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Cabibbo-angle-favored, -suppressed, and -doubly-suppressed D = PP
and D:VP decays in SU(3) symmetry with final-state interactions
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We have studied Cabibbo-angle-favored, -suppressed, and -doubly-suppressed D ~PP and
D~ VP decays in a nonet-symmetry and a broken-nonet-symmetry scheme, with the inclusion of
final-state-interaction phases. For D~ VP decays, the implications of sextet dominance are also in-

vestigated. In the discussion we have argued that the symmetry approach, as also the diagrammatic
approach used by other authors, does not fare as well in describing D~ VP decays as the factoriza-
tion approach, particularly in describing B (D,+ «tetr+ ), B (D,+ «ttptr+ ), and B (D,+ «p sr+ ).

I. INTRODUCTION

In this paper we have studied the decays of D mesons
into two pseudoscalar mesons (D ~PP) and also into a
pseudoscalar and a vector meson (D —+ VP) within SU(3)
symmetry with final-state-interaction (FSI) phases. We
stress at the outset that this approach is not equivalent to
a multichannel approach which one of the authors has
followed in the recent past. ' The effort, instead, is to see
how far one can go in explaining data, and make predic-
tions, within SU(3) symmetry with a FSI. The latter
respects isospin-SU(2) symmetry and breaks fiavor-SU(3)
symmetry in a particular way. We have looked at all the
two-body decays of the kind D —+PP and D~VP, i.e.,
Cabibbo-angle favored, Cabibbo-angle suppressed, and
double Cabibbo-angle suppressed.

In an earlier work we had performed a similar analysis
of D ~PP Cabibbo-angle-favored and Cabibbo-angle-
suppressed decays. The present work is an extension of
the work in Ref. 2; however, it goes further by using new
data and analyzing double-Cabibbo-angle-suppressed
D ~PP decays which one should be able to observe at the
~-charm or B factories. We have also investigated
D ~ VP decays.

In Sec. II we discuss D~PP decays. In Sec. III we an-
alyze D~VP decays. We discuss the consequences of
sextet dominance in Sec. IV. In Sec. V we conclude with
a discussion and summary. The Appendix relates our
model parameters to those used previously by other au-
thors.

II. D ~PP decays

This section deals with a reanalysis of Cabibbo-angle-
favored and Cabibbo-angle-suppressed D ~PP decays us-

ing new data and a new analysis of double-Cabibbo-
angle-suppressed D~PP decays within SU(3) symmetry
with a FSI. The notation has already been introduced in
Ref. 2. We will reproduced some of the essential details.

The general structure of Ac =1 decay amplitude for D
decays into two pseudoscalar octet mesons is

A(D~PsPs)=c(P P P )H(b )+d(P P P )Htb

+e(P P' P, )H(b, )
(1)

Here P'=(D, D+,D,+ ) belongs to a 3* representation of
SU(3). P, is a traceless pseudoscalar octet with diagonal
elements

77 +8 7T 98 I8

&Z &6' v'Z

g8 is the I=0 member of the octet. H~b, ~
is the weak

spurion belonging to the 6* representation of SU(3), and

HI&, I
belongs to the 15 representation. For Cabibbo-

angle-favored decays Hb =H 13 for Cabibbo-angle-
suppressed decays Hb, =H, 2

—H, 3 and for double-
Cabibbo-angle-suppressed decays Hb, =H, 2. Of course,
there will also be the factors cos 0&, cosO~sinO~, and
—sin Oc (Oc =Cabibbo angle), respectively, for these de-

cays. QCD factors are absorbed in the coefficients c, d,
and e. One anticipates (d, e) «c due to sextet domi-
nance.

Contrary to the assumption made in Ref. 2, a generali-
zation of (1) to nonet symmetry is not obtained simply by
allowing Pb to a pseudoscalar nonet with diagonal ele-
ments

7T l8 /1 W 98 91 298 I 1

where ri, is an SU(3) singlet. Rather, since in nonet sym-

metry the representations are not traceless, the trace part
of the 27 representation of PP in the last term in (1)
makes an additional contribution. The correct generali-
zation of (1) to nonet symmetry involving decays of D
into two pseudoscalar nonets is

A(D~PP, in nonet symmetry)

e= A (D ~P9P9) — (P P,P')H ib, )—5

where A (D ~P9P9) is the amplitude used in Ref. 2 with

P9, the pseudoscalar nonet. The number of parameters
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TABLE I. Decay amplitudes for double-Cabibbo-angle-suppressed D ~PP modes. Symbols: A—:c+d +e/3, C =c —d —e/3,
r =4e/3A, q =4e/3C, 6 —= 5&/p 63/p FSI—= final-state interaction. A factor of —sin O~ is omitted. O~ is the g —q' mixing angle.

Mode '

D —+K+m

~K'~'
K q

K'r]'

D+ ~K'~+
K++

K+g

D,+ —+K+K

SU(3)-symmetric amplitudes

A (1+r/2)
—(1/&2) A (1—r)

—(1/&6) A (1—r)cosO~
—(2/&3 ) A ( 1 —r /10) sinO~
—(1/&6) A (1—) i O

+ (2/&3) A (1—r /10)cosO~

—C(1—
q /2)

—(1/&2) C(1+q)

( 1/&6) C( 1+q)cosOp
+ (2/&3) C(1+q /10)sinO

(1/&6) C(1+q)sinOP
—(2/&3) C( 1+q /10)cosO~

28

Amplitudes with FSI

A exp(i5, &z)[1+(r/2)exp( —i5 )]
—(1/v'2) A exp(i5", zz)[1 —r exp( —i5 )]

—(1 /~6)A exp(i5", ~z)[(1 r)c—osOP
+2~2(1 —r/10)sinOP]

—(1/v 6) A exp(i6", zz) [(1—r )sinOP
—2~2(1 —r/10)cosO~]

—C exp(i5, ~~) [1—(q/2)exp( i5 x—)]
—(1/v'2)C exp(i5", z, )[1+q exp( —i5" )]

(1/~6)C exp(i5", ~z) [(1+q)sinOr
+2~2(1+q/10)sinOP]

(1/~6)C exp(i5", zz)[(1+q)sinOP—2~2(1+q/10)cosOr ]

exp( j$] )

'For g, g' modes, nonet symmetry is used.

remains at three. Equation (2) reproduces the results of
Refs. 3 and 4. The decay amplitudes resulting from (2)
are the same as those listed in Tables I and II of Ref. 2
except those involving the SU(3) singlet g„where e must
be replaced by —', e. Since we had not discussed double-

Cabibbo-angle-suppressed decays in Ref. 2, we display all
the double-Cabibbo-angle-suppressed amplitudes in Table
I.

