single entries are independent of the sign of r.

Mode

pp

K+OK +0 a

—+ p
0 b

Branching ratio (%) theory

0.54+0. 32
0.37+0.22
0.17+0.10
0.34+0.20
0.15+0.08
007+—o o4

0.05+0.03
0 02+0.02

(0.38+0.14) X 10-'

0.30+0.18
0.56+0.34
(0.35+0.13)x 10

0.23+0. 14
0.17+0.10

Mode

&ac +K Qo

D+ OKER+

+K40 d

K g+

Branching ratio (%) theory

0.21+0.08

0.76+0.48
0 15+0,23

0.044+0.016

3.15+2'20
0.42+0.23
0 14+0.16

0.69+0.37
023 —o21
0.04+0.02
0 21+0.24

0.90+0.47
0 063+0 070

'ACCMOR Collaboration, Ref. 8, B (D ~K* K * )/B (D ~K sr+ ) =0.03+0.02.
ACCMOR Collaboration, Ref. 8, B(D ~Pp )/B(D ~K rr+)=0. 009+ooo~.

'ACCMOR Collaboration, Ref. 8, B (D+ ~K*+K *o)/B (D+ ~Par+ ) =1.7+1.6.
ACCMOR Collaboration, Ref. 8, B (D,+ ~K* p+ )/B (D,+ ~Prr+ }(1.3.
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TABLE VI. Branching ratios (in %) for double-Cabibbo-angle-suppressed (D,D,+)~ VV decays in
the nonet-symmetry model. For lack of information we have used C = 3 and q =r. The first entry uses
r=0.4 and the second r = —0.4. Single entries are independent of the sign of r.

Mode

Do~p-X'+
O~ +0

~coA

To get branching ratio in %%uo

multiply by 10

1.74+1.0
0.53+0.32
0.77+0.46
0.56+0.33

Mode

D+ p+e"
0~++

—+Q)K

D,+ Z'+X*'

To get branching ratio in %
multiply by 10

2.9+1.7
2.7+ 1.7

1.38+0.83
1.90+ 1.14
0.46+0.17

(3) In SU(3) symmetry, for arbitrary values of c, d, e,
and the phase 6PK, one fnds, 11from Tables I and III,

B(D ~p K*+)/B(D ~p+K* )=tan 0c,
B(D ~p~K* )/B (D ~p K *

) =tan 0c,
(13)

l
W (D,+ K*+K*')

l
=tan'0,

l
W (D+ p+K *'),

l
3 (D ~coK* )l =tan 0c 3 (D ~roK *

)

charm~hadronic decays is as follows [we are using the
notation introduced by Bauer, Stech, and Wirbel'
(BSW)].

Cabibbo-angle-favored decays:

GFCOS Oc
H (AC =AS = —1)= [a, (ud)H(sc)~

2

+a~(uc)H(sd)H ],
(15)

(4) Since the parameter C =c —d —e/3 is diff'erent
from 3 —=c +d +e/3 and r =4e/3A different
from q =4e /3C, no simple relations can be derived
among B(D+~p K*+), B(D+~p+K* ), and
B (D+ ~p+K * ). However, in the approximation
A=C, q=r an, d with 6i' =60', we get

where

a, =
—,'(C+ + C )+—(C+ —C )

2

=—', (2C++C ) with g= —,
' (16)

B(D+~p K*+)/B(D+~p+K * )=2.2 tan 0c,
B(D+~p+K* )/B(D+~p+K" )=2.33 tan 0c .

(14)

and

a2 =
—,'(C+ —C )+—(C+ +C )

2

=
—,'(2C+ —C ) with g

=
—,
' (17)

III. (D, D,+ )~ VV IN A FACTORIZATION MODEL

The factorization model has been discussed in Refs.
12—14. The effective weak Hamiltonian for

C+ are the QCD factors' ' which reduce to unity in
absence of QCD corrections.

