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Excited charm mesons in semileptonic B decay and their contributions to a Bjorken sum ruie
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It has recently been shown that hadrons containing a single heavy quark exhibit a new flavor-spin
symmetry of @CD. We exploit this symmetry to obtain model-independent predictions for the 14
form factors in weak decays from the ground-state pseudoscalar meson P& of a heavy quark Q; to

t

the low-lying positive-parity excited states of a heavy quark Q, in terms of two universal functions
of momentum transfer. These predictions are of interest in the study of B~D2 (2460), D&(2420),
Dl(-2360), and Do (-2360) semileptonic decays. We also discuss the connection between these
results and the slope of the function g (which determines the B~D and B~D* transition form fac-
tors) given by a heavy-quark sum rule suggested by Bjorken.

I. INTRODUCTION

The properties of hadrons containing a single heavy
quark Q (m& &)AQCD) along with light degrees of free-
dom are constrained by symmetries which are not mani-
fest in QCD. ' The first of these is a fiavor symmetry
which arises from the fact that the long-wavelength prop-
erties of the light degrees of freedom in such a hadron be-
come independent of m& for m& &)A&co. Thus, for ex-
ample, the B and D mesons can be related by an (approxi-
mate) b~c SU(2) symmetry even though mb and m, are
very different. The second symmetry pointed out in Refs.
1 is a related spacetime symmetry which arises in QCD
because the spin of a heavy quark decouples from the
gluon field. This makes 8&, the heavy-quark spin opera-
tor, the generator of another SU(2) group of symmetries
applicable to mesons containing a single heavy quark.
Thus, for example, the light degrees of freedom in the B
and B * mesons are in (approximately) the same state
since the spin orientation of the b quark does not affect
their dynamics. These symmetries are manifest in an
effective theory where the heavy quark acts, in its
hadron's rest frame, like a spatially static triplet source of
color field. In the effective theory the heavy quark's cou-
plings to the gluon degrees of freedom are independent of
its mass and spin and described by a Wilson line.

The consequences of these symmetries for the weak de-
cays of B and D mesons were worked out in Refs. 1. The
existence of conservation laws associated with the sym-
metries allows one to make absolutely normalized predic-
tions for all b~c weak form factors between ground
state pseudoscalar P and vector Vmesons at "zero recoil"
(where, in the rest frame of the initial hadron, the final
hadron is at rest). The symmetries also give relations be-
tween the P~P and P~ V weak form factors. In addi-
tion, the flavor symmetry relates, ' for example, 8 —+X,
and D~Xd weak transition form factors (X„andXd are
particular light-hadron final states related by isospin
which occur due to the b ~u and c ~d weak transitions).

These latter relations may be crucial in the reliable ex-
traction of the Cabibbo-Kobayashi-Maskawa matrix ele-
ment V„&from experimental data.

In the first of the Refs. 1 we applied these symmetries
for static quarks, where a Q, ~Q transition simply sub-
stituted one static heavy quark for another. (See also
Ref. 6, where the manifest symmetry which exists when
m& ——m& was applied and the physics at zero recoil was

t J
also discussed. ) In the second of Refs. 1 we exploited a
powerful extension of this method, which makes use of
the fact that (in the effective theory) when Q, at velocity
v' makes a weak transition into QJ at velocity v', the am-
plitude for the light degrees of freedom to make any asso-
ciated transition is independent of m& and m& if they

t J
are suSciently large. The light degrees of freedom in-
teract only with the (moving) color fields of Q; and Q,
which depend only on the Lorentz boosts required of the
mass-independent rest frame color fields. In the effective
theory the mass of the heavy quark is taken to infinity in
such a way that p& /m& is held fixed, but the four-
momentum of the light degrees of freedom are neglected
compared with m&. In this limit the interactions of the
gluons with the heavy quark do not alter its straight
world line and are independent of its mass and spin. The
interactions of the light degrees of freedom with the
heavy quark do, of course, depend on the heavy quark's
four-velocity v". The resulting symmetries are therefore
somewhat unusual in that they relate states of equal ve-
locity but different mass, and therefore different momen-
tum. For the matrix elements of weak currents in the
effective theory

(lb)

changes in the heavy-quark velocity and spin occur only
due to the actions of the currents. In a typical transition,
H, (v=O)~H (v') (where H„ is the hadron containing
the single heavy quark Q„)the form factors will therefore
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be determined by the product of the amplitude for the
heavy quarks to make the transition Q, (v=O)~QJ(v')
and for the light quarks to be "excited" by the transition
from the hadron H; at rest into the hadron H- moving
with velocity v'.