A nonet-symmetry-breaking model is introduced by
adding two new parameters to the model as follows:

TABLE II. Cabibbo-angle-favored D ~PP decays.

Theoretical branching ratio (%)

Mode

D m+K

m K
~qK'

g'K
D+ m+K

D,+ ~K+K

Experimental
branching ratio

(%)

4.2+0.4+0. 14 '

1.9+0.4+0.2 '
1.6+0.6+0.4
&2.7 "
3.2+0.5+0.2 '
2.5+0.4+0.6 '
(1.15+0.31+0.19)
XB(D,+~Per+) '
(0.92+0.32+0.20)
XB(D,+~Per+) '
&2.5B(D,+ ~P~+) d

& 1.5B(D,+~Pm+)'.
& 1.9B(D,+-P~+) d

& 1.6B(D,+~/~+) '
(2.5+0.5+0.3)
XB(D,+~Per+) '

Nonet
symmetry

4.2

1.9
0.06
3.16
3.33

2.25

7.94

1.78

Op = —19'
Broken

nonet symmetry

0.70 ' (1.6) '
0.80(3.84)

3.09(1.45)

0.14(8.5)

Nonet
symmetry

Unaffected

0.0
3.20

Unaffected

6.93

3.58

Op = —11'
Broken

nonet symmetry

0.7 ' (1.6) '
2.76(12.6)

3.03(1.69)

5.15(18.7)

'These numbers are used as input.
Figure in brackets uses B(D ~gK )=1.6%; the other figure uses B(D ~gK )=0.7%.

'Reference 10.
Reference 11.

'Reference 12.
Reference 13.
Reference 15.
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A ( D ~PP ) = A (D +P—s P s )

+(P,P'„'P )(aa~(, )+bak(, (), (3)

where P, is the pseudoscalar SU(3) singlet; a and b are
two new parameters and A(D ~PsP& ) is defined in (1).

There are three parameters (c,d, e) in the nonet-
symmetry model and five (a, b, c,d, e) in the nonet-
symmetry-breaking model. In addition certain phase pa-
rameters enter our model through FSI. They are
6 ~=6,&z

—
63&2, in ~K final states, 6 =6o—6z, in ~~

final states and 6~~ =6O —6, , in KK final states. The sub-

scripts indicate the isospin of the relevant two-body final
state. 5 is varied in the interval (180 —215') while 5zz
is varied in the interval (0' —30'). 5 x. is fixed ' at 79'.
The sign of 6 does not affect the calculated rates. The
choice of 6 is dictated by the phase-shift analyses for
m.~ scattering and 6zz from the observation that both
fo(975) with I =0+ and J =0+ and ao (980) with
I =1 and J =0+ have coupling to KK channel. Con-
sequently the KK final state resonates in both I =0 and 1

channels. Hence we do not expect 60 to be very different
from 6j.

In Tables II—IV we present our results for Cabibbo-
angle-favored, Cabibbo-angle-suppressed, and double-
Cabibbo-angle-suppressed D ~PP decays. The results
are given in both the nonet-symmetry and the nonet-
symmetry-breaking schemes for q &

—
g8 mixing angles

—11' and —19' where the mixing angle Oz is defined by

g' =g, cosO~+ g~sinO~,

q =gscosOJ, —g, sinO~ .

The parameters of the model were determined as follows:
In nonet symmetry, c, d, and e were determined by the
following three data points (5 z was fixed at 79'):

B(D ~K vr ) =(4.2+0.4+0.4)% (Ref. 10)

B(D ~K m )=(1.8+0.2+0.2)% (Ref. 11)

B(D+ K K ')/B(D+ K 'sr+ )

= (0.271+0.065+0.039)%

(Refs. 12 and 13) . (7)

Note that the last ratio in (7) from Mark III' was
higher, 0.317+0.086+0.048. We found (c,d, e )

=(318.1, —34.3, 94.6) in 10" MeV'~ sec '~ in the
nonet-symmetry scheme. Once the parameters of the
model are fixed, B(D,+~YIn+ ), B(D,+~g'sr+ ),
B(D ~rIK ), and B(D ~g'K ) become predictions.
As we see from Table I, the prediction for B(D ~gK o)

is too low and that for B(D ~rl'K ) too high. The pre-
diction for B(D,+g~+) is too high if the E-691 upper
limit' ' is used (see Table II) but appears to be barely
compatible with Mark III limit. " B(D,+~rI'rr ) is pre-

TABLE III. Cabibbo-angle-suppressed D ~PP decays.

Theoretical branching ratio (%)

D,+-~oK+
~K

~qK+
q'K+

Experimental
branching ratio

(%)

Q. 14+0.4+0.03
&0.3 '

0.51+0.09+0.06
0.10+0.08
0.06+0.03+0.01
&1.2 '
&09

&0.48 '
1.01+0.32+0. 18 "
0.68+0.20+0. 13 '

(0.21B (D,+ ~$vr+ )

Nonet
symmetry

0.14,0.15'
0.21,0.19 '

P.26,P.25 '
0.0,0.02

0.008
0.066
0.062
0.20
0.09
0.9

0.14
0.31
0.052
0.16

6p = —19
Broken

nonet symmetry

0.10(0.22) '
0.006(0.00) '
0.05(0.17) '
0.03(0.17) '

0.001(0.017) '
0.07(0.26) '

Nonet

symmetry

Unaffected

0.00
0.05
0.09
0.28

Unaffected

0.026
0.18

gp = —11'
Broken

nonet symmetry

0.10(0.24) '
0.007(0.00) '
0.11(0.45) '
0.17(0.8) '

0.00(0.015) '
0.17(0.74) '

'First number is calculated with 6 =180, second with 5 =215 .
First number is calculated with 6~~ =0', second with 6« = 30 .

'Figure in brackets uses B(D ~gK ) =1.6% as input; the other figure uses B(D ~qK ) =0.7%%uo as input.
"Reference 10.
'References 12 and 13.
'Reference 27.
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TABLE IV. Double-Cabibbo-angle-suppressed D ~PP decays.

Theoretical branching ratio (10 ')
Op = —19' gp= —11

Mode

D K+~

K m

K g
K g'

D+ K z+
K+~
K+g

~K+q'
D,+ ~K+K

Nonet
symmetry

11.8

5.3
0.16
8.8

25.9
17.4
0.52

30.7
3.4

Broken
nonet symmetry

1.96(4.5) '
2.24(10.7) '

13.8(23.4) '
3.6(22.0) '

Nonet
symmetry

Unaft'ected

0.01
8.9

Unaftected

2.6
29.2

Una6'ected

Broken
nonet symmetry

2.0(4.5) '
7.7(35.3) '

14.2(24.0) '
16.8(81.7) '

'Figure in parentheses uses B(D ~K g)=1.6%; the other figure uses B(D ~K g)=0. 7%%uo.