Cabibbo-angle-suppressed decays:

GF
H„(b C = —1, bS =0)= —sin0ccos0c Ia, [(us)H(sc)H —(ud)H(dc)H ]+a~[(uc)H(ss)H —(uc)H(dd)H ] IV'2

Double-Cabibbo-angle-suppressed decays:

GF . ,H (hC = —bS = —1)= — —sin 0&[a, (us)H(dc)H+a2(uc)H(ds)0] .v'2

We also use the following normalizations as in BSW

(19)

P stands for a 0 meson and 2„ the axial-vector current:

( v(k)l v„o& =E„*m f

(20)

(21)

V stands for a 1 meson and V the vector current. The normalization of fI, is such that f = 133 MeV and F~ =0.221
GeV for p and K mesons in BSW. ' The matrix element of the currents between the hadron states is given in terms of
the form factors as' '

«(k)lv„(0)lD(P)&= e„...e* P'k v( ),2
(22)
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& V(k)~ A„(0)~D(P)) =i e*(mD+mv)Al(q ) — (P+k) A2(q ) — —(2mv)(P k—) A3(q )
(mD+m, )

" ' q'

+ (2mv)(P —k)„AO(q )

q

with Ao(0) = A3(0). A3(q ) is related to A l(q ) and A2(q ) by

(2mv) ~ 3(q ) ( D ™V)~ l(q') —(mD ™v)~2(q

Because of (24) the divergence of (23) is given by A o(q ) alone.
In the factorization model the spectator processes arise from matrix elements of the currents in the generic form

~(D-V, V, )=& V2~V„~0&& V, IJ I»,

(23)

(24)

(25)

where J" stands for the V-A combination of currents. On using the Hamiltonians in Eqs. (15), (18), and (19) together
with the definitions in Eqs. (22), (23), and (24) in (25), one gets a generic form for the decay amplitude:

A (D~ V, V2)=
2mv, fv,

Ep p El E2 PDPP V{q )+'mv fv el e2(m'D+mv )~l(q
mD+mv 1 2 2 1

1

'D+P'v
A2(q )

—e*.(P P)e*.—
1 D V1 2

D V1

X ( nonkinetnatic factors) . (26)

The (nonkinematic factors) is a product of [GF /&2)cos Oc ] for the Cabibbo-angle-favored decays and the appropriate
QCD factors al and a2. Note also that only V(q ), A, (q ), and A2(q ) are relevant to describe D~ VV decays. The
rate 1 (D ~ Vl V2) has a generic form

pcI (D~ Vl V2)=(nonkinematic factors)
2 (mv fv ) (mD+mv )

8~m D
2 2 1

8m
X ' ', ~V(q')~'+ 2+

(mD+mv )

mD my my.
2 2 2

2m' my
1 2

+, , ',
~ ~,(q')~'+

m,' mv' (mD+mv )'
I 2 1

2(mD —mv —mv ) m2p22 2 2

Re[A*, (q )A2(q )]
(mD+mv ) mv mv

(27)

where p„ the center-of-mass momentum of the two vec-
tor mesons, is given by

1
p,'=, [mD2 —(mv —mv )'][mn2 —(mv +mv )'] .

4mD

(28)

For a typical decay, such as D~K 'p, the coefficient of
~ A, (q )

~

is larger than that of
~ V(q )

~ by a factor =50,
larger than that of

~ A2(q ) by a factor =75, and larger
than the coefficient of the interference term by a factor of
=6. The terms proportional to A l(q ), V(q ), and
A2(q ) represent S, P, and D waves in the final state.
Thus S Dinterference could be sign-ificant if both A, (q )

and A2(q ) would be large at q =mv . However, if

A2(q ) is small, as appears to be the case' in semilepton-
ic D+~K* e+v„ then the retention of 2 l(q ) only (or
S waves only) would appear to be an excellent approxi-
mation. 8'e have adopted this approximation in our cal-
culations. Further, in order to keep our description as
simple as possible, we have ignored the annihilation con-
tribution. There is good evidence' from the analysis of
D~ VP decays that the annihilation term is small com-
pared to the spectator term. With these assumptions we
have listed the decay amplitudes without FSI phases for
Cabibbo-angle-favored, -suppressed, and -doubly-
suppressed decays in Tables VII—IX.

In the following we describe how FSI phases are built
in. We will describe in detail the iso spin split of
D ~pK * decay amplitude and the incorporation of FSI
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TABLE VII. Cabibbo-angle-favored (D,D,+)~VV decay amplitudes in the factorization model
without FSI phases. A factor of (GF/&2)cos't9c A, (q ) is omitted.