To apply these symmetries we must know the relation-
ship between the weak currents in the complete theory

V".—=Q, 1'.Q;

~".—= Q, )'.1'~Q

(2a)

(2b)

and those in the effective theory [Eq. (1)]. This relation-
ship has the form (for J,= V„orA „andJJ,=V or A, )

J"=C P'+
V Jl V

where the ellipsis denotes other possible Lorentz struc-
tures which are suppressed by factors of a, (m&)/~ as
well as higher-dimension operators whose physical effects
are suppressed by powers of AQCQ/m&. In the leading-
logarithmic approximation, '

a, (m& ) a, (m& )

C,, (w)=
a, (mg ) a, (p)

(4)

where, for the b ~c transition,

zs
6

and

8[wr(w) —1]QL— (Sb)

with

r (w) = ln(w ++w —1),1

&w' —1

where w is the dot product of the four-velocity of Q;,v",
with the four-velocity of Q, u '". This velocity-dependent
contribution (which was missed in Refs. 1) was calculated
in Ref. 8. For v '=u (i.e. , w =1) the currents are not re-
normalized in the effective theory [r (1)= 1] and their ma-
trix elements are independent of the subtraction point p.
This occurs because the quantity Q~yoQ, (for v'=u) is re-
lated to a generator for the SU(2)-flavor symmetry in the
effective theory, and so its matrix element is a physical
quantity.

In addition to Ref. 8, there have been several other re-
cent improvements on the work of Refs. 1. In Ref. 9 a
power-counting argument was given to prove (in a partic-
ular case) that, to all orders in perturbation theory, ma-
trix elements in the complete theory factorize into a
coefficient function (i.e., C, ) times a matrix element in
the effective theory where the heavy quark couples as a
Wilson line. Also, in Ref. 10 (see also Ref. 11), it was
shown how the effective theory can be written as a
Lorentz-invariant field theory with a superselection rule
for the velocity of the heavy quark. The extension of the
analysis of semileptonic B decays to multiparticle ha-
dronic final states (and to inclusive decays) was made in
Ref. 12. See also Ref. 13 for a discussion of inclusive

heavy-quark decay. In Ref. 14 it is shown how the num-
ber of independent functions required to describe a given
set of matrix elements may easily be counted using con-
servation of helicity of the light degrees of freedom.

There have also been several recent applications of the
heavy-quark symmetry to new processes, including
heavy-baryon semileptonic decay, ' weak hadronic de-
cays of the type B~DD„DD,*, D*D„D*D,*,' and
e +e annihilation into exclusive channels like DD,
DD *+D*D, and D *D *.'

In this paper we will apply the heavy-quark symmetry
to decays of a ground-state pseudoscalar meson P& of a

I

heavy quark Q, to the positive-parity states expected to
constitute the first excited states above the degenerate
pseudoscalar P& and vector V& ground states of the

heavy quark Q . Such predictions are of some interest in
their own right as they are expected' (and possibly ob-
served' ) to be produced in a significant fraction of B de-
cays. However, they are also interesting because a
heavy-quark sum rule suggested by Bjorken in Ref. 12
can be used to relate the rate for such processes to the
slope of the universal function' g(w) controlling B~D
and D* semileptonic decays.

II. POSITIVE-PARITY EXCITED STATES

~'"Z 1+&=++-' 'P &+-+-'~'P, &,

~'"E~l+&=++-' 'P
&
—+-'~'P, & .

(7a)

(7b)

The importance of these linear combinations of axial-

In the heavy-quark limit S& and S&
—=S—

S& (the spin
of the light degrees of freedom) are separately conserved
by the strong interaction, so mesons containing a single
heavy quark Q can be simultaneously assigned the quan-
tum numbers s&, m&, s&, and m&. Since the dynamics de-
pend only on s&, the mesons will appear in degenerate
multiplets of the total spins s that can be formed from s&
and s&. It is accordingly more convenient in the heavy-
quark limit to classify states by si (and ir&, the parity of
the light degrees of freedom).