Next, we broke the nonet symmetry by introducing
two new parameters a and b as shown in (3). It so hap-
pens that the decays D ~gK and g'K depend on the
combination (a b) whi—le the decays D,+~pm+ and
g'm. + depend on (a+&). Thus, fixing the combination
(a b) from th—e measurement of B (D +r)K ) give—s us a
prediction for B(D ~q'K ). Similarly, if there were a
measurement of B(D,+~ gm. +

) one could determine
(a +b) and predict B(D,+ ~q'rr+ ). However, there are
only upper bounds on B(D,+~pm. +) and the recent
ARGUS' measurement of B(D,+ ~g'~+ ) is higher than
the upper bound set by E-691.' Our data fitting indi-
cates that b (&a. In the tables ue have used b =0. Con-
sequently, fitting B(D ~ rlK ) alone determines the
remaining branching ratios B(D ~q'K o),
B(D,+~rl~+ ), and B(D,+~g'~+ ). We have used two
values of B(D ~gK ) in Tables II—IV, 0.7% and 1 6%.
the former being the lowest value allowed by Mark III
data" and the latter being the central value. For
B(D ~HAIK ) =0.7% and 8& = —19', we found a =216.0
in 10"~ MeV'~ sec '~ and for B(D ~gK )=1.6%
with Oz= —19 we found a =441.6 in the same units.
The corresponding numbers for 0~ = —11' were
a =354.2 and 739.0.

In the following, we highlight some of our predictions.
Since Cabibbo-angle-favored and -suppressed decays were
considered in Ref. 2, only the new results are presented
below.

A. Double-Cabibbo-angle-suppressed decays

First, within SU(3) symmetry with a FSI, we find

(a) B(D ~n K+)/B(D ~~+K )

=B(D +n K )/B(D ~vr K— )

=tan 0 (8)

dieted to be within both E-691' and Mark III" limits.
ARGUS has observed' D,+ ~g'm+ and finds

B(D, ~q'n+ ) /B (D,+~Pn+ ) = 2. 5+0.5+0.3 .

(b) B(D+~rr+K )/B(D+~m+K )

=5.3X10 =1.9 tan 0c, (10)

(d) independent of mixing angle Oi, and both in nonet-
symmetry and nonet-symmetry breaking,

B(D ~K q)/B(D ~K rI)

=B(D ~K rl')/B(D ~K il')

an'~c .

The ratios in (9) and (10) depart from tan 0& due to the
fact that in double-Cabibbo-angle-suppressed decays,
D+~m+K and m. K+, the final state is a mixture of
I=

—,
' and —,

' while in Cabibbo-angle-favored decay
D+ ~m. +K the final state is a pure I=

—,
' state.

Our results displayed in (8) and (11) agree with those in
Ref. 7.

B.Cabibbo-angle-suppressed D ~KK and ~m rates

In our model,

B(D ~~+sr )/B(D ~sr ~ )

2

2 1+ +r cos6
4

1+r —2r cos5„
(12)

where r =4e/3A, A —=c+d+e/3. 6 =6p —62, 5p and
6z being the phases of the decay amplitudes in I=0 and 2
states. With our set of parameters r =0.4. Also

1+cos6~g
B(D ~K~K )/B(D ~K K )=

1 —cos6KK
(13)

where 5zz =5p 6~ 5p and 5& being the phases of the
amplitudes in I=0 and 1 states.

=7.8 X 10 =2.8 tan Oc, (9)

(c) B(D+ vr K+ )/B(D+ m+K )
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Choosing (with r fixed at 0.4) 5 „=180' minimizes
B(D ~~ vr ) and maximizes B(D ~rr n ). Similarly
choosing 5&g =0' maximizes B(D ~K+K ) and
suppresses B(D ~K K ) completely. For example,
with 5' =0' we get B(D ~K+K )=0.26% and
B(DO~KoK o) =0, while with 5~g =30' we get
B(D ~K+K )=0.25% and B(D ~K K )=0.02%.

In order to secure a large value of the ratio
B(D ~K+K )/B(D ~n+n ) as Mark III data'
would require (a ratio of about 3.5+1.1) one would need
to maximize the numerator (i.e., choose 5' close to 0')

and minimize the denominator (i.e., choose 5 close to
180'). The following equation summarizes the value of
this ratio for 6 close to 180 and 5~+ close to 0':

1.92

1.80
B(D ~K+K )/B(D ~7T+77 ) =

1.63

(5 =180', 5~g =0'),

(5 =180', 5~g=30'),

(5 =215', 5~g =0'),

(5 =215', 5~g=30 ).

(14)

Thus, within SU(3) symmetry with a FSI, it is difficult to reach values for this ratio in the vicinity of 3.5. On the other
hand, E-691, ARGUS, and CLEO data seem to favor a lower value for this ratio

2. 14+0.48+0. 13 (E—691 Ref. 10)
B(D ~K+K )/B(D ~m+n )= 2. 5+0.7 (ARGUS, Ref. 17) (15)

2.2+0. 5 (CLEO, Ref. 17).

If B(D ~K K ) were to eventually turn out to be
much larger than 0.02%, which at present is at the lower
end of experimental tolerance, B(D ~K+K ) would
have to decrease and, consequently, also the ratio
B(D ~K+K )/B(D ~m+vr ).

Note also, from Table III, that B(D ~vr n ) is within
the experimental bound of 0.3%. We feel quite confident
that the eventual measurement will reveal a value quite
close to 0.2%.

C. g, g' problem

cscOp+ ~(D'~~'K') .
3

(16)

The phase of A(D err K ) is know—n up to an overall
phase of the isospin —,

' amplitude in D ~~K decays. He
parametrizes A(D +rIK ) with an arb—itrary phase and
then shows that there is a choice of this phase which con-
trols B(D ~rl'K ) and gives him a value of 1 3%—wel.l
within the experimental" bounds. We believe that this
procedure is Aawed for the following reasons.