Mode

D ~K* p+

K gQ

D+ K* p+

Amplitude without
FSI phases

a, (mD+m ~)m f
Q2

&2
—{mD+m )m „fK K

Qp
,—(mD+ m,„)m „f ~~2

a, {ma+m „)m f
+a, (mD+m )m ~f ~

Mode

K++K QQ

Amplitude without
FSI phases

Forbidden

a2{mD +m „)m „f
s K K K

a, (mD +mp)m f

phases and simply write down the final result for the oth-
er amplitudes that involve two isospins in the final state.
We have also adopted the attitude that FSI's simply ro-
tate the amplitudes. A multichannel FSI could change
the magnitude of the amplitude also. In this paper we do
not consider such effects.

Consider the Cabibbo-angle-favored D —+pE * decays.
We define the decay amplitude in terms of the isospin
amplitudes with their phases as in Eq. (8). By switching
off the FSI phases and comparing the amplitudes in (8)
with those in Table VII we get

A~&&z
= a&(mD+m ~)m f

Using the BSW tabulation'
a2= —0.5, we get

PK gPK /gPK 0 443/2 1/2

of fz's and a& =1.2,

(30)

gpK K )fc

A (D ~p+K" )= AP e '" (1+ 'r~ —e '
)

which agrees remarkably well [see (9)] with the central
value of r determined bp the Mark III Collaboration.
Having obtained A p»2 and A p3/p we finally castK E*
D —+pK ' decay amplitudes in the form given in Table I
by writing

ap GF z 2

2
(mD+m )m, f + —cos OcA, (q ),P K E

gpK gpK ~ Ke
A (D ~p K * )= — e (1—rP e '

)v'2

A3//[a, (mD+m+)m f (29)
~ gpK

A (D+ ~ +K * )= A~

(31)

GF 2+a&(mD+m )m +f, ] —cos HCA&(q ) .
2

where

TABLE VIII. Cabibbo-angle-suppressed (D,D,+)~ VV decay amplitudes in the factorization model
without FSI phases. A factor of —(GF /&2)sinOccosO& A

& (q ) is omitted.

Mode

p p+

~pp
K ++K

)fc—

K QK QQ

0p'

~cop
0

Amplitude without
FSI phases

a, (mD+m )mph
—a, {mD+m~)m~f~
—a (mD+m ~)m ~f ~

Q2
—(mD+m )m~fpv'2

Q2

2
[{mD+m )m f
—{mD+m„)m f ]

Q2
—(mD+m )m~m~v'2

a2{mD+m )m f

Mode

K ++K )fcQ

+

D+ QK 4+

+K QQ

Amplitude without FSI
phases

1—{a,+a&){mD+m )m fv'2
—a, {mD+ rn ~ )m «f
a2{mD+m~)m&f&

a&
—{rnD+m„)m fv'2

Q2+ —(mD+m )m„f„v'2
Q2

—(mD +m s)mpfp
2

a, {mD +m ~)m f

a, (mD +m&)m ~f
+a2{mD +m „)m~f~
Q2—(mD +m „)m fs K
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TABLE IX. Double-Cabibbo-angle-suppressed (D,D, )~ VV decay amplitudes in the factorization
model without FSI phases. A factor of —(GF/&2)sin 0& A &(q ) is omitted.

Mode

D ~p K*+

Q~ QQ

—+ coK

Amplitude without
FSI phases

a, (mD+mp)m„~f
ap

v'2
—(mD+mp)m „f „K K

ap

v'2
—(m22+ m )m „fsc rc

Mode

D+ p+K

Q~ g+

—+ coK

+ g )fc+g QQ

Amplitude without FSI
phases

a2(mD+m )m „f ~

a&

v'2 (mD+m )m ~f ~K K

a&

&2
—(mD+m„)m „fK K

(a, +a2)(mD +m„~)m ~f

gpK gpK gpK
1/2 3/2

A P =', A Pi /2
=

—,
' [2a—,( mD +m, )m f

where

gK K K K K K=—&o (35)

—a, (mD+m, )m .f .] K~K~, K K* 1 GF
A =

—,
'

AO = (mD+m ~)m,f2 K E E

X —cos Oc A, (q ),v'2 Xsin8ccos9cA, (q ) . (36)

and

r 3 3/2 /3 1/2 =0.44 (32)
D K 0 gPK

A (D+~K"+p )=B * eS

Incorporating FSI phases to the other amplitudes involv-
ing two isospins in the final state leads to the following.