In the constituent quark model, the first excited states
above the ground states P& and V& would be closely
spaced states with relative orbital angular momentum
l = 1 and total spin s = 1 and 0 corresponding to the

+ 'LJ states P» P» P» and 'P
~

with
J =2+, 1+,0+, and 1+, respectively. Given this expec-
tation and the empirical evidence, it is safe to assume that
the light degrees of freedom with antiquark quantum
numbers accompanying Q will have a ground state with

s&
'=

—,
' (leading to P& and V& when combined with

'17

s&~ =
—,
'+) and as their first excitations two closely spaced

states with s&
'= —,'+ and —,

'+. When combined with Q,
these excited states lead to degenerate s&

' =—', + multiplets
77

with J =2+ and 1+ and degenerate s&
' =

—,
' + multiplets

with J =1+ and 0+; we denote the corresponding states
by Eg2+, Eg 1+, ' E 1+, and ' E 0+ respec-
tively. The first and last of these states are obviously the
states Pz and P» while
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vector states was noted by Rosner, who emphasized in
the context of the constituent quark model the separate
conservation of S& and SI in heavy-quark systems.

Since S& generates the heavy-quark spin symmetry, it
is important to know the action of S& on the states E&.
In what follows we will in particular use the relations

S~ ~'"E~2+(0,2) & =+-,' ~'"E~2+(0,2) &,

Sg ~ Eg2+(0, 1) &
= +—„'

~
E(32+(0, 1) &

(8a)

v'3
~'"E~ 1+(O, 1 ) &, (8b)

S~ ~

'"E~1+(O, 1 ) & =O,

St3 ~

'
Eg 1+(0,0) &

= —
—,
'

~

' E(20+ (0) &,

(8c)

where
~

'E&J (0, m ) & denotes a state at rest with third
component of spin m.

III. WEAK FORM FACTORS FOR PQ —+EQ
l J

SEMILEPTONIC DECAYS

In this section we discuss the weak form factors that
arise in the semileptonic decays P& ~E&. Since the

l

heavy-quark symmetries relate states of fixed velocities, it
is convenient to define a set of form factors for these tran-
sitions that multiply Lorentz invariants formed from the
available polarization tensors and the four velocities U

and u' (instead of the four-momenta p and p'). It is also
convenient to remove an overall factor of (mE mp )'

Q Q;

from our meson states which are conventionally normal-
ized to

(X(v, Ep) ~X(V, G ) &
—(2~) 2E513~5 (p' —p)

although they are labeled by their velocity. With these
conventions, the form factors that can arise in transitions
to the sI =

—,
' states are

and

&3/2Eq 2+(v', ~)l V. IPq (v) &

[mE mp ]'"
Q Q;

( E& 2+(v', e)i A, iPL3 (v) &

[mE mp ]Q. Q;

( Eg I+(v', e)i V, PL2 (v) &

[mE mp ]'"
Q Q;

( / E& I+( ve)i 3 iP& (v) &

[mE mp ]'"
Q. Q;

—=

ibad

i3
e* " u( +uu)~( —u u')~,

—:k e,* u "+e'*i3V u ~[b + ( v + v
'

) + b ( u —u
'

) ]

= i3/2~v +~au [C3/2+ (V + U )~+C3/2 (U —
V )~]

iq3/2e,—i3re* (v +u)~( —u v')~,

(12)

(13)

while those for s&
=

—,
' are

( '
E& 1+(v', e) i V, iP& (v) &

[mE mp ]'"
Q Q;

('/2Eq 1+(v, e)f A, /P, (v) &

[mE mp ]
Q Q;

=l)/26~ +E~v [C)/2+(U+U )~+C)/2 (V U )~]

iq, /2e i3
e*—(u +u')~(u —v')/,

(14)

(' E& 0+(v')~ & ~P& (v) & —=u+(u+u') +u (v —v'),
[mE mp ]

Q Q;

(16)

(the vector matrix element for P& ~' E& 0+ vanishes).
In Eqs. (10)—(16) we adopt the conventions e'0&23=1 and
e(l)= —(I/ 32/)(l, i, o). The relation of these form fac-
tors to the more conventionally defined ones of Ref. 18 is
given in Appendix A. As shown in Ref. 1, the heavy-
quark symmetry relations apply to the combinations

(, E& (v', e)iJ" iP& (v) &

C,, [mE mp ]'"
Q. Q;

which are independent of the masses of the heavy quarks.
We begin our derivation of the heavy-quark symmetry re-
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lations with the sI =
—,
' states. From Eq. (17) we have that TABLE I. The weak form factors for semileptonic B decay to

excited charmed mesons.
q, /2

=CI;r, /2(w)

where r I /2( w ) is a function of

(18)

Form factor
Value in units

of C,;v., (w)J'

I

w=v 'v=
mE mp

QJ- Q;

=1+
2mE mp

Q Q;

(19)

& '"E~ I+(0,0)
l A+ lP~ (v) )

I

= + (' Eg 0+(0)l A/+ IPg (v) &, (20)

which implies that

which is independent of i and j. Here t =(mp —mz )
Q; Qj

is the maximum momentum transfer corresponding to
the zero-recoil point. We can use the commutation rela-
tions of the weak currents with SL2 (Refs. 1 and 22) to ex-

press all the other s, =
—,
' form factors in terms of r, /2(w).

