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Heavy-quark symmetries in form factors at large recoil
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It has recently been shown that hadrons containing a single heavy quark exhibit a new Aavor-spin

symmetry of QCD, and that this symmetry leads to relations between operator matrix elements in-

volving such hadrons. On examining mechanisms that might break the symmetry at large recoil, I
conclude that these relations are probably valid over the full kinematic ranges available in transi-
tions involving b~c, b~s, b~u, c~s, and c~d currents.

I. INTRODUCTION

The properties of hadrons containing a single heavy
quark Q (m& »AQcD) along with light degrees of free-
dom are constrained by symmetries which are not mani-
fest in QCD. ' The first of these is a flavor symmetry
which arises from the fact that the long-wavelength prop-
erties of the light degrees of freedom in such a hadron be-
come independent of m& for m& ))A&CD. Thus, for ex-
ample, the light degrees of freedom of a B and D meson
can be related by an (approximate) b~c SU(2) symmetry
even though ms and m, are very different (i.e.,
ms —m, »AQCD). The second symmetry pointed out in
Ref. 1 is a related spacetime symmetry which arises in
QCD because the spin of a heavy quark decouples from
the gluon field. This makes S&, the heavy-quark spin
operator, the generator of another SU(2) group of sym-
metries of the light degrees of freedom of a meson con-
taining a single heavy quark. Thus, for example, the light
degrees of freedom in the B and B * mesons are in (ap-
proximately) the same state since the spin orientation of
the b quark does not affect their dynamics. These sym-
metries are manifest in an effective theory where the
heavy quark acts, in its hadron's rest frame, like a spatial-
ly static triplet source of color field. ' In the effective
theory the heavy quark's couplings to the gluon degrees
of freedom are independent of its mass and described by a
Wilson line.

The consequences of these symmetries for the weak de-
cays of B and D mesons were worked out in Ref. 1. The
existence of conservation laws associated with the sym-
metries allows one to make absolutely normalized predic-
tions for all b —+c weak transition form factors between
ground-state pseudoscalar (P) and vector ( V) mesons at
"zero recoil" (where, in the rest frame of the initial had-
ron, the final hadron is at rest). The symmetries also give
relations between all six of the P~P and P~ V weak
form factors. In addition, the flavor symmetry relates,
for example, B~X„and D~Xd weak transition form
factors (X„and Xd are particular light-hadron final states
related by isospin which occur due to the b ~u and c ~d
weak transitions). These latter relations may be crucial
in the reliable extraction of the Cabibbo-Kobayashi-
Maskawa matrix element V„& from experimental data.

In the first work cited in Ref. 1 these symmetries were
applied for static quarks where the Q, ~Q symmetry
simply substituted one static heavy quark for another.
The second work cited in Ref. 1 exploited a powerful ex-
tension of this method which makes use of the fact that
(in the effective theory) when Q; at velocity v is replaced
by Q at v', the amplitude for the light degrees of free-
dom to make any associated transition is independent of
m; and m if they are su%ciently large: the light degrees
of freedom interact only with the (moving) color fields of
Q; and Q which depend only on the Lorentz boosts re-
quired of the (mass-independent) rest frame color fields.
In the effective theory the mass of the heavy quark is tak-
en to infinity in such a way that p& /m& is held fixed, but
the four-momentum of the light degrees of freedom is
neglected compared with m&. In this limit the interac-
tions of the gluons with the heavy quark do not alter its
straight world line and are independent of its mass and
spin. The interactions of the heavy quark do depend on
the heavy quark's four-velocity u". The resulting sym-
metries are as a result somewhat unusual in that they re-
late states of equal velocity but different mass, and there-
fore different momentum.

For example, in matrix elements of

(la)

(lb)

(the weak Q, ~Q currents in the effective theory),
changes in the heavy-quark velocity and spin occur only
due to the actions of the currents. In a typical such tran-
sition, H, (v=O)~H (v') where H„ is the hadron con-
taining the single heavy quark Q„) the form factors will
therefore be determined by the product of the amplitude
for the heavy quarks to make the transition
Q;(v=O) —+Q~(v') and for the light quarks to be "excit-
ed" by the transition from the hadron H; at rest into the
hadron 0 moving with velocity v'. To apply these sym-
metries we must know the relationship between the weak
currents in the complete theory

(2a)

(2b)
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where the ellipsis denotes other possible Lorentz struc-
tures which are suppressed by factors of a, (m&)/vr as
well as higher-dimension operators whose physical effects
are suppressed by powers of AQCD/mg In the leading-
logarithmic approximation, '

a, (m;) ' a, (m, )
C, =

a, (m) ) a, (p)
(4)

with

a
6

33—2%f

(where in the b ~c transition, for example, the number of
flavors Xf =4 for the region between mb and m, ) and