Cabibbo-angle-suppressed decays:
(i)

X(1—p
' e ' ),D pK;gp&

D~ K* iÃ~
A(D+ Keo +) B s P e' 1/2

(37)

A (D ~p+p )= Appe ' (1+ ,'rPpe ' ),—

A (D ~p p )= Appe ' (1 rppe ' —),
where

where B and p have been used to conform to the notation
of Table II and

gpK gpK gpK
1/2 3/2

QPP =QPP —QPP

2a1 2App= —App= — (m +m )0 3 D p

(33)
B ' =(—', )' 1/2

—(2a, —a2)
(mD +m, )

S

and

GFXf m —sin6&cosOCA, (q )P P

and

GF
Xm f —sin8ccosOcA, (q ),P P

HAPP

rpp =2/'2
g pp

2(a, +a2)
2a1 a2

=0.48 (with a& =1.2 and a2= —0.5) . (34)

gK K ~ Qg
A (D ~K*+K* )= A e ' (1+e '

)

ig~
A (DO K+0K so) AK K o (1

—is
)

Apop and AP2P are isospin 0 and 2 amplitudes. If the
differences between m and m „and fp

and fK, were ig-

nored, one would get APP= AP and rpp=rP in con-
formity with Tables I and II which use SU(3) symmetry.

(ii)

D ~PK z— D pK D ~PK
p

' = v 2/3/2 /A1/2

2(a, +a2) =rpp=0. 48 .
(2a, —a2)

(38)

D, ~PK D, ~PK
In (38), A 2/2 and A 3/2

amplitudes.
Double-Cabibbo-angle-suppressed decays:
(i)

are the two isospin

A (DO Ke+ —
) AD ~PK e' 1/2

(39)

X(1 D ~PK —isP
)

)( ( I+ ] D ~PK —isp
)2

A (DO~K+0 0) A D ~PK 1/2] Q + iP'
v'2
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where

g D ~pK g D ~pK0 ~ v'2 0
1/2

2a1 a2
(mo+m )

GF . ,Xmz~f~+ —sin OcA, (q )K K

and

g D ~pK*
~D ~pK 2

3/2

g D ~pK*
1/2

2(a, +a2) =rpp=0. 48 .
2a1 —

a&

(40)

Q (D+ ~K+o +
)
— C+ ~pK 1/2

X(1 i D ~PK —isP+
)2

g (D+ K ++ 0) — ( D ~PK 112
gpK

(41)

+ e . pa*
X(1+q P e '

)

where we have used C and q in conformity with the nota-
tion of Table III and

The calculated branching ratios are shown in Tables
X—XII with and without FSI phases. We have used the
values of fv tabulated by BSW' and we have ignored the
annihilation term. We have shown the branching ratios
for three values of A&(0): 0.5, 0.6, and 0.88. The phase
diQ'erences V,5, and 5pp are all set equal to 60.
In the case of D —+pK * decays, this choice agrees with
the determination of 6p from Mark III data.

We note from Table X that the factorization model de-
scribes the Cabibbo-angle-favored (D,D,+)-+ VV branch-
ing ratios well with FSI phases and A &(0)=0.5 rather
than 0.88. The latter value of 3, (0) overestimates
D —+K *p branching ratios by a factor of about 3.
A, (0) 0.5 also agrees with a recent measurement of
D + ~K * e +v, form factors by E-691 Collaboration. '

These points have been made previously.
Since our model neglects annihilation processes,

D,+~cup+ remains forbidden. However, even in the
spectator model, such as we have considered, cop+ chan-
nel could be generated through inelastic FSI involving
the G-odd channels, Pp+, (K *+K )

' and cop+.
Since 8 (D,+ ~Pp+ ) is quite robust, it is entirely possible
to generate 8 (D,+ —+ cop+ ) = 1% at the expense of
D,+ ~Pp+ channel.