From Eq. (8d) and the commutation relations

SI
1

sI

Q+
I
C 1/2+
C 1/2+
9'1/2

h

k
b++
b +
l3/2
C 3/2.+

C3/2+

9'3/2

+C1/2

C 1/2—

b
b

+C3/2

C 3/2—

—2

+2
+2(w —1)
0
—2
+1
+&3/2
+&3(w +1)
0
—v'3
—( w' —1)/&2
—3/&2
+(w —2)/&2
—(w + 1)/2&2

u+ +u = —2'(r, /2(w) .

From the relation

(' 2Eg 1+(0,1)lv' lPg (v)&=o
J J

(21) plied to (13) and (15):

1, /2
= —2(1 —w)C I/2

(22) and

(29)

we have

1/2+ + 1/2—

while

& '"E~ 1+(o, 1 ) l
v/O'IP~ (v) &

J I

= —(' Et21+(0, 1)lA 'lPt2(v))
I

(23)

(24)

(u++u )= —(u+ —u ) . (30)

These two new relations overdetermine the form factors
so one of them may be used as a consistency check. We
finally obtain the results shown in Table I.

The derivation of the form factors relevant to the s&
= —',

states proceeds similarly. In analogy to Eq. (18) we first
defi ne

gives
(w + 1)C,;~3/2(w)

q3/2= 2e2 (31)

C1/2+ C I/2 — 2C ill/2( W)

Next use

&'"E, 1 (o,o)l V", IP, (v) &
J I

= ( '/'Eg 0+(0)
l

A"
l P& (v') &

which gives

(25)

(26)

where ~3/p is analogous to ~, /z and where a factor of
( w + 1 ) /2+2 has been added for later convenience.
From

( Eg 2+(0, 2)l Ai' lPg (v) ) =0

we have

lI/2= —(u+ —u )
—w(u++u ) . (27)

)' vQ, =Q, ,

To complete the determination of the sI =
—,
' form factors

in terms of the function ~, /z, we apply the heavy-quark
velocity superselection rule. Since in the effective theory
only the components of the field Q, and Q with velocities
v and v' enter into the matrix elements, ' = —( Eg 2+(0, 2)l vj3' lP(2 (v) ),

I

(33)

which means that

Using Eq. (8a) and the commutation relation
[S&,Ajo'] = —

—,
' V~3' gives

( Eg 2+(0, 2)l Ao'lPg (v) &

Q, y v'=Q, , (28b) b+ —b = —2h . (34)

so that (v —v') contracted against a vector-current matrix
element and (v +v')„contracted against an axial-vector-
current matrix element give zero. This constraint is trivi-
al when applied to (14) but gives two relations when ap-

Using (8b) and [St2,AJ3'] = —
—,
' V~o' gives

(' 'Eg 2 (0, 1)lAI'lP&(v)&
I

=&3( Eg 1+(0,1) l A 3' lPg (v) )
I

(35)
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so that

k: 2&6(/ 3/z (36)

IV. COMPARISON WITH A QUARK-MODEL
CALCULATION

From (8b) and [S&,V+] =+—,'V+ we get

('/'E 1+(0,1)
~

VJ' ~P~ (v) )
I

( E(z 2+(0, 1)~ V/' ~Pg (v)),
3 J

(37)

which gives the two relations

c3/z+ +c3/z +6 h (38)

l3/z = —&2/3( w —1)h,
and from [S&,V~0'] = ——'AJ3' we have

(39)

( Eg 2+(0, 1)~ A J3'~Pg (v))
J 1

=, ('"E, 1+(0,1)i V~'~P, ( ))
v'3

(40)

so that

( c3 /z+ 3 /z 3 /z+ 3 /z ) —— 2 /3 k (41)

As before, we finally need to apply heavy-quark current
conservation that gives the two relations

k = —(1+w )(b+ —b ) (42)

and

l3/z 2( w —1 )c3/z (43)

One is again redundant and may be used as a consistency
check on the results displayed in Table I.

md(w —1)