SU(3) (or broken-nonet-symmetry) relations such as

Both D ~qK and g'K depend on the combination
(a 5) of the no—net-symmetry-breaking model, Eq. (3).
Thus, once B(D ~gK ) is used to fit this parameter,
B(D +rj'K ) is determ—ined. From Table II, it is clear
that the upper limit" B(D ~ r)'K ) & 2.7% prefers
B(D ~r)K ) somewhat lower than the central value" of
1.6 Jo for Oz = —19'. For Op = —11', the largest value of
B(D ~ERIK ) tolerated is 0.7%. Here, we are critical of
a recent paper by Rosen, ' who uses the broken-nonet-
symmetry constraint between the three amplitudes

A(D ~q'K )= —cotHpA(D ~qK )

A(D ~~+K )+&22(D ~rr K )

= A(D+~ir+K ) (17)

are preserved even in the presence of a FSI because a FSI
respects isospin SU(2) and the triangular relation in (17)
involves only isospin SU(2) multiplets. In contrast, the
triangular relation of (16) does not involve the same iso-
spin multiplets. Relation (16) is true only in SU(3) sym-
metry or broken nonet symmetry. The FSI breaks SU(3)
symmetry and gives A(D ~~ K ) a phase that bears no
relationship to the phases of A (D ~gK ) and
A(D ~r)'K ). Thus, in the presence of a FSI, Eq. (16)
breaks down.

Our attitude towards D,+~g~+ and g'~+ data and
the selection of experiments we trust also needs to be ex-
plained. The earlier Mark II' and the more recent NA
14' data are now disputed. These data would make

B(D,+ ~q'm+ )/B(D,+ ~Per+ ) = 5

and if B(D,+~/sr+) were to be in the range of 2 —4%,
B(D,+~i)'u+) would be =(10—20)%. In contrast,
Mark III quotes"

B(D,+ ~i)'sr+ )/B(D,+ ~/~+ ) & 1.9

and E-691 gives' an upper limit of 1.6 for this ratio.
There are theoretical reasons too, to which we will re-
turn, for doubting Mark II and NA 14' results. The re-
cent measurement by ARGUS, '

B(D, q'~ )/B(D,+ Per+) =(2.5+0.5+0.3)

contradicts the E-691 upper bound and is just barely con-
sistent with the Mark III upper limit.

Mark II had also reported'

B(D,+~ pe+ ) /B ( D,+~Per+ ) = 3
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making B(D,+~pe )=6—12%. Recent Mark III mea-
surements" ' give an upper bound of 2.5 for this ratio,
which is not in disagreement with the Mark II result
however, the E-691 limit' of 1.5 would disagree with
Mark II data. '

Theoretical studies tend to support Mark III" and E-
691' results. It was shown in Ref. 22 that in a factoriza-
tion model one could easily explain B(D,+ ~/~+ ) =3%,
B(D,+~7)sr+) =3—5% and B(D,+~q'w+) =2—5%
with 0~ = —19'. Theoretical models could not be
stretched to generate B(D,+ —+g'm+ ) at the level of
10—20%. The results of Ref. 22 are quite compatible
with the upper limits set by Mark III" and E-691.'

In Ref. 5, Mark II data on D,+ —+pm+ and g'~+ were
used as inputs. This necessitated large nonet-symmetry
breaking. Since g' is largely an SU(3) singlet this nonet-
symmetry breaking forced all rates involving g' upwards.
Thus, it was found that B(D,+ ~g'~+) =20% would re-
quire B(D,+~rI'K")=20% also. This is now contra-
dicted by Mark III data. " This is yet another piece of
evidence that Mark II and NA 14' branching ratios for
D,+~q'~+ are too high.

In the present paper we have found that a nonet-
symmetry-breaking scheme is needed to bring
B(D,+~71m+) within E-691 bounds. ' However, to get
B(D,+ ~g'm+ ) also within E-691' and Mark III" limits,
we need to have B(D,+~ r)K ) ( 1.6%. The new

I

ARCHEUS data' with a sizable branching fraction for
D,+~g'~+ would require B(D,+~r)K ) closer to 1.6%.

III. D ~ VP decays

A. Formulation

In contrast with the case of D ~PP decays discussed in
the previous section where the final state is allowed to be
only in the 8& and 27 representations of SU(3), in D —+ VP
decays the final state can be in Sz, 8~, 10, 10*, and 27
representations of SU(3). As against three independent
parameters needed to describe D —+PP decays in nonet
symmetry, one needs 7 parameters to describe D ~ VP
decays in nonet symmetry. If nonet symmetry is broken
one needs to introduce four new parameters. This prolif-
eration of parameters makes it harder to analyze D —+ VP
decays and make predictions in the symmetry scheme we
are discussing. In the cruder limit of sextet dominance
one is left with only three parameters in the nonet sym-
metry and one is then able to make some predictions,
which we will discuss in Sec. IV.

The general structure of the decay amplitude for
D~VP decays in a broken-nonet-symmetry scheme is
(details and comparison with the notation of Einhorn and
Quigg, Kohara, and Rosen are given in the Appen-
dix)

A(D~VP)=[a~(P/ V P")+a2(P'V/P")+a3(P'V("+P/ V")P ]H(, k)

+ [b, (P/ V'P")+b2(P,'V/P")+b3(P, 'VI"P')+b~(PI V,"P')]Hei; k)

+ [c,(P"V P')+c~(P V"P') ]H(; g) + [d, (P"V P')+d~(P V,"P') ]Hi(, k) (18)

TABLE V. Decay amplitudes for Cabibbo-angle-favored (BC=AS= 1) D —+PV modes. (Amplitudes are cos 0C times values list-
ed. )

Amplitude

A (D+ K'p+)
A (D+ ~+K")

3c 1 C2 38 ] 3d2

A (D ~K p+)
&2A(D K p )

&6A(D ~K V )

&3A{D K V )

A(D ~ K* )

&2A(D ~~ K )

v'6A (D'~q, K ")
A(D

—1

1
—1
—1

0
0
2

—1

0
0
2

—1
—1

1
—1
—1

—1
—1
—1
—1

1

1

1

1

1
—1

1

1

0
0

—2
1

0
0

—2
1

1
—1

1

1

1

0
0
0
0
1

1

1

&ZA (D,+ ~~+p')
&6A (D,+ ~+ V8)
v'3A(D, + ~+ V, )

&2A (D,+ ~m p+ )

&6A (D,+ q8p+ )
v'3 A(D,+ ~q,p+)
A(D, ~K+K* )

A (D,+~K'K*+)

—1

1

1

1

1

1

1

0

1

1

1
—1

1

1

0
1

0
—2

1

0
2

—1

1
—1

—1

1

1

1

1

1

1

0

1

1

1
—1

1

1

0
1

0
—2

1

0
0
0
0
1

0
0
0
0

—2
1

1

0

0
0

—1

0
0
0
0
0

0
0
0
0
0

—1

0
0
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Here P&' and V&' are pseudoscalar and vector nonets re-
spectively. c &, c2, d „and d

&
are independent of a; and b;

in broken nonet symmetry while in nonet symmetry they
are related to a; and b; as

c, = —c2 = (a, ) /3,
d, = —(4b3 b~—)/15,

d2=(b3 4b4—)/15 .