Among the Cabibbo-angle-suppressed modes, the
strongest appear to be D ~p+p, D+ ~K*+K *,cop+,
and D, —+p+K* .

In double-Cabibbo-angle-suppressed decays, we find

and

CD ~pK g D ~pK+ 8 v2 +
1/2

=
—,'(a, —2a2)(mo+m )

GF . , 2Xm,f, —sm 9CA, (q )K IC

+ „ 2(a& +a2)
qD ~pK =0.64 .

a1 2a2
(42)

B(D ~p+K* ) B(D +p K * )—
B(D -i"K*' =161t. 'e
B(D+ p+K *

)

—„=& 23 tan c-8 (D+ —+p+K *
)

The factor of 1.2 in (43) arises from SU(3)-symmetry
breaking through the masses m and m +. This factor is

unity in SU(3) symmetry as we saw in (13). The factors of

TABLE X. Cabibbo-angle-favored (D,D, )~ VV branching ratios in the factorization model. All branching ratios are in percent.
a, = 1.2, a2 = —0.5 used. fr's from BSW." Other parameters are shown in the heading in the columns.

Mode
No FSI: branching ratio (%)

A i (0)=0 5 A i (0)=0 6 A
&
(0)=0.88

FSI. gPK gK K —
HAPP

—60o

A ] (0)=0.5 A I (0)=0.6 A
& (0) =0.88

Branching ratio
experiment

(%)

D ~K* p+
+0 Q

~coK

'
K*+K*

~COP

6.55
0.70
0.66
4.67

1.39
6.35

9.44
1.00
0.96
6.72

2.00
9.14

20.3 5.59 8.05 17.3
2.16 1.66 2.40 5.15
2.06 0.66 0.96 2.06

14.46 4.67 6.72 14.46
Forbidden by isospin and angular momentum selection rules

4.31 1.39 2.00 4.31
19.66 6.35 9.14 19.66

Forbidden in absence of inelastic FSI and annihilation process

6.2+2.3+2.0 '
1.9+0.3+0.7 '
& 2.5%%uo

4.8+1.2+1.4 '

7.2+4. 8 '
& 5.4%

'Mark III Collaboration, Ref. 7.
E-691 Collaboration, Ref. 20.

'ACCMOR Collaboration, Ref. 8. B (D,+ ~IC*+g )/B (D,+-+Pm+ ) =2.4+1.6. We have used B (D,+ ~Per+ ) =3%.
ACCMOR Collaboration, Ref. 8. B(D,+~Pp+)/B(D, +~Pm+) & 1.8. We have used B(D,+~Pm+)=3%
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TABLE XI. Cabibbo-angle-suppressed (D,D, )~ VV branching ratios (in %) in the factorization model. See caption of Table X
for other parameters.

Mode
No FSI: branching ratio in %

A
&
(0)=0.5 A I (0)=0.6 A

&
(0)=0.88

FSI: 5«=5 =60'
A ] (0)=0.5 A

y (0)=0.6 A i (0) =0.88
Experiment

(in %)

~pp~K*+K*-

~cop
Q

~Cd/

K++K gQ

0p+
—+cop

D,+~p K*
+K4Q

-yK*+
—+NK

0.53
0.05
0.24
0.0
0.026
0.002
0.023
0.020
0.22
0.58
0.13
0.31
0.045
0.52
0.057
0.022

0.76
0.07
0.34
0.0
0.037
0.003
0.034
0.032
0.32
0.83
0.18
0.44
0.065
0.75
0.082
0.032

1.63
0.14
0.73
0.0
0.080
0.006
0.072
0.068
0.68
1.80
0.39
0.95
0.14
1.61
0.177
0.068

0.44
0.13
0.18
0.06
0.026
0.002
0.023
0.020
0.22
0.58
0.13
0.31
0.13
0.44
0.057
0.022

0.64
0.18
0.25
0.08
0.037
0.003
0.034
0.032
0.32
0.83
0.18
0.44
0.18
0.63
0.082
0.032

1.37
0.39
0.55
0.18
0.080
0.006
0.072
0.068
0.68
1.80
0.39
0.95
0.39
1.36
0.177
0.068

0.12+0.08 '
0 036+Q.Q24 b

(3.9% '

'ACCMOR Collaboration, Ref. 8. 8(D ~K K * )/B(D ~K m+)=0. 03+0.02. We have used 8(D ~K ~+)=4%.
bACCMOR Collaboration, Ref. 8. B(D ~P p )/B(D ~K vr")=0.009+0 004. We have used B(D ~K sr+)=4'.
'ACCMOR Collaboration, Ref 8. B (D,+ ~p+K* ) /B (D,+ ~Pn+) = ( 1.3.. We have used B (D,+ ~Pm. +

) =3%.