2~ Pz,
Q; Q

[Here md is the light constituent quark mass, P„is a vari-
ational parameter proportional to the rms momentum in
the meson r, p„,= —,'(/3„+/3, ), and ~ is an ad hoc "relativ-
istic correction factor. " For details see Ref. 18.] Table II
shows the comparison between the form factors predicted
(near w =1) in the heavy-quark limit and those of this

The results for the fourteen weak transition form fac-
tors given in Table I are model independent and hold for
any Q;~Q~ transition with the same functions r, /z and
7 3/2 in the limit m &

)m & &)AQcD For any finite m &J t

m& these relations will receive corrections of order
J

a, (m&)/~ and A&cD/m&. The perturbative corrections
to the results of Table I are easily included using

Q, Q, =U„Q~y".Q, , Q~ysQ, = U—„Q~y"y5Q;, and the re-
sults of Refs. 8 and 21. The physical mechanisms that
are the origin of many of the power corrections are in
operation in the constituent quark model, and it is conse-
quently of value to use this phenomenological model as
an indicator of the importance of this class of corrections.

To the best of our knowledge, these matrix elements to
positive-parity excited states have only been estimated in
Ref. 18 using the constituent quark model. Appendix A
gives a translation dictionary between the form factors f
of Table I and the more conventionally defined form fac-
tors f of that paper. In the extreme heavy-quark limit
the model's results reduce to those of Table I near m = 1

(where the model was claimed to be valid in the weak-
binding limit) with the identification r, /z 7 3/z 7 where

p p '5/z

(44)
pptz pp E

J

TABLE II. Comparison of the predictions of the heavy-quark symmetry with those of a quark model
near zero recoil as a measure of the importance of a class of A&CD/m& corrections in b ~c transitions;
for this comparison we have set K = 1 in the Ref. 18 results (see Ref. 23) and have set

—t =2m~m~(w —1).

Form factor
Heavy-quark symmetry

[in units C,;~, (1)]J'

Ref. 18 results
[in units 7(1)]

Q+ +
EE +
I ] /2

C 1/2
C 1/2+.

9'] /2

+C]/2
C 1/2—

k
b++
b
l ~/2

C 3/2 +C3/2

C 3/2+ 3/2

—2
+2

0+2(w —1)
0

—2
+1

+ —,
' &3

+2~3
0

—v'3
0—&2(w —1)

——,'v'2
—

—,
' v'2

—
—,
' v'2

—2(0.92)
+2(1.08)

—0.02+2(1.06)( w —1)
+0.13

—2(1.13)
+ 1(0.99)

+ —'&3(1.13 }

+2&3{0.92)
+0.06

—&3(0.98)
—0.75 —&2(1.06)( w —1)

——&2{0.91)
——'&2{1.02)
—

2
&2(1.18)
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quark model calculation for b ~c transitions.
We see from this comparison that the quark model

suggests, as it did for the B~D and B~D* form fac-
tors, that most of these form factors will be close to the
heavy-quark symmetry limit. However, examples of de-
viations (such as the intercept of l3 jp) should serve as a
reminder that AQcD/I, is not a very small expansion pa-
rameter. In addition, we note that the quark model re-
sults of Ref. 18 are based on the weak-binding limit and
so explicitly exclude corrections of relative order 13„Im
(where m is the product of any two quark masses).
Given that the mass difference between the 'E& and P&
states (roughly 500 MeV) is substantial compared to m„
conclusions based on Table II must be treated with even
more caution than the analogous results for the B~D
and B~D* form factors. Thus, testing the predictions
of Table I and determining the universal limiting func-
tions ~, will require the careful study of AQcD/I,

1

corrections (including those not estimated by the quark

model) and the extraction from data of those form factors
(or linear combinations of form factors) least sensitive to
such corrections.

V. A BJORKEN SUM RULE

Bjorken has shown' that the heavy-quark symmetry
allows one to derive an analog of the Cabibbo-Radicati
sum rule, and thereby to relate the slope of the univer-
sal form factor g(w) appearing in B~D and B +D*-
semileptonic decays' to the rates for production of inelas-
tic states. His derivation is based on equal-time current-
commutation relations. In this section we rederive this
Bjorken sum rule and present an interpretation of it that
we believe is correct beyond the parton-model approxi-
mation.