In our calculations we have assumed ideal mixing for the
vector mesons:

(21)

—A (D+ +K eo)

2. Cabibbo-angle-suppI"essed modes:

J. Cabibbo an-gle fa-uored modes

A (D,+~vr p+ ) = —A ( D,+~~+p ),
A(D ~K p+)+&2A(D ~K p )

= A(D+ —+K p+),
A(D ~mK*. )+&2A(D ~woK *o)

co= V, cosO~+ VzsinOV,

P= V, cos8~ —V, sin8~,
(20)

with sin8~=1/+3 and cos8V=( —', )'~ . In Tables V —VII
we have listed the amplitudes for the Cabibbo-angle-
favored, -suppressed, and -double-suppressed decays. In
the following we have summarized some of the relations
implied by the listing of these tables for the nonet-
symmetric weak Hamiltonian (6*+15).

A (D+ —+K+K *
) = —A (D+ ~~+K" )

A(D+~K K*+)=—A(D, +~K p+),
A(DO vr+p )= —A(D K K *

)

=tan8C A (D ~rr K* ),
A(D ~~ p+)= —A(D ~K

=tan8CA(D ~K p+), (22)

TABLE VI. Decay amplitudes for Cabibbo-angle-suppressed (hC= —1, AS=0) D~PV modes. (Amplitudes are —sinOccosO&
times values listed. )

Amplitude

v'2A (D+~~+p )

v 6A(D+~++ V8)
v'3A(D+~~+ V))
v'2A (D+ 'p+ )

v'6 A (D +~q8p+ )
v'3A (D+ q,p+)
A(D+ ~K+K )
A(D+ K'K*+)

—1

1

1

1

1

1

1

0

1

1

1
—1

1

1

0
1

—2
4
1

2
—4
—1
—1

1

b)

—1

1

1

1

1

1

I
0

b2

1

1

1
—1

1

1

0
1

—1

1

1
—1

3
0

—1

0

—1

3
0

—1

1

1

0
—1

3ci

0
0

—1

0
0
0
0
0

3C2

0
0
0
0
0

—1

0
0

3d 'J 3d2

A(D K K* )

A(D~K K )

A(D ~K K*+)
A(DO~K+K*-)
A (D harp )

A (Do-~-p+ )

2A(D ~~ p )

2&3 A (D ~m. Vq )
v'6 A (D ~7T V] )

2&3A(D ~g8p )

v'6A(D g p )

2A(D' q, v, )

&2A(D ~q8V] )

v'ZA(D' q, V, )

A(D ~x/] VI)

A(D,+ Kop+)
v'2A (D,+
v 6A(D, K+V )

v 3A (D,+ K+ V, )

A (D,+ ~~+K )

&2A (D,+~m K*+)

v 3A (D,+ —+qlK*+)

—1

1

1

0
0

—1
—1

1

1

1

1

1
—1
—1

0

0
0
2

—1
—1
—1
—1
—1

1
—1

0
1

—1

0
—1

1

1

1

1

1
—1
—1

0

—1
—1
—1
—1

0
0
2

—1

0
0
1

—1

1
—1

0
4
1

—4
—1

0
—1

1

0

—1
—1

5
—1

1

1
—5

1

1
—1
—1

0
0
1

1
—1
—1
—1
—1
—1

1

1

0

0
0
2

—1
—1
—1
—1
—1

—1

1

0
—1

1

0
1

—1
—1
—1
—1
—1

1

1

0

—1
—1
—1
—1

0
0
2

—1

0
0
0

—1

1

0
—1
—1
—1

3
0
1

1

0
0

0
0
2

—1

1
—1

3
0

0
0

—1

0
0
1

—1

3
0

—1
—1

1

0
1

0

1
—1

3
0
0
0
2

—1

0
0
0
0
0
0
0
0

—1

0
0
0
1

0
0

0
0
0
0
0
0
0
0
0
0

—1

0
0
1

0

0
0
0
0
0
0
0
0

—1

0
0
0
1

0
0

0
0
0

—1

0
0
0
0

0
0
0
0
0
0
0
0
0
0

—1

0
0
1

0

0
0
0
0
0
0
0

—1
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TABLE VII. Decay amplitudes for double-Cabibbo-angle-suppressed (hC= —AS= —1) D —+PV modes. (Amplitudes are
—sin 0& times values listed. )

Amplitude

v'ZA (D+-K+p')
&6A (D+~K+ V8)

3A (D+ K
A(D —+K p+)
A (D+ ~m+K* )

~&A (D+ ~'K'+)
v'6A (D+ q,K*+)
&3A (D+ A)K*+ )

A(D'~K+p )

&2A(D ~K p )

&6A (D ~K V8 )

&3A(D ~K Vl )

v'Z A (D' ~'K*')
&6A(D g K* )

~3A(D —.',K* )

K+K*')
A(D', -K'K* )

a,

0
—2

1

0
1

1

1

1

0
0
2

—1
—1

1
—1
—1

ap

1

1

1

1

0
0

—2
1

—1

1
—1
—1

0
0
2

—1

a3

—1

1

1
—1

1

1
—1
—1

1
—1
—1
—1
—1

1

1

1

2
—2

bl

0
—2

1

0
1

1

1

1

0
0

—2
1

1
—1

1

1

b2

1

1

1

1

0
0

—2
1

1
—1

1

1

0
0

—2
1

—1

1

1

1

0
0
0
0

b4

0
0
0
0
1

—1

1

1

3ci

0
0

—1

0
0
0
0
0

C2

0
0
0
0
0
0
0

—1

3d] 3d2

g (D+ ~+ V, )
= tanOC A (D,+

p+~, )=tanOcA(D, +
p g&),

g (D' ~'V, ) = tanO, A (D—' K 'V, ),

A(D p g, )= —tanO A(D K* g, ) .

3. Double-Cabibbo-angle-suppressed modes:

A(D ~K+p )+&23(D ~K p )=A(D+~K p+) —&2A(D+~K+p ),
~ (D'~~ K*+)+&2~-(D' ~'K*'}= ~ (D+ ~+K*'} &2 ~ (D+ —~'K*+ ),
A(D,+~K+(K ),K* (K*+))=tan OcA(D+~vr+(K ),K * (p+)),
A(D+ sr+(K ),K* (p+))=tan O A(D,+ K+(K ),K * (K*+)),

A(D ~K+(~ ),p (K*+))=tan OcA(D ~~+(K },K* (p+)),
A(D+~K+(g, ), V, (K*+))=tan Oc A(D,+~rr+(g, ), V, (p+)),

A(D ~K (g, ), V, (K* ))=tan OcA(D ~K (g, ), V, (K * )} .