8[v' vr(v' v) —1]
33—2'

in which

r(v' v)= ln[v' v+V (v' v) —1]
'(/(v' v )

—1
(7)

(where in b —+c, Nf =3 for the region below m, ). Note
that the factor C, . depends on the dot product of the
four-velocity v„of Q; with the four-velocity v& of QJ.
This velocity-dependent contribution (which was missed
in Ref. 1) was calculated in Ref. 7. For v

' = v (i.e.
v' v = 1) the currents are not renormalized in the
effective theory [r(1)=1]and their matrix elements are
independent of the subtraction point p. This occurs be-
cause the three quantities Q'= Jd x Q r', Q, are genera-

tors of the SU(2)-flavor symmetry in the effective theory,
and so the matrix elements of Q' are physical quantities.

The heavy-quark symmetry also relates matrix ele-
ments of Q; —+q and Q —+q operators, where q is, for ex-

ample, a light quark. In this case the weak currents in

the effective theory,

and those in Eq. (1) of the effective theory. This relation-
ship has the form (for J,= V, or A, and Jl =V„or A, )

(3)

cent improvements on the work of Ref. 1. In Ref. 9 a
power-counting argument was given to prove (in a partic-
ular case) that, to all orders in perturbation theory, ma-
trix elements in the complete theory factorize into a
coe%cient function (i.e., C;) times a matrix element in
the effective theory where the heavy quark couples as a
Wilson line. Also, in Ref. 10 (see also Ref. 7), it was
shown how the effective theory can be written as a
Lorentz-invariant field theory with a superselection rule
for the velocity of the heavy quark. Reference 7 and in-
dependently Ref. 11 showed how to derive the results of
Ref. 1 in a much simpler way.

It is clear from their derivations that the heavy-quark
symmetry relations are valid in the region near zero
recoil. However, violation of the heavy-quark flavor and
spin symmetries arising from the fact that m, and m are
finite will, among other things, perturb the light degrees
of freedom away from their limiting state. Since an

H, —+H transition at high recoil becomes sensitive to
small components in the hadronic wave function, it is to
be expected that the symmetry relations will eventually
fail. Reference 1 gave some qualitative estimates of the
range of validity of such relations, based on the momen-
tum scales at which the states of the light degrees of free-
dom in H, and H would di6'er from their limiting state.
In this paper I examine the limitation on the range of va-

lidity of the heavy-quark symmetry relations more care-
fully.

II. Q; —+Q; TRANSITIONS

The heavy-quark symmetry relates the six form factors
in P,.~P. and P,- —+ V weak vector and axial-vector tran-
sitions to a single universal function g(t) with g(0)=1.
These form factors are in principle all measurable in
B~D and B—+D * transitions, so these predictions are of
some interest. The predictions arise in part from rela-
tions between P, ~P, , P, —+P, and P ~P which depend
only on the Q;~Q flavor symmetry and partly from re-
lations between P,- ~P. and P; ~ V which depend on the
heavy-quark spin symmetry of Q .

A. A heuristic argument

are related to those of the complete theory by

where

a, (m;)

a, (p)

(Sa)

(8b)

(10)

%'e begin our consideration of transitions induced by
Q, ~Q operators with a simple heuristic argument
which contains some of the physics of the more elaborate
discussions which follow.

In an H, ~H transition, one can by Lorentz invari-
ance view any operator matrix element in the frame
H, (

—vr)~FI~(+vr). This frame would correspond to
the Breit frame in the case m, =m . In the general case
the usual hadronic momentum transfer t =(p, —p~) is
given by (we approximate mH =m, , mH ——m )

[If there are flavor thresholds between m, and p, then

C(p) must be modified to take into account the fact that

Xf is not constant. ] The value of the resulting relations
in the model-independent determination of V„& was
shown in the first work cited in Ref. 1; details are sup-
plied in Ref. 8.

In addition to Ref. 7 there have been several other re-

where t =(m, —m ) is the maximum four-momentum
transfer. However, if the light degrees of freedom of
these hadrons have an "effective mass" m&

—
AQCD then

this frame is their Breit frame and they experience a
momentum transfer
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QI — 2miy TVT

with

t—=—Q=4y U m

We note that

(12a)

(12b)

B. A valence parton model

With these arguments to guide us, we begin our exam-
ination of the H; ~H. transition in a frame boosted to
"infinite" velocity U along an axis z transverse to the ve-
locities +vT in the Breit-like frame introduced earlier
where H;( —vT ) ~H (+vT ). In such a frame, the initial
and final four-momenta are

m1
Q,

'= (t t )—
mi m J.