The rate for the semileptonic decay P& ~X& ev, can
I J

be written in the form

2 5

d I
GF mp

=
l Vg. g. l

2 (x,y)+0++B (x,y)+y G(x,y)
J 32~ Ip

Q;

(45)

where, with r —=mz /mz
Q Q;

A (x,y)=y,
B (x,y) =2[2x (1—r +y) —4x —y],
G(x,y) = —y (1 r' 4x +—y)—,

(46a)

(46b)

(46c)

and ~here x =E, lmz and y—:&Imj', =(p —p') Im~ =1+r 2rw, with E, th—e electron energy and p and p' the
Q; Q, Q;

momenta of P& and X&, respectively. In Eq. (45), a, f3++ and y are functions of w that expand the hadronic tensor
l J

h ~ ( w) =—g (P& (v) JJ,' lX& (v', s ) ) (X& (v', s ) l
JJ„'lP& (v) ) (47)

= —a gz, + g /3 (p+ ap ')&(p +a''p'), +i y e& (p+p')~(p —p')
CT, CT =+

(48)

Bjorken's sum rule applies to each of the six functions ap-
pearing in (48), and also to any choice for the two
currents. Although it is therefore redundant, we will for
concreteness consider the physical case J~' = V~' —3 ~'

and concentrate on the three functions a, P++, and y
that enter the rate (45) obtained when we ignore the lep-
ton mass. Explicit formulas for those three functions in
terms of the weak form factors are given in Ref. 18.

The sum rule is based on the observation that if one
sums the rates for all hadronic final states with masses
from m~ to m~ +p, then so long as p))AQCD this in-

elusive rate and its associated hadronic tensor can be
computed in perturbative QCD, up to corrections of or-
der AQCD/m&, as an infrared safe heavy-quark transi-

I

tion. If on the other hand we restrict p((m&, then the
J

hadronic tensor for each exclusive channel could also be

computed using the heavy-quark effective theory. In the
heavy-quark limit m&~ ~, the heavy quarks have well-
defined four-velocities, and the thresholds of all the states
required to build up the low m inclusive rate coincide at
m = 1. So, for m of order unity we have the sum rule

h„,' '(w, p) =
m& —mp (p

h„(w). (49)

At m=1 only the "elastic" final states P and V will
QJ QJ

contribute to (49) [giving g'(l)=1]. For larger w these
"elastic" contributions will fall with their decreasing
from factor g(w), but "inelastic" final states (e.g. , those
considered in this paper) will be excited. [For finite
heavy-quark masses, the thresholds for the inelastic states
(where the inelastic state is being produced at zero recoil)
will occur in an inclusive Dalitz plot at a value of
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TABLE III. Contributions to the hadronic tensor using the notation e=(w —1), q=(w+1)//2,
(r=(r —2rw +1)/4r, and 13= [2rw —(1+4r +r )w+2(1+r )]/2r.

Transition

Q,
pg ~pg

l J

pg ~Vg
I J

Pg ~'i Eg 0+
I J

Pg ' Eg 1+
l J

p 3/2E 2+
t J

t J

p y(n)
t

C n/mp
g;

4rw

4rw rtj g'I

8rw El r(/zl'

4rw z)'~jrz/z I'
12rwr) el r3/2 I

4rw

r)@zing("'Iz

C,; P++

2

[&+~]jul'

[2&+ 4~]jr(/21'

[2~—4~ l I r(/z I'

2rt[w —1 —5]jr /zj

2r) [w ' —1+5] lrz/z I'

[~+~]~'lg("'I'

[~—~]e'I g'"'I'

2y

0

2r) +Irz/zl

6n'~l rz/2 I

2+Ez
I
g( n (

I

2

momentum transfer t corresponding to a finite w,1„„,—1,
where

Weiastlc

(mp —mt, ) —t
1 J

2fPl p Ol p
g; g

The impact of these kinematic effects will be discussed
below. ]

The sum rule of Eq. (49) depends on p. However, for
+QcD ((p ((m & it. is appropriate to match on to the

J
effective heavy-quark currents to compute both the left-
and right-hand sides of the sum rule. Thus each side of
the equation contains a factor IC;(w, p)l that will cancel
out. (On the left-hand side this factor arises from pertur-
bative strong-interaction corrections to quark decay
summed in the leading-logarithmic approximation. )

After this cancellation, the left-hand side of Eq. (49) is ex-
plicitly p independent. The right-hand side of the equa-
tion, which must therefore also be p independent, con-
tains two compensating sources of p dependence: the
form factors [e.g. , g(w), r, /2(w), and r3/2(w)] are p, depen-
dent (for w&1) since they are defined as matrix elements

of currents in the effective theory, but their p dependence
is canceled by the p dependence of the limits of the sum.

