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Meson-baryon reactions in the three-flavor Skyrme model
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The consequences of the three-Aavor Skyrmion model for the reaction M+8 ~M'+8', where M
and M' are 0 octet mesons, 8 an octet baryon, and 8' an octet or decuplet baryon, have been stud-
ied by Karliner and Mattis at the level of partial-wave amplitudes. Using their results, I show that
the partial-wave sums for certain combinations of spin amplitudes corresponding to definite spin in
the t channel may be carried out explicitly. It is found that the 30 independent SU(3) amplitudes (14
for the octet and 16 for the decuplet) may be written as linear combinations of only 10 reduced arn-

plitudes. The relations found acquire a particularly simple form when expressed in terms of t-

channel SU(3) amplitudes. A subset of charged-meson elastic-scattering amplitudes may be used to
determine seven of the reduced amplitudes; the remaining three correspond to an exotic t channel in

decuplet production and are probably small. The resulting scheme is highly predictive.

I. INTRODUCTION

An extremely thorough comparison of the predictions
of the three-Aavor Skyrrne model for the scattering of
pseudoscalar octet mesons on octet baryons with the
available data has been carried out by Karliner and
Mattis. ' They used data in the form of partial-wave anal-
yses of thirteen different reactions involving pion and
kaon beams on nucleon targets, yieM. ing an octet pseu-
doscalar meson and either a spin- —,

' octet or a spin- —', de-

cuplet baryon in the Anal state. Their assessment was
that their model provides a good description of ~X reac-
tions, a poor description of KX reactions, and mixed re-
sults for KX reactions. The model assumes SU(3) symme-
try, which is certainly not exact, and it expresses all
partial-wave amplitudes in terms of a set of "reduced
partial-wave amplitudes"

I IYI+EL'L

Here L' and L denote the final and initial orbital angular
momenta, the pair II, YI takes on the values of the stan-
dard octet, I 1,0I, IO,OI, I 1/2, 1), and

a
1/2, —1), respec-

tively, and the index K is such that the triangle inequali-
ties involving both (KIL) and (KIL') are satisfied. If the
final baryon has spin —,', then L'=L, and there are eight
different reduced amplitudes, while, if it has spin —„there
exist two additional amplitudes with L ' =L +2,
K =L+1, and IIYI= I 1,OI. Th'ese reduced amplitudes
are functions of energy, and may be computed numerical-
ly by solving a potential scattering problem. The overall
relative success of the model was considered encouraging
by the authors, despite a few areas of disagreement.

In subsequent work on the two-flavor Skyrme model, it
was observed by the present author that the predictions
of the model appeared simpler when expressed in terms
of t-channel rather than 5-channel isospin amplitudes.
In addition, the particular form of the Skyrme expression
for the partial-wave amplitudes was such that the sum
over J, the total angular momentum, could be carried out

explicitly, yielding the various spin amplitudes as linear
combinations of a smaller number of reduced ampli-
tudes. Even if one assumes the reduced amplitudes are
unknown (which is my own viewpoint), the model is high-
ly predictive, and rather successful. Mattis and Muker-
jee discovered the selection rule I, =J„which requires
that a combination of partial-wave amplitudes corre-
sponding to a given t-channel isospin I„and what they
termed the t-channel spin J„vanishes unless the two are
equal. I then showed that their quantity J, may be inter-
preted in terms of the maximal spin-Qip at the baryon
vertex. An additional prediction of the two-Aavor model
is that the reactions ~%~~X and ~X—+~A are de-
scribed by the same reduced amplitude for I, =J, = 1, the
corresponding cross sections being in the ratio of l:2.
For these reactions there exists one reduced amplitude
with I, =J, =0 (~X only), another with I, =J, = 1 (both
mX and nb ), and three with I, =J, =2 (mh only), for a
total of five. This is to be compared with two spin ampli-
tudes for each isospin in ~X, and four for each isospin in
~A, for a total of twelve. Although these predictions are
not perfectly satisfied, they do provide a reasonable
description of ~X reactions.