(13)

pP=(ym, , —m, v7. , ym, U),

pi'=(ym, +mj vT, ym~ v),

(14a)

(14b)

4m, m-
m~(
ml

beyond which point bpT-m~, the quark Q~ is no longer
approximately static in its rest frame, and structure in H.
on the scale m ' will be revealed. We will see below that
this requirement is too strict, but even it suggests that the
heavy-quark relations of Ref. 1 will be valid over the full
B~D and B—+D* Dalitz plots.

is much smaller than t —t. In the rest frame of the
heavy-quark hadrons such a momentum transfer corre-
sponds to a momentum spread in the direction of vT of
bpT —(mi lm;m~ )(t —t ) in either the initial or final
heavy hadron. One would as a result naively expect the
heavy-quark relations to hold so long as

where y=(1 —
U )

' and mk =mk(l —vT) ' is the
T

"transverse mass" of Hk. Since in general m;Wm, , in
this frame the transition can involve an "infinite"
momentum change, but from the perspective of the
heavy-quark symmetries this is irrelevant: the large
momentum difference p; ~p is due to the mass difference
between the heavy quarks Q, and Qz, while the light de-
grees of freedom whose symmetries interest us are ex-
periencing finite momentum transfers independent of the
m; that are proportional to y TvT. This observation, in-
cidentally, suggests that the scaled momentum fraction
u =(m; /m& )x will be a more useful variable for this prob-
lem than the usual Bjorken scaling variable x.

In this section we consider a parton model in which H;
is dominated by its valence-quark structure: Q; and a
light antiquark (taken to be d for concreteness). Then

1/2
2mi md dxd pT

P (x,pT)IQ; ([1—x]P;, pT, s)d (xP—;,pr,'s)),
x(1—x) (15)

where with

g J dx d'pTly", (x, pT) '=1,
SS

and quark states normalized to

(16)

is related to t by Eq. (13)],and 4„ is a universal limiting
wave function defined by

(18a)

(q (p', s')Iq (p, s))=& &, , &'(p' —p),

H, is conventional. ly normalized to 2E5 (P' —P). In Eq.
(15), s and s are spins, a is a color index for N, colors, the
P' are functions which couple the spins and momenta to
the quantum numbers of the hadron H, and x is the
longitudinal-momentum fraction along P;. In this naive
model, the state of the light degrees of freedom in H; can
depend on Q, only through P;: the constitutent anti-
quark is assumed to be structureless.

In the framework of this model, which is very similar
to models considered in Ref. 12 in connection with the
pion form factor, one can easily show that the universal
function g(t) of Ref. 1 is given by

g(Qi ) —Jdu d pT@„(u,pT+uQi) @„(u,pT),
where Q& is exactly the "heuristic" momentum transfer
to the light degrees of freedom defined in Eq. (12) [which

where

m1

mi+m,

1/2
m1

m+mmt m1
(18b)

The function 4 expresses the fact that as m; ~~, the
P, differ only by a kinematic shift of the momentum frac-
tion of the light degrees of freedom to smaller x and a
trivial normalization factor induced by Eq. (16). [We
have suppressed the spin indices of 4„ in (18) as well as
in (17), where they are implicitly summed. ] It should be
noted that similar formulas can be derived in other
frames, but that such formulas will typically involve addi-
tional kinematic factors. Such alternative formulas are as
a result especially sensitive to (15) being a solution of the
equations of motion of the theory (see Ref. 12).

We now investigate the possible breakdown of the
universality of g(Q& ) from violations of the heavy-quark
symmetry in terms of this simple model. There are two
basic ways in which the state of the light degrees of free-
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+QCD5P;-a, (mlpT) y(pT/m;)
m;

(19)

for pT &)AQcD, where y is a normalized pT wave function
with y(p)~0 for p&&1. In contrast to the "reduced
mass effect, " this effect could, at suKciently high pT,
make P; very different from 4: 5P;/0& will be of order
unity when p(pT)/p(0)-a, AQcD/m;. We now examine
the effects of these two kinds of distortions of g as given
in Eq. (17) more quantitatively by defining

g,;(Q ') =if du d'p P, T( pu+ TQIu)*(t;( pu),T(20)

dom represented by the d quark in Eq. (15) differs from
the limiting case m;~ ~: (1) the rms transverse momen-
tum in P, will depend on m;, approaching a constant
value of order AQcD as m;~ ~, and (2) interactions be-
tween the d and Q; with a range m, will induce a high

pT tail to P; with a strength which vanishes as m,.~~.
(By rotational invariance analogous changes are to be ex-
pected in the x distribution: see below. ) The simplest ex-
ample of the first effect is the perturbation about m; —+ ~
from the heavy-quark kinetic energy; in a nonrelativistic
bound-state problem this effect can all be absorbed into
the two-body reduced mass. The prototype of the second
effect is the distortion of the state of the light degrees of
freedom produced by short-range color-magnetic effects.
The preeminent such effect in low-energy hadron phe-
nomenology is the Fermi-Breit spin-spin interaction
which arises from color-magnetic fields of range m;
about the position of the heavy quark Q, . At higher en-
ergies this interaction becomes the transverse hard-
scattering process which is eventually supposed to lead to
an asymptotic power-law behavior of the form factors. '