Table III gives a, /3++, and y for the heavy-quark
transition Q, ~Q/ and for the low-lying resonant states in
the heavy-quark symmetry limit. The form factors re-
quired for transitions to P& and V& are given in Ref. 1.
Thos for ' ~E 0+ ' E 1+ & 1+ and & 2+ose or &, &, &, an

J J J QJ
are from Table II. In addition, the table shows the result
of extending Ref. 1 to the transitions to the "radial exci-
tations" P("' and V'"': since V ' is a conserved current of
the efFective theory, the function analogous to g(w) for
those states must vanish for w =1 and so may be written
in the form (w —l)g("' (w). In the quark model such
states would arise as radial excitations of the ground
state. Here they can be any excited states whatsoever

carrying the quantum numbers s&
'=

—,
' of the ground

states. One can also trivially extend the results of this pa-

per to the "radially excited" states with sI '=
—,
'+ or —,

'+:
the nth such state will have the form factors displayed in
Table II with r, /z ~r', /'3 and r3/z ~ r3/2 (so that
7, /z =r, /z and r—3/2:r3/z). This gives (from the sum rule(1) (1)

for any of a, /3++, or y)

2
lg(w)l +(w —1)

p „()M)
Ig("'(w)l'+» lrI/z)(w)l'+(w+I)' g Ir(3'/)z(w)I' +

n=1 m=1 p=1

(50)

where the ellipsis denotes possible contributions from the
inelastic continua and from resonances with quantum
numbers for the light degrees of freedom other than

andI

One can dramatically reduce the number of states con-
tributing to the sum rule by expanding Eq. (50) in a
power series about w =1. Keeping terms up to linear or-
der in (w —1) gives g(1)=1 and Bjorken's sum rule'z for

g(w)=1 —p (w —1)+
The sum rule is

(51)

p'=-,'+ y lr', ;,'(1)I'+2 y Ir(3&/), ( I ) I'+
m =1 p=1

(52)

the "charge radius" p of g( w) defined by the expansion
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where the ellipsis denotes possible contributions from in-
elastic continua. [We have already seen explicitly that
the "radial excitations" of P& and V& make no contribu-

J J
tion to (52); we will see below that there are no other res-
onant contributions to this sum rule. ] Note that the p
dependence of p is compensated by the cutoff at the exci-
tation energy p of the sum over resonances (as well as in
the possible continuum term represented by the ellipsis. )

We now show that the states considered in this paper
are the only excited resonant states contributing to Eq.
(52). If a resonance is to contribute, it must be produced
in either an S or a P wave, otherwise its contribution
would be of higher order than (w —1). If f, (w) is any 5-
wave form factor of an excited stated, then it must vanish
at least as fast as (w —1) as w —+ I since all excited states
of the light degrees of freedom are orthogonal to the
ground state at w =1. Thus excited states contributing
to the right-hand side of Eq. (52) must have P-wave form
factors, i.e., ones proportional to v' in the frame where
v=0. To proceed it is convenient to consider the heavy
quarks to be spinless, as we may because of the spin sym-

I
t77

metry. We then want to know the conditions on s&
' for

t

(s '(v')l j(0)l —,
' (0) ) to be proportional to v'. There are

two possibilities, depending on whether the heavy-quark
current is proportional to v'QtQ, or simply QtQ, . In the
former case the matrix element of Q Q, must not vanish
as w ~1, which means that the light degrees of freedom
have remained in their ground state: this case corre-
sponds to a P-wave "elastic" form factor proportional to

I
~77

g(w). In the latter case s& '(v') must be a P-wave state
t

t77(
with J =

—,', i.e., s)
' must be either —,

'+ or —,'+. Thus all
new resonant states contributing to p are "radial excita-
tions" of the states '/ E 0+, '/ E 1, / E 1+ and

E& 2+ considered here. In constituent quark models,
J

such states are typically somewhat more than 1 GeV
above the ground state.

In the nonrelativistic quark model

+1/2( 1 ) —r3/2( 1 ) jd k p, &(k )kpOO(k ) (53)

where P„& is the radial wave function of the nth radial
state with orbital angular momentum l. In the
harmonic-oscillator model r~p/'2(1) and r3/2 (1) are identi-
cally zero for n ) 1: with other potentials their magni-
tudes fall rapidly with n due to oscillations in P„&.It
would not be unreasonable, therefore, to expect the sum
to converge rapidly.