A natural question is whether anything similar hap-
pens in the three-flavor model of Karliner and Mattis.
This paper provides the affirmative reply, which is ob-
tained by computing fixed J, amplitudes using the tables
presented in Ref. 1. There are four reduced SU(3) ampli-
tudes with J, =0 (final baryon in octet), three with J, =1
(final baryon in the octet or decuplet), and three with
J, =2 (final baryon in the decuplet). This is to be con-
trasted with seven allowed SU(3) amplitudes for each spin
possibility for the octet (14), and four allowed SU(3) am-
plitudes for each spin possibility for the decuplet (16).
Thus a total of thirty amplitudes may be expressed in
terms of ten reduced amplitudes.

Although this may be seen to occur simply by forming
the s-channel SU(3) amplitudes of definite J„consider-
able conceptual simplification occurs upon crossing to t-
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channel SU(3) amplitudes. The constraints of the model
are that certain t-channel amplitudes are zero, and for
those with J, = I, the spin- —,

' amplitudes are proportional
to those of spin —,'. There exists thus a strong parallel be-
tween the two- and three-flavor results. However, some
predictive power of the two-flavor model is lost. For ex-
ample, the I, =J, selection rule of the two-flavor model is
predictive for ~X elastic scattering, the I, =0 amplitude
is non-spin-flip, while the I, =J, = 1 amplitude is spin-flip.
In the three-flavor model this property is lost; the four
amplitudes are unconstrained. Nevertheless, the four ~X
amplitudes determine two of the four J, =0 SU(3) ampli-
tudes, and two of the three J,= 1 SU(3) amplitudes. This
leaves only two J, =0 SU(3) amplitudes and one J, =1
SU(3) amplitude to be determined, if one limits the dis-
cussion to final spin- —,

' baryons. Once these remaining
amplitudes are determined, using some EÃ scattering
amplitudes, for example, the three-flavor model becomes
highly predictive.

The paper is organized as follows. In Sec. II the ampli-
tudes of definite J, are introduced and the results of Kar-
liner and Mattis are used to establish the ten reduced s-
channel amplitudes. The SU(3) crossing matrices of Reb-
bi and Slansky are employed to express the results in
terms of t-channel SU(3) amplitudes in Sec. III. In Sec.
IV the four non-spin-flip and the three spin-flip reduced
t-channel amplitudes are related to the elastic amplitudes
for charged-meson scattering, and the predicted con-
straints among the latter are displayed. The conclusions

are presented in Sec. V. All of the relevant results have
been collected in numerous tables, since my aim is to
offer easy access to the reader who is more interested in
the results than in their obtention.

II. AMPLITUDES OF DEFINITE J,
To a large extent I shall employ the notation of Kar-

liner and Mattis, ' although some departures will be
necessary. The standard formulas relating the partial-
wave amplitudes to the spin-projection amplitudes are
taken from Goldberger and Watson, except that I use
3-j rather than Clebsch-Gordan coeKcients. The
partial-wave amplitudes

are indexed by the total angular momentum J„I. and I.',
the initial and final angular momenta, respectively, and
by s and s', the initial and final baryon spins (here s =

—,
' ).

Parity conservation in this case requires that I. —I. be
even. The spin-projection amplitudes are denoted T, „
where u' (u) is the z component of the spin of the final (in-
itial) baryon (the choice of the axes in the c.m. is arbi-
trary but the axes in the baryon rest frames are related to
the c.m. axes by pure Lorentz tran sformations or
"boosts" ). They are functions of the c.m. energy and pro-
duction angles, although this dependence will not be ex-
plicitly displayed. The T... may be written in terms of
the partial-wave amplitudes as

T, , = g (2J, +1)(—1)
LL'MM'

M J

I.' s'

where the standard 3-j symbols and spherical harmonics
YI are used. The c.m. directions of the incident and out-
going mesons are given by the spherical polar angles
(8,$) and (O', P'), respectively. I introduce the following
linear combinations of these amplitudes:

s' s J,
U

—
U MI I (2)

where J, is coupled to the spins of the initial and final
baryons via a 3-j symbol. It corresponds, in this case, to

J
TABLE I. The amplitudes f' L', .I „/2, of Eq. (4) in terms of the partial-wave amplitudes TL', L „/„ for

L =L'.

S' ( 1) Q(2Ji+1)