1.61 and 1.23 in (44) and (45) arise from SU(3)-symmetry
breaking and FSI interference eAects in the double-
Cabibbo-angle-suppressed modes. Note that the right-
hand side of (44) and (45) is quite different from the
right-hand side of (14) where the same ratios are calculat-
ed. However, we remind the reader that (14) was derived
on the assumption that 3 =C and r =q. In the factori-
zation model all these parameters are calculable. In par-
ticular, we found that the parameter q (=0.64) in (42) is
quite different from the parameter r (=0.44) in (32).
This, and the fact that C ~ in (42) is not simply re-
lated to A~ in (32) through a factor of tan Oc results
in the different predictions in (14) compared to those in
(44) and (45).

The strongest double-Cabibbo-angle-suppressed modes

D+~~K*+, in agreement with the conclusion drawn
from the SU(3)-symmetry scheme.

IV. DISCUSSION AND CONCLUSION

In this paper we have discussed all the (D, D,+)~ VV
decays in two models: SU(3) symmetry with nonet sym-
metry and a factorization model, both with the inclusion
of final-state-interaction phases. In the latter model we
have ignored the annihilation process.

In the following we have contrasted with two models
and their predictions. Throughout the following discus-
sion we have adopted A, (0) =0.5.

Cabibbo-angle-favored decays

The parameters of the nonet-symmetry model were
determined, as indicated in Table IV, by using
(D,D+)~pK * and D,+ —+K*+K * data. Once this is
done, 8(D ~uK * ), 8(D,+~Pp+), and
8 (D,+ ~cop+ ) become predictions. For either sign of the

TABLE XII. Double-Cabibbo-angle-suppressed (D, D, )~ VV branching ratios in the factorization model. Multiply the figures

by 10 to get branching ratios in percent. See caption of Table X for other parameters.

Mode A &(0)=0.88A, (0)=0.5

No FSI. To get branching ratios in %
multiply by 10

A g(0) =0.6 A, (0)=0.88A )(0)=0.5

FSI: 5~ =60 . To get branching ratio in %
multiply by 10

A, (0)=0.6

D~p K
QK QQ

~coK
D ~p+K*

QK )fc +

~Q)K
D+ K++K)fcQ

2.24
0.20
0.18
0.96
2.76
2.63
0.76

3.24
0.28
0.27
1.38
3.98
3.80
1.10

6.97
0.60
0.58
2.97
8.54
8.15
2.37

1.90
0.55
0.18
1.61
2.10
2.63
0.76

2.73
0.79
0.27
2.32
3.03
3.79
1.10

5.88
1.70
0.58
5.01
6.52
8.15
2.37
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parameter r (=+0.4) the central value of 8(D,+ —+cop )

is predicted to be certainly too high. In contrast
8 (D,+ ~Pp+ ) is highly suppressed at 0.26%. This is due
to the fact that A (D,+~Pp+) is —4e/5 while sextet
dominance ensures that e ((c.

In contrast, in the factorization model we have used
only two parameters, A

&
(0) and 5~, the @CD

coefficients a, and a2 having been fixed from D~~K
data, to predict all the branching ratios among the
Cabibbo-angle-favored modes. In particular, D —+pK *

branching ratios are predicted to be in excellent agree-
ment with data. In an important, and telling, contrast to
the nonet-symmetry scheme D,+~cop+, large in the
nonet-symmetry scheme, is forbidden in the factorization
model, if the annihilation process and inelastic FSI's are
neglected.