We now estimate the sizes of these two effects. We be-
gin by noting that if P; behaves like (a~pT ) for large pT,
where a,.~a as m, ~ oo, then 5$/N„= n5a la „—is
independent of pT and of order AQcD/m;. This suggests
that a parametric change of the rms pT with m; may not
lead to a failure of the approximate equality of the P, at
large pT. (We will see below that a much less demanding
condition is actually required to guarantee the symmetry
of form factors. ) The existence of short-range interac-
tions of scale m; can be expected to produce a small
long-range tail to P;:

gNR(t)
/J

m~2( t t )—

24p;, m;m.
(23)

as in the first work cited in Ref. 14. In real heavy-quark
mesons we expect the U's to be functions which have
most of their strength in the neighborhood of u = 1, but
which have a natural width Au —1 corresponding to the
fact that light quarks have only one scale AQcD determin-
ing their momentum distribution. For example, if

Uk='1/ 2aku exp( —
—,'aalu ),

then one has

(24a)

a; m& (t t )—

p2" a;aj 4p,"a,a m;m.

where a, . = —,'(a,. +a ), This example illustrates a feature
which is quite general: for large (t t), g—l.;(t) will be
dominated by the end-point region u =0, and the sharp
nonrelativistic drop of the form factor with t —t seen in
Eq. (23) will be softened. Equations (24) illustrate the re-
mark made earlier on the lack of impact of the paramet-
ric dependence of the rms pr values (here characterized
by the p's and a' s) on the symmetry of the form factors.
It shows that even a Gaussian pT dependence (which falls
faster than our earlier polynomial example and would

eventually lead to 5$/4„& 1 at high pT) leads to a soft
dependence of the form factors on the p's and a' s. To see
this, expand pk and ak around mk ~ ~
[/3k =P„(1+P'mI/mk) and a„=a„(1+a'm, /m„) j.
Then we see that b,g, /g=O(m&/m ) for all values of t.
We also note using these expansions that Eq. (24b) gives

(t~,„)=1+0(m& /m~ ) as demanded by the
Ademollo-Gatto theorem. ' Examination of models for
P(u, pT) (including ones which do not factorize and ones
with other functional forms for the pT and u dependence)
leads one to the conclusion that this qualitative behavior
is quite general.

Let us next consider the effect on g;(t) of a high-pT tail
like that of Eq. (19). We begin with an extension of the
above example, adding a function corresponding to the
right-hand side of Eq. (19) to the pT wave function in
(21). With

—p /2P.
P;(u, pT)= U;(u) — e

harp;

(21)

where P and P; differ from N by the subasymptotic
effects noted above. For orientation, consider an example
where the pT dependence is integrable:

1 ~ 2T /2132

PI, (u,pT ) = U(u) — e

+ s QCD 1 —p /2~T k

mk &~m„

if U(u)=i 2a u exp( —
—,'a u ) we obtain

(25a)

i.e., where P, is the product of separately normalized
functions of u and pT. Then

g~;(Ql )= f du U~*(u)U, (u)e
IJ

(22)

where /3;—:—,'(/32+P ). If the heavy-quark mesons were
nonrelativistic objects, m& would be m& and the U's
would be sharply peaked around u = 1, giving

g,;(t)=

1

1+mI ( t —t ) /2a m J m,

(25b)

1

mf(t t)—
1+

4a /3 m, m,
r

s QCDP

m.J
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2a, wQCD& 1—
m.J

,'(t t)—
u

2mJ m;

where ( u ) is the mean-square value of u in U, i.e., a
number of order unity, while for large QI /m it gives a
contribution of order

where one can ignore the effect of the tail of P;, which
will be smaller since m; & m . It is easy to see that in this
model the leading term in (25b), which is of course the
function g'(t) of Eq. (17), is dominant for all t: for
(t —t)I4m, mj &m /mt it is very dominant, while for
larger values of t —t it is weakly dominant by a power of
a, (Qt ). This is the condition originally quoted in Ref. l.