(23)

Each of the last five equalities has to be read as a pair of
equalities. For example, the very last equality in (23) im-
plies

A(D ~K V, )=tan OcA(D ~K V))

A(Do~q, K* )=tan Oc A(D ~giK *
)

Among the Cabibbo-angle-favored decays only
D~Kp and D . K m. have two isospins, I=—,

' and —', in

these cases, in the final state. All other decays listed in
Table V involve only a single isospin final state. This in-
cludes D,+~~+p, where the final state being charged is

I

forbidden to have I=O, and since the weak spurion can-
not excite I=2, the final state is a pure I = 1 eigenstate.
In fact, the first of (21) is a consequence of the vanishing
of I=2 decay in D,+~(p~)+.

Thus, interference effects due to FSI are important
only in D~Kp and D —+K n decays. That is not to say
that an inelastic FSI could not affect the magnitudes and
phases of the other decay modes but only that interfer-
ence effects will not enter their description.

B. Amplitude analysis of Cabibbo-angle-favored D ~Kp
and K ~ decays

Mark III group has carried out an amplitude analysis
of their data
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B(D ~K p )=(10.8+0.4+1.7) %,
B ( D ~K p ) = (0.8+0. 1+0.5 ) %

B(D ~K p+)=(6.9+0.8+2.3) %

B(D +K—" vr ) =(5.3+0.4+1.0) %,
B(D ~K *

m )=(2.6+0.3+0.7) %,
B(D+~K * ~+)=(5.9+1.9+2.5) % .

(24)

(25)

suppressed modes from the constraints of (22) and (23).
To do this we have assumed nonet symmetry, see (19),
and ignored the FSI. Where data are available, the pre-
dicted branching ratios compare reasonably weH with ex-
periments. This gives us some confidence in the predic-
tions for rates where data are not yet available. We pre-
dict the following.

Cabibbo-angle-suppressed modes:

1. B(D,+~m+K* )=0.84B(D+ —+K+K *
);

With the following definition of the decay amplitudes in
terms of final-state isospin —,

' and —,
' amplitudes,

3

A(D+ K p+)=&323/2e

they find~5

for Kp mode:

with B(D+~K+K *
) =(0.44+0. 23)%%u~ (Mark III, Ref.

10), we get

B(D+~m+K* )=(0.37+0.19)% .

2. B(D,+ K'p+) =B(D+ K 'K*+ ).

3. B(D ~K K*+)=0.03B(D ~K p+);

with B(D ~K p+)=(10.8+0.4+1.7)% (Mark III,
Ref. 10), we get

B(D ~K K*+)=(0.32+0.05)% .
]/p jA 3/z

=3. 12+0.4

5] /p t]3/2 (0+26)'

cos6 = 1.0 0' )

for K ~ mode:

(27)
The measured rate is

B(D ~K K*+),„,=(0.82+0.42)%

(E-691, Ref. 12) .

4. B(D ~~ p+)=0.076B(D ~K p+)
A i ~2/3 3~2

—3.22+0.97,
5=(84+13)',
cos5=0. 1+0.2 .

The above analysis agrees with one mode in Ref. 7.
In comparison, a similar analysis of Mark III data on

D ~Em decay yields

K~ mode:

=(0.82+0. 13)% .

This number uses Mark III' input for B(D ~K p )

as in item (3) above. Mark III gives'
B(D ~~ m ~ ),„,=(1.1+ 04+0. 3)%.

5. B(DO~K+K* )=0.033B(D ~~ K* );

(~2/3 3~2
—3.67+0.27,

5 =(77+11)',
cos5=0.2+0.2 .

(29)

with B(D ~7r+K* )=(5.2+0.3+1.5)% (Mark III
Ref. 10), we get

B(D ~K+K* )=(0.17+0.05)% .

Experiments:

From the last three equations one finds that the ratio
A)~2/A3/2 is much the same for D~PP and D~VP
modes. The relative phase 5 is almost the same for
D~K~ and K *sr modes. The small value of 6 in
D~Kp decays is necessitated by the small value of
B(D ~K p ), which demands a large destructive in-
terference between I=

—,
' and —,

' amplitudes in (26).

C. Predictions for Cabibbo-angle-suppressed
and -double-suppressed branching ratios

B(D ~K+K* )=(0.8+0.5)% (Mark III, Ref. 10)

(0.16% (E-691, Ref. 12).

6. B(D ~m+p )=0.09B(D ~vr+K* )

= (0.47+0. 14)%%uo

This number uses Mark III input for B (D ~vr+K* ) as
in item (5).

Experiment:

In this subsection we have calculated the branching ra-
tios for some Cabibbo-angle-suppressed and -double-

B(D ~7r 7r 7r ) „&&=(l. 1+0.4+0.2)%

(Mark III, Ref. 10) .



838 R. C. VERMA AND A. N. KAMAL 43

Double-Cabibbo-angle-suppressed modes:

7. 8(D+~rr K* )=2.73tan OcB(D,+ —+K+K * );

with

8(D,+ +K—+K * )=(0.87+0. 14)B(D,+~Pm+) (E-691, Refs 1. 2 and 14),
=(0.84+0.30+0.22)B (D,+Pm+ ) (Mark III, Ref. 26),

we get

B(D+~~+IC* )=(0.67+0. 11)10 B(D,+~Per+)

using E-691 data.

8. 8 (D+ ~K p+ ) =3. 18 tan gc8 (D,+ ~K K*+
)

with

(0.22+0. 11)8(D,+~Per+) (E-691, Ref. 12),
8D+ K K*+ ='

( 1.2+0.21+0.13 )8 (D,+ ~Prr+ ) ( CLEO, Refs. 14 and 27),

we get

(0.2+0. 1)10 8 (D,+ ~Prr+ ),8D+ K (1.07+0.22)10 B(D+P~+) .

The former number uses E-691 (Ref. 12) data and the latter CLEO (Refs. 14 and 27) data.

9. B(D ~K+p )=1.16tan g&B(D ~vr+K* )

=(1.68+0.5) X 10 %%uo

This number uses Mark III (Ref. 10) input for B(D ~n+K* ) as in item 5 above.

10. B(D ~sr IC*+)=0.86tan HcB(D ~K p+)

=(2.58+0.42) X 10

This number uses Mark III (Ref. 10) input for 8(D ~IC p+ ) as in item 3 above.