In addition, it could be argued that the annihilation
term in D,+ —+cop+, ignored here, would be larger than
the corresponding annihilation term in D,+ ~con+ decay.
The argument goes as follows. In both cases the annihila-
tion term is proportional to a, fD times the matrix ele-

S

ment of the divergence of (ud) current between the vacu-
um and ~p+ or co~ state. These two hadronic states
have opposite G parities: G = —1 for ~p+ and +1 for
cour . The vector part of (ud) current, having vanishing
divergence due to the conserved-vector-current (CVC)
hypothesis, does not contribute to either decay Inode.
However, the axial-vector part of (ud) current, having
the quantum numbers of the pion, has odd G parity.
Consequently, it can connect the vacuum state to cop+
state but not to con+ state. However, in any case, if the
partially conserved axial-vector current (PCAC) hy-
pothesis is used (as much as it can be trusted at q =mD )

for the divergence of the axial-vector (ud) current, the
annihilation term will be proportional to I and, hence,
very small.

The factorization model also generates a significant
(6.35%) branching ratio for D,+~Pp+, which in nonet
symmetry is strongly suppressed. Since Pp+ and cop+
states have the same G parity, it is possible that inelastic
FSI could generate decays of D,+ into cop+ channel at the
expense of Pp+ channel.

Cabibbo-angle-suppressed decays

The nonet-symmetry scheme is characterized by
strongly suppressed branching ratios for (D,D+) decays
into channels involving P: D ~Pp, D +niP, and-
D+ —+Pp+. The reason being that the decay amplitudes
are proportional to e. Thus it predicts
8(D ~rtip )=0.0038%, B(D ~nag)=0. 0035%, and
8 (D+ ~Pp ) =0.044%. In the factorization model, all
these modes are color suppressed (i.e., amplitudes propor-
tional to a2); however, the branching ratios are consider-
ably higher: 8(D ~Pp )=0.026%, B(D ~niP)

=0 0.23%, and 8 (D+ —+Pp+ ) =0.13%. ACCMOR
data, 8(D ~Pp )/B(D ~K sr+)=0. 009+ooo~ with
B(D ~K ir+)=4%, yields B(D ~Pp ) in agreement
with the factorization model.

As much as the nonet-symmetry model suppresses the
decay rates of (D,D+) involving P, it gives a large
branching ratio for modes involving n~ (and not P as the
other particle), Thus it predicts 8(D ~cop )=0.30% or
0.56% (depending on the sign of r), 8(D ~coco)0.23%
or 0.17% and an uncomfortably large
B(D+—+cop+)=1.85% or 3.15%. In contrast, in the
factorization model, 8 (D ~rop ) is highly suppressed at
0.002%. The reason can be found in the listing of the
amplitudes in Table VIII. The opposite signs of the two
contributions to the decay amplitude arises from the qq
contents of co and p: ( uu +dd ) /&2 for ni and
(uu —dd )/&2 for p . In addition, 8 (D ~coco) at 0.02%
is an order of magnitude smaller than the nonet-
symmetry prediction. B(D+~nip+) at 0.31% is also
much smaller than the corresponding nonet-symmetry
prediction.

Double-Cabibbo-angle-suppressed decays

Here there are no glaring differences in the predictions
of the two models. However, one has to remember that
the nonet-symmetry model predictions have large uncer-
tainties and are made in an approximation, C = 3, q = r,
which is bound to be inaccurate.

In summary, the factorization model appears to de-
scribe data much better than the nonet-symmetry
scheme. It uses fewer parameters and aAords the means
to impose dynamical symmetries such as CVC and
PCAC, since it uses matrix elements of currents rather
than that of the weak Hamiltonian.

Among the Cabibbo-angle-favored decays, it will be
useful to have 8(D,+~Pp+) and 8(D,+ —+nip+). The
former at 6.35% in the factorization model is already
at the upper end of data: 8 (D,+ ~Pp+ ) /
8 (D,+ ~Prr+ ) ( 1.8. It will also be useful to have a mea-
surement of 8(D,+~nip+) for the reason that if this
branching ratio is measured to be small ( 1%), it will
clearly rule out the nonet-symmetry scheme and help us
to refine the spectator model presented here.

Among the Cabibbo-angle-suppressed rates, measure-
ments of modes involving P and ni in the final state will
discriminate between the two schemes.
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