In drawing this last conclusion we have ignored the
low u analogue of the high-pT tail in the longitudinal
wave function U(u). This is consistent because the high-

pT tail does not "need" u ~0 until Q&
—m correspond-

ing to (t t)I4m—
~ m; =. O(m Imi ) Of. course by rota-

tional invariance one could in principle also discuss the
above restrictions in terms of the normal pT wave func-
tion being affected by the low-u tail.

Within the context of such a model, this qualitative
conclusion on the lack of impact of the high-pT tails is
quite general. Equation (22) is dominated by small u for
large Qt /P, g(t) in this region will depend only on the
small u behavior of U, and if U(u)-u~~,
g(t)-[4P mjm; Im& (t t)]'~—" . On the other hand,
for Qt /m small, the high-pT tail of P will give a contri-
bution to gj; of

restriction on t —t arises from demanding that the soft
contributions dominate over hard contributions con-
trolled by the heavy-quark scale.

The models we have just discussed for the high-pT tail
are based on Eq. (19), which was in turn suggested by
general arguments on the decoupling of the heavy quark's
spin from the light degrees of freedom. ' It is consistent
with phenomenological models of hadron structure in
which deviations from the heavy-quark symmetry would
arise from quark hyperfine interactions. However, we
can also discuss such effects in terms of the asymptotic
behavior of the form factors predicted in perturbative
QCD. ' Even if one were to accept the argument that
these asymptotic predictions are not applicable at avail-
able momentum transfers, ' perturbative @CD at least
ofters an alternative to the end-point model for the phys-
ics controlling the large recoil behavior of the form fac-
tors of interest here. In this model, the large recoil which
the current imparts in the Q; ~Q transition is
transferred to the light "spectator" degrees of freedom by
hard (transverse) gluon exchange. Since each such ex-
change costs a power of a, and a power of Q ~, the
asymptotic behavior is controlled by the valence sector of
Fock space. In our case it will be given by the transition
Q;d ~Qjd (where now d is not a mnemonic for light de-
grees of freedom with d quantum numbers, but rather the
d current quark). The contributions 6f+ of these pro-
cesses to the P, ~P form factors f+ can be shown to
have the form

as +QcDf
m.

J

' (p+1)/23m m, .

m,'(t t)— a, (Q,')m,
&f+ ~,QCD 9+ PQI )

mJm;
(27)

m.J
a, (Q,')m,'4mJ m(.

Thus for p ) 1 the region in which g, =g is
' 2/(p + 1)

(26)
f+ f—

mJ

where g+ are constants of order unity and g(Qt2)
-mt /Qt for Q& ))m&, in contrast with the predictions'

—6/(33 —2Nf ) 1/2a, (m, ) m,
g( Qt')

a~ m~

while for p & 1, g; =g' for all t. Recall that p =1 is espe-
cially interesting because, as explained in Ref. 12, it is
favored by measurements of the pion structure function.
[Note that the condition p & 1 is required if one demands

gj, =g for all t for all mj )AQcD However, for a given
m the actual requirement is only that p & 1+in(1/a, )/
ln(m /mt). Thus, e.g. , the high-pT tail associated with
the charm quark would not break the symmetry so long
as p is less than about 1.5.]

Following Ref. 12, one can also consider many variants
on models for the wave functions (nonfactorizing wave
functions, alternative functions of pT, including L,AO
components, etc. ). On doing so one will find no depar-
tures from the basic conclusion that, at least in the simple
valence parton model picture of this section, the form
factors g, (t) can be expected to respect the heavy-quark
symmetry so long as a restriction comparable to Eq. (26)
is satisfied. This restriction is similar to the one obtained
in Sec. IIA, but we now see that the simple argument
given there was somewhat misleading. The end-point
contributions to form factors always have p„-AQ+D so
they never ruin the heavy-quark approximations: the real

f++f a, (m;)
—6/(33 —2N )f

a, (m, )

1/2

(28a)

(28b)

4m) mJ cx, mi
(29)

which still leads comfortably to the conclusion that the
heavy-quark symmetries will apply throughout the B—+D
and B~D* Dalitz plots even if p&1. Comparison of

of heavy-quark symmetry. In terms of our previous more
general language, we can say that the form factor g in Eq.
(28a) receives a high-pT correction of order (a, m& /m; g
while the g in Eq. (28b) receives a correction of order
(a, mtlmz)g. This is consistent with the general frame-
work introduced above to discuss such effects [compare
to Eq. (19)]. If p =1 so that g mt /Q& a—s does g, then
g; =g at all recoils. The more general conclusion analo-
gous to Eq. (26) is that for p ) 1, g; =g, so long as

2/(p —1 )
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Eqs. (29) and (26) shows that while they indicate the same
qualitative behavior, a precise statement of the conditions
for the breakdown of the universality of the g; at large
recoil must await a better understanding of the dynamics
responsible for high-pT exclusive processes.

C. Conclusions on Q; —+ QJ transitions

The light degrees of freedom of a heavy-quark hadron
H,. are much more complicated than they are represented
to be by the simple valence parton model we have just
discussed. Nevertheless, at low momentum transfers,
where the state vector could be constructed of the
effective degrees of freedom of QCD cut off at some low
scale p-1 GeV, the valence model has phenomenological
justification from the quark model. With a different in-
terpretation, the model also has some justification at
large Q& where we have actually used it. The reason is
that one expects these form factors to be dominated by
the simplest, i.e., valence, sectors of a Fock-space expan-
sion of the states involved since there is a large penalty to
be paid for each extra constituent which must be given a
large momentum transfer. In the case of end-point domi-
nance emphasized here, this penalty is that one must find
each of the "spectators" at small x so that essentially the
full momentum transfer can be delivered by the
current. ' ' In the study of exclusive processes in pertur-
bative QCD, ' higher components of Fock space are
suppressed by the quark-counting rule powers of Q
|and by powers of a, (Q )]. Thus, if we view the valence
calculations considered above as the leading term in an
expansion of the high-QI behavior of the form factors
(and appropriately renormalize the probability of this
component of Fock space) they can be justified at high
Q2

I conclude that Eq. (26) is a reasonable guide to the
range of validity of the heavy-quark symmetry relations.
Since for 8 —+D and B~D* transitions the left-hand
side of Eq. (26) is 5 —,', it therefore seems likely that the

Q, ~QJ relations deduced in Ref. 1 are valid over the full

Dalitz plots for these decays.

III. Q; —+q TRANSITONS

The heavy-quark symmetry cannot give absolutely nor-
malized predictions for exclusive form factors such as
B~sr, 8~p, etc. , induced by a heavy-to-light (Q, ~q
where q =u, d, or s) operator, but it can relate them' to
other heavy-to-light transitions (in this case to D~~,
D~p, etc.). Such relations are guaranteed to hold for t
near t, and their validity in any region near t is
sufficient, for example, to allow the model-independent
determination of V„b. However, it would be convenient
in this regard if the relations were to hold everywhere in
the D~X Dalitz plots, since this would provide a max-
imum overlap with the B~X processes: of the full
range 0 (t t)/t 1, the ra—nge 0~(t t)it-
would then be related to D ~X decays. In other cases it
would be more than just a convenience if the heavy-quark
relations were to hold over the full kinematic range. The

rare 8 decay 8 —+E *y involves matrix elements that cor-
respond to those in B~pev, at t =0 in the SU(3)-flavor
limit, and other decays like 8 —+Re +e and
8 —+K*e+e involve matrix elements that are directly
related to those in operation in D ~Re v, and
D~K ev, decays.

Heavy-to-light transitions lack the basic simplicity of
the heavy-to-heavy transitions where the heavy quark
defines the velocity of the hadron, thereby allowing us to
work in the Breit frame of the light degrees of freedom.
This difficulty is especially apparent in the case of the
pion where it is clear that transition form factors such as
8 ~m will not primarily be related to the pion s velocity:
this form factor should be a stable function of momentum
transfer as we take the chiral limit m„, md —+0, but the
pion's velocity for a given momentum transfer is not.
The dynamical origin of this difFerence between Q, ~Q~
and Q, ~q is clear: in the light hadrons, two "constituent
quarks, "each with intrinsic scale AQCD bind to each oth-
er with energies that have the same scale. One cannot as
a consequence identify the "constituent quark" in, e.g. ,
the 8 with one in the vr or p (although I would speculate
that in the latter case this identification might not be too
bad), and as a consequence one cannot identify a Breit
frame for such transitions. Such a frame can still be
defined for elastic form factors such as the pion elec-
tromagnetic form factor F (t). This allows in principle
for the calculation of such form factors at all t in terms of
the parton-model framework of Sec. II as was done in
Ref. 12. One can also define such a frame at asymptotic
momentum transfers where Qt —t is much larger than
the mass of the initial and final particles. This latter pos-
sibility is of little use to us here, but it is important for
the asymptotic calculations of Ref. 13. An explanation of
the role of this frame can be found in Ref. 17, which
derives the connection between Breit-frame form factors
and the Fourier transforms of "charge" distributions. In-
tuitively, the charge distribution in the pion is stable as
one approaches the chiral limit since it is associated with
the scale AQCD Scattering in the Breit frame probes this
charge distribution with a pure spacelike momentum
transfer q"= (0,Q ) corresponding to the spatial resolu-
tion Q '. When such a frame is not available and the
momentum transfer has a time component, this simple
picture is lost.

This elementary discussion suggests that a qualitative
picture of inelastic form factors involving light hadrons
can be obtained by treating each "constituent quark" of
effective mass mI as part of a hadron with effective mass
2m& (i.e., in analogy to heavy-quark hadrons), so that a
Breit frame can be defined. The resulting form factors
are then independent of the actual hadron mass but will
depend on the crudely defined scale mr. While this
method can be expected to produce only qualitative re-
sults in those cases where a Breit frame does not exist,
this is sufficient for our present limited purposes where
we are not trying to calculate the heavy-to-light transi-
tion form factors, only to understand the ranges over
which they are independent of m;. Our assumption is
that this range will not depend very strongly on the na-
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ture of the light hadron.
Having adopted this framework, we can simply go

back to our discussion of the Q, ~Q transition, let
m =m&, and examine the dependence of form factors on
m;. We begin with the heuristic argument, which now
indicates that

Q/ ~(2 q= (t —t),
mt.

(30)

(31)

which by Eq. (18a) becomes a function gx (Q/ ) indepen-

dent of i for large m, as required. Note that since P» is
q

Q —,'Px ( —,'x, pr), the integral over u runs from 0 to 2 in-

stead of 0 to m /m/~ ~. (The tail of P; at u ) 2 corre-
sponds to spectator d quarks with such a large share of
the momentum of P, that their momentum exceeds the
total momentum of X .) At Q/ =0 we obtain

g», (t,„)=f du f d'pTP» (u, pT)P, (u, pr) . (32)

Note that if the "constituent quark" d in P; and X could
be identified, and if their momentum distributions were
identical, then one would have g», (t,„)=1. Although

q

this identification cannot be made and although the
momentum distributions will differ by not only binding
eff'ects but also "reduced mass" eff'ects, Eq. (32) suggests
that gx;(t,„) will not only be constant as m, ~ oo but

q

also large.
Let us now turn to the question of the range in

t t =(m, /m/)Q/ over —which g», (t) in Eq. (31)
q

remains independent of i. We proceed as before by con-
sidering the case where the wave functions factorize with
a Gaussian pT dependence as in Eq. (21) to give

corresponding to a momentum spread in the rest frame of
the initial heavy-quark hadron H; of bp —(t —t)/m,
Since for t =0, Ap-m;, this naive argument indicates a
potential failure of the heavy-quark symmetries at the
highest recoils, since at such momenta Q, will not be a
static quark and structure in H; with the scale m; will
be revealed.

From our more detailed study of Q, ~Q transitions
we know that the actual situation is more complex: this
naive argument does not take into account the fact that
end-point dominance always produces a limited Ap so
that the real restrictions on t —t arise from the competi-
tion between such soft processes and hard processes. For
the P;~X transitions with X =m, p, . . . we will en-
counter the form factor analogous to g&, in Eq. (20),
namely,

g»;(Q/ )=f du f d pTP» (,u pT+uQ )/t/(/, u pT),

(Gaussian) form factor, but as Q& /4P;x becomes large,
q

the integral will be dominated by the u —+0 end-point re-
gion. Thus, although the ansatz (24a) is not appropriate
for U& for u ) 1, if the U's —u at small u we still have

4P p
' (p+1)/2

x / (34)

(35)

or, i.e.,

t

m.
I

m;
(3—p)/(1+p) - - 2/(]+ )p

(36)

(I have replaced the p's and AQCD by m/ for simplicity. )

Since in the physical region the left-hand side of Eq. (36)
is less than one, this condition is easily met.

As with Q;~Q decays, one can easily check that
these qualitative conclusions are not affected by our as-
sumptions regarding the form of the wave functions.
End-point dominance of these form factors in the regions
of interest also means that the pT being probed is always
of order AQCD so that the condition ituc2=u on the
heavy-quark spinor required to derive relations between
some relevant b —+s operators and the vector- and axial-
vector-current matrix elements in c~s and b~u is
satisfied. Thus we can also expect H;~X relations
based on the heavy-quark symmetry to be valid over the
full available kinematic range.

One can also consider once again the contributions of
perturbative QCD to the form factors at large recoil. In
Q ~q transitions, the analogue of Eq. (27) is

' 1/2

&f+ ~pQcD-&+~s(Q/') 4(Q/'» (37)
m;

in contrast with the predictions'
j/2

for large Q/. We recognize this as being analogous to the
situation in Q, —+Q transitions: since p is of order unity,
a weak dependence of the parameters of the wave func-
tions /t/; on m; will not destroy the heavy-quark symme-
try at any Q/ since these parameters all approach limit-
ing values as m, —+ ~.

We next consider the effect of the high-pT tail of P, in-
duced by physics with the scale m;. The discussion is
similar to that in Q, ~Q except that now it is the tail of
Q; which is relevant. This produces a contribution to

which has strength ~, AQCDp/m; at low Q/ and
q

which decreases significantly only for Q/ )m;. Thus in
the physical region for the decay, the form factor gx,
will be independent of i provided

(p + 1)/2
m(

Q2

k», (Q/')=
~/~X 2 ~ 0/'&413~/~' f du U» (u)U(u)e ' . (33)
&';x

q

As before, in the nonrelativistic approximation the U's

peak at u =1 and one would obtain a rapidly falling

f f =C(m, , m/)g —(Q/ )

1/2
mlf +f =C(m, , m/)(+(Q/ )

(38a)

(38b)
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where the C(m, , mt) are known and where now g+ are
independent unknown functions. We see that
5(f++f ) preserves the heavy-quark symmetry rela-
tions. The perturbative contribution to 6(f+ f—

) is
down by a factor o.,m&/m; with respect to the low recoil
form (38a), consistent once again with our general
analysis. The perturbative tail from high-pT components
induced in X by hard gluon exchange after the current
acts is clearly independent of Q, for fixed v and v' and so
will satisfy the heavy-quark symmetry relations (e.g. , the
contribution to f++f above); the perturbative tail of
P, induced by hard-gluon exchange before the current
acts will, on the other hand, depend on Q, and therefore
violate the symmetry, but it is suppressed by u, m&/m,
relative to the nonperturbatively induced efI'ects at low

Qi. In analogy to Q, ~Q decays, if p =1 then gz, is
q

approximately independent of i for all t; the more general
condition is that for p ) 1, g», =gz, so long as

q q

(p + i )/2
ml ml

& ct, (Q(')
Qr' m;

(39a)

or, i.e.,

m.
I

(3—p) /(p —
& )

m; 2/(p —1 )
1

(39b)

to be compared with (36). Once again, this condition is
easily met in the physical region.

IV. OVERVIEW AND CONCLUSIONS

This paper has been devoted to the consideration of
various models for the large recoil behavior of weak ma-
trix elements in order to study the region of applicability
of form factor relations based on the heavy-quark sym-
metry of Ref. 1. These investigations indicate that the re-
lations are surprisingly resilient: they should be main-
tained even at recoils comparable to the heavy-quark
mass scale. In the region of end-point dominance (which,
according to the picture of Ref. 12, should include the
full kinematic regions of interest here), it is more prob-
able to find the "spectators" to the weak decays Q; ~Q
and Q, ~q at low x in both the initial and final hadron
with pT-AQCD than to find them near their average x
with a very high pT. As a result, the mean pT probed in
the hadronic wave functions in the end-point-dominance
region is always small: the large recoil is almost all pro-
vided by the pointlike operator. This means first of all

that a parametric dependence of the pT distribution on
the heavy-quark mass will not upset the heavy-quark
symmetry relations. It also means that any efFects of
symmetry-breaking high-p~ tails in the wave functions
are postponed to higher recoils than one would naively
expect. To estimate the recoil at which this crossover
occurs, I introduced a schematic model for a symmetry-
breaking high-p T tail induced by short-range color-
magnetic forces. Since such efIects are suppressed by cz,
and by powers of mi/m&, and since the end-point mecha-
nism allows the low-pT wave function to contribute to
high recoil, such a high-pT tail only breaks the heavy-
quark symmetry at very large recoils. This general, but
schematic, analysis strongly suggests that such symmetry
breaking is not important in the cases considered. As a
particular example of such a generic symmetry-breaking
mechanism, I have also considered the possibility that at
the highest recoils the end-point mechanism may be over-
taken by the asymptotic one' in which it becomes favor-
able to create high pT directly in the wave function at the
expense of a hard-gluon exchange. In this region, contri-
butions from high pT in the initial and final wave func-
tions have the same t dependence, but are suppressed by
a, m ltm, and cz, m ltm, respectively, for a Q, ~Q tran-
sition, transition, and by o.,m&/m, and a„respectively,
for a Q, ~q transition. In the Q, ~Q transitions, the
symmetry is broken„but only by terms of order a, mI /mz
with respect to the end-point contributions. Such terms
are not expected to become dominant in the 8 —+D and
B~D Dalitz plots of immediate interest here. In the
latter case contributions from the high-pT tail of the light
hadron continue to respect the symmetry so that
symmetry-breaking terms are of order cx, mI/m;, and it
seems unlikely that such terms ever become important in
the P, ~X Dalitz plot. ' I conclude that the heavy-
quark relations will be valid over the full kinematic
ranges available in the particular case of b~c decays as
well as in all Q~q decays including the b —+s, b~u,
c~s, and c ~d cases of immediate phenomenological in-
terest.
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