11. B(D,+~K+K* )=0.36tan OcB(D+~w+K *
)

.

with B(D+—+m+K * )=(5.9+1.9+2. 5)%%u (Mark III, Ref. 10), we get

B(D+~K+K* )=(0.59+0.34) X10

12. B(D,+~K K*+)=0.31tan OcB(D+~K p+);

with 8(D ~K p+ ) = (6.9+0.8+2.3)% (Mark III, Ref. 10), we get

B(D ~K K*+)=(0.61+0.21) X10

In the above predictions, wherever data are available, the predictions are fairly good; for example, see items 3 to 6
above. The disagreement is due to the neglect of phases. This gives us reason for confidence in predictions for other
branching ratios.

IV. RESULTS IN SEXTET DOMINANCE

In sextet dominance only the terms proportional to a&, a~, a3, c, , and cz in (18) contribute; all b, s vanish. Further,
in nonet symmetry, c& and c~ are related to a3 as in (19). The results that follow are in the nonet-symmetry scheme.
The decay amplitudes for D ~ VP decays can be readoft from Tables V —VII. To simplify the calculations we have used
an q&

—
g& mixing angle given by sinO& = —

—,
' or Oz= —19.47 . Some of the amplitude constraints that emerge are as

follows.
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Cabibbo an-gle fa-vored modes:

A(D+ m'+K * )= —A(D+ K p+)= —3A(D,+ Per+)

A(D, ~K+K* )= —A(D ~K p+),
A(D+~K K*+)=—A(D ~m+K* ),
&3 A ( D,+~q'p+ ) = A ( D,+~con + );

Cabibbo-angle-suppressed modes:

&2A(D ~rip )= A(D+~gp+),
&2A(D,+ K+ )= A(D+ +K p+—)= —&2t anO cA(D ~sr K * ),
&2A(D,+~a. K*+)=A(D,+~m.+K* )= —&2t anO cA(D ~K p ),
A (D ~K K *

) = —&2tanOc A (D, ~ vr+p ),
2A(D ~rvvr )=2&3A(D ~q'p )=&6A(D+~ri'p+),

=V2 A (D +~cour+ ) =V'3tan8c A (D,+ ~gp+ ),
&2A(D ~Per )=A(D+~Pm+)= —2tan8cA(D, +~Pm. ),
&2 A (D ~g'ro ) = —ta Onc A (D,+ ~g'p+ ) .

Double-Cabibbo-angle-suppressed modes:

A(D,+ K+K")= —tan'e, A(D+ K 'p+),
&2A(D+~p K+)=A(D+~K p+)=&2A(D ~p K )

= —tan OcA(D ~m. +K* ),
+2A (D+~m K*+)=A(D+~vr+K* )=V'2A(D ~m K* )

= —tan'e, A(D' K-p+),
A(D ~K P)= —A(D ~K+/),
A(D ~coK )= —A(D+~coK+) .

The relations in (30) imply the following branching ratios in the Cabibbo-angle-favored decays.

1. B(D+~~+K * )iB(D+~K p+)=0. 86 .

(30)

(31)

(32)

The Mark III (Ref. 10) value for this ratio is (0.86+0.55) (our errors; the actual error is probably much less due to the
cancellation among some systematic errors in the ratio). This is in excellent agreement with the sextet dominance pre-
diction.

2. B(D,+~K K * )=0 77B(DO +K p ) . —

Using Mark III (Ref. 10) value for B(D ~K p+ ) given in item 3 of Sec. III C, we get

B(D+~K+K *
) =(8.32+1.34) % .

The experimental number is

B(D,+ K K * )=(0.84+0.30+0.22)B(D,+ P~+) (Mark III, Refs. 10 and 26)

(0.87+0. 14)B(D,+~Prr+) (E-691, Refs. 12 and 14) .

With B(D,+ ~Pn+ ) expected to be in the range of 2 —4 %, the prediction for B(D,+ ~K+K *
) is a little too high.

3. B(D, ~K OK*+=0.90B(D ~n+K* ) .

Using B(D ~n+K* ) from Mark III (Ref. 10) as in item 5 of Sec. III C, we get

B(D ~K K*+)=(4.7+1.4)% .
Experiments give

B(D, K K*+)=(0.22+0. 11)B(D,+~/sr+) (E-691, Ref. 12)
(1.2+0.21+0.13)B(D,+~/sr+) (CLEO, Refs. 14 and 27) .



840 R. C. VERMA AND A. N. KAMAL 43

The prediction is closer to the CLEO data with
B(D,+ ~/~+ ) =2—4%.

4. B(D, —+cow+ ) = 15.58(D,+ —+g'p+ ) .

This prediction is probably too high. E-691 limit is
8(D,+ ~cour+ ) (0.5%. We comment on this below.

5. B(D,+~/~+)=0. 038(D+~K p+) .

With Mark III (Ref. 10) value of 8(D+~K p+ } used in
item 12 of Sec. III C, we get

8(D, ~P~+ ) =(0.21+0.07) %

a value too low. ' ' We comment on this below.
In order to understand the origin of the results in items

4 and 5 above —large 8 (D,+~con+ ) and small

8(D,+~Per+) —one notes from the listing of the ampli-
tudes in Table V that A(D,+~Pm+) is proportional to
a3 while A(D,+~co~+) is proportional to (a, +a2) and
A(D,+~p ~+) proportional to (a& —a2). In order to
suppress' B(D,+~p 7r+), one has to require a& =a2.
This necessarily enhances B(D,+con+). The parame-
ters a&, a3, and 5 & are determined from the decay modes
D ~Kp. a2 is determined from D ~~+K* and
m K * modes. We find a, =az =3a3. Because of the
smallness of a3 compared to the other two parameters
the decay amplitude for D,+ ~Pm+, which is proportion-
al to a3, is suppressed. In fact in sextet dominance with
nonet symmetry we find

A(D,+ Per+)= —,
' A(D K p ),

which clearly shows the suppression of B(D,+~Per+).
Thus sextet dominance symmetry breaks down in
describing D,+ +cow+ and—Pm+.

We conclude this section with some general comments
on sextet dominance. In sextet dominance the weak
spurion is an isovector (b,I=1) in the Cabibbo-angle-
favored (b, C=b,S=—1) sector. It is an isospinor
(hI= —,') in Cabibbo-angle-suppressed (bC= —l, bS =0)
sector and an isoscalar (b,I=0) in double-Cabibbo-
angle-suppressed ( 6C = —AS = —1 ) sector. As a conse-
quence, (i) D,+ decays involve only a single isospin final
states, i.e., interferences due to different isospin states do
not occur, and (ii) all double-Cabibbo-angle-suppressed
decays involves a single isospin final state, and again no
interference due to different isospin states occurs.