This brings us to the important kinematical considera-
tion mentioned earlier. The physical thresholds in t for a
state E& contributing to Eq. (52) will be

J

2mp (mp mp )
—(mz —mp )

Q; Q Q

below that for the state P& . Thus in a given heavy-quark
J

transition Q, ~Q, the decrease of g as a function of
(t —t) will not be locally compensated by the onset of
resonance production. However, wherever the produc-
tion of the states E& occurs in t, the functions r, /2(w)

J

and ~3/2( w) can be determined (where w = U U
' with v

'

the four-velocity of the state E& ), and it is the threshold
J

behavior of these functions in w (i.e., near w =1) that is
relevant to the sum rule. Of course as m& ~ ~ all of the
relevant thresholds will occur in a range of (t —t) which
corresponds to an infinitesimal range of w for the
P& ~P& process so that for (t t) w—ell above this range

I J
the sum rule (50) would apply directly in the Dalitz plot.
In this case the "shift" implied by the above prescription
would be unnecessary.

Given the potential corrections to the heavy-quark
symmetry limit for B~ 'E, decays, to test the sum rule
(52) it will probably be necessary to adopt the strategy
mentioned earlier of extracting those form factors which
are least sensitive to A&c~/m, effects. From these one
can most reliably determine the universal limiting func-
tion ~, , which are related by the sum rule to the slope of
the universal limiting function g(w).

Finally, we would like to comment on the constant
term in Eq. (52). In the nonrelativistic limit [see Eq.
(44)], —,

' (( lr„2(1)I'+21r3/2( I ) I', and the resonant terms
give a radius that reproduces the nonrelativistic radius of
the form factor g(w). Thus the —,', which arises from the

P& ~P& and P0 ~ V& ground-state transitions, is a
I J 1 J

"relativistic correction, " corresponding to a contribution
to an elastic "charge radius" in P& ~P& of 3/4m&. This
term is not present in the analogous A& ~A& form fac-

I J
tor (where s&=0). Moreover, in the case of a spinless
heavy "quark, " the —,

' occurs once again for s&
=

—,
' and not

for s&=0. We speculate that it can be associated with
Zitterbewegung (the origin of the Darwin term in the hy-
drogen atom ) of the light degrees of freedom by
Ar& —m&, which forces a smearing Ar& —m& of the
heavy-quark coordinate to preserve the position of the
center of mass.

VI. CONCLUSIONS

Semileptonic B decay appears to be saturated by D, D*
and a small ( —20%) contribution from either continuum
states or excited resonances. ' In this paper we have
completed the heavy-quark symmetry predictions for the
resonance production form factors which are likely to be
seen in B decays by adding to the results of Ref. 1 the
predictions for the positive-parity excited charmed
mesons which lie about 500 MeV above the D and D*.
We have also discussed the interpretation of perturbative
strong interaction corrections to a sum rule suggested by
Bjorken, shown that the resonances contributing to the
sum rule are all of the type considered here, and dis-
cussed the application of the sum rule in realistic cir-
cumstances.
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APPENDIX: RELATIONSHIP BETWEEN
THE FORM FACTORS IOF THE TEXT AND

CONVENTIONALLY DEFINED FORM FACTORS f

b+ +b
b+ —b

1,

TABLE IV. The integers n, and n; of Eq. (A1).

n;

+3
+1
+5
+3
—1

The Lorentz-invariant form factors f of the text are
defined as coefficients of kinematic invariants formed out
of polarization tensors and the four velocities U and U', as
is appropriate to the heavy-quark symmetry limit. They
also have a trivial kinematical factor of (m& mz )' di-

Q~ Q;

vided out. If this factor is multiplied back into Eqs.
(10)—(16) and if factors of mz and mz are inserted to

Q; Qj

turn v and v' into p and p', then the form factors f will be
converted into the more conventionally defined form fac-
tors f of Ref. 18. The relation between these form factors
may be expressed in the form

Cs ++Cs—
I I

Cs + Cs—
I

2

b++b =F7
2

1—mdpx

4+2m' mb mgPg

md px2

2m' P~x

+3

(A2)

f =m '"m '"fa EQ PQ a
I

(A 1)

where n; and n are the integers given in Table IV. For
the 1+ states one must in addition make use of Eqs. (7).

Since Ref. 18 quotes only the form factors that contrib-
ute in the limit of zero lepton masses, we quote here in
the notation of that paper the additional formulas re-
quired to complete a comparison with that constituent
quark-model calculation:

my
c+ —c =F5

2mq B

my
s+ s =Fg

~2m P~

2mdm p~1—
2mx p Pax—

mdm p~
2

1—
2mxP +Pax

Ply
u+ + u = ')rr Fg—

8
(A3)

(A4)

(A5)
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