V. SUMMARY AND DISCUSSION

In this paper we have investigated D ~PP and D ~ VP
decays in both a nonet-symmetry and a nonet-symmetry-
breaking scheme. In D ~PP decays, we have reanalyzed
the Cabibbo-angle-favored and -suppressed decays that
we had originally discussed in Ref. 2. The double-
Cabibbo-angle-suppressed D ~PP decays have been dis-
cussed earlier by Chau and Cheng. Our results, with the
inclusion of FSI phases, confirm theirs. We have also in-
vestigated the issue of the ratio B(D ~K+K )I
B(D ~vr m ). FSI phases play a crucial role here. In
the symmetry approach a value of about 2.0 for this ratio

is easier to secure while a value close to 3.0 is much hard-
er to obtain. We also find that in nonet symmetry it is
not possible to understand all four branching ratios:
B(D ~gK ), B(D ~q'K ), B(D,+~gvr+), and
B(D,+~g'~+). Table II has been prepared with the pa-
rameter b of (3) set to zero. Hence the fits are not the
best that could be obtained. However, if the ARGUS re-
sult' for 8(D,+ +g'—~+} is assumed then a value of
B(D ~re ) close to 1.6% is favored. If, on the other
hand, the E-691 upper limit for B(D,+~g'sr+) is as-
sumed then a lower value of 8 ( D ~gK ) would be
favored.

In this paper we have also described D ~VP decays in
a nonet-symmetry scheme. A broken-nonet-symmetry
scheme has too many (11) parameters to have any predic-
tive power. Even in a nonet-symmetry scheme, which
has seven independent parameters, no new testable con-
straints are derived for Cabibbo-angle-favored decays.
The constraints shown in (21) for these decays are simply
isospin constraints. The predictions made for Cabibbo-
angle-suppressed decays, discussed in Sec. IIIC, appear
to be in reasonable accord with data where data exist.
Consequently, we believe that the predictions for
Cabibbo-angle-suppressed and doubly suppressed branch-
ing ratios are quite trustworthy.

The discussion in Sec. IV of sextet dominance shows
that sextet dominance with nonet symmetry fails badly in
describing D,+~Per+ and cour+ decays. Within the con-
text of this model relaxing nonet symmetry, i.e., freeing
c, and cz of the constraint (19) might patchup this prob-
lem. However, see below for a further discussion.

A word of caution: one should recall that all the pre-
dictions of Secs. III and IV have been made ignoring the
FSI phases. On the other hand, the amplitude analysis
for D~Kp and ~K * has shown that the phases 5 z and
6 + are substantial and that the FSI cannot be ignored.

The problem of D~VP decays has been discussed at
length in a factorizable model with multichannel FSI in
Ref. 1. This problem has also been discussed in a factor-
izable model without FSI in Ref. 30. It was shown in Ref.
1 that even if the model did not have an intrinsic decay
amplitude for decays such as D ~K P and D,+ +vr+p, —
these decays could be generated at the experimental level
through a multichannel FSI. Further, the low observed
limit for 8(D,+ ~con+ ) was also understood since there
is no spectator amplitude for D,+~co~+, and the annihi-
lation amplitude vanishes by the conserved-vector-
current (CVC) hypothesis and absence of second-class
currents. Thus D,+~cue. + would have to be generated
by multichannel final-state mixing. The problem with the
symmetry approach as adopted in this paper, and also the
diagrammatic approach followed by other authors, ' ' is
that concepts such as CVC are not built into the scheme.
In the factorization approximation, on the other hand,
one deals with matrix elements of currents. Imposition of
CVC is then an easy matter. Thus the suppression of
D,+ ~co+ is almost natural in the factorization method.
Further, B(D,+~Pm. +) at the 3 —4% level was also ob-
tained rather easily in the factorization model of Ref. 30.

Chau and Cheng ' have discussed D~VP decays in
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their diagrammatic approach. Their amplitude for
D,+ +—m+p decay is proportional to the difference of two
annihilation amplitudes and that for D,+ ~++co decay, to
the sum of the same two amplitudes. This situation
parallels the statement we make in Sec. IV, following
item 5. Thus, suppressing B(D,+ ~~+p ) leads to a large
B(D,+~sr+co) unless one requires that each of the an-
nihilation amplitudes is small. This, as we have argued,
is almost trivially accomplished in a factorization model.
Chau and Cheng ' had to require that the annihilation
amplitude for the creation of uu or dd pair from the vac-
uum be suppressed, roughly by a factor of 3, compared to
the case where ss pair is created from the vacuum. This,
however, is contrary to expectation.

We emphasize that a complete description of D ~ Vp
must include multichannel FSI since there are several
final-state channels that can couple to each other. How-
ever, the present work is an exhaustive analysis within a
symmetry scheme.
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APPENDIX

In this appendix we relate the parameters of our model
amplitude (18) for D~PV decays in nonet symmetry to
those used in Refs. 23 and 24 and those of Ref. 3 in sextet
dominance.

In a notation close to that used by Kohara and
Rosen, the decay amplitude for D~ VP decays is writ-
ten as

A (D ~PV) =S6& (PV)ss IH.'* ID &+ ~6& (PV)s~ IH.'* D &+D6& (PV))o. IH.'" ID &

+S)s & (PV)„IH."I»+~ » «PV)» IH."ID &+D» & (PV),olIf."I»+T» & (PV)»IH."ID &

The tensor structures of various (P X V) representations are

(PV)s~ =(P/ V,
"—P,"V/ »

(PV)ss =(P/, V,
"+P&"V/,

—',. 5JPi" Vt, ),—

(PV)~ = Tl," a~(5' T I"+5IT "+5"T',+5, Tt )+p~(5'51+5/5J)T

(A 1)

(A2)

(A3)

(A4)

where, for R = 10,

Tik —pi Vk+pi Vk pkVi pkVi
Jl j 1 I j J I I j (A5)

(PV)27 do not contribute to D ~ VP decays. The
correspondence between the parameters of (Al) and those
of (18), in nonet symmetry, is given by

for R =10*,

a, ,—
—,', )33, ,=0,

T t'k —p t' Vk p i Vk +p k V
t' p k V

t'
(A6)

and for R =27,
—1 m —1

27 I 27 20

Tik —pi Vk+ pi Vk+ pk Vi+ pk Vi
jh j I I j j I I j

(A7)

The trace part of (PV)ss and the double trace part of

a1=S6+ A6 ——', D6,

Q2 S6 —36+ 3D6 ~

a3 =2D6,

1 15 15 3 15 5 15

b2 —S15—A, 5 3 D15 5 T]

bs =2(T,s+D, s ),
b4=2(T&s Dis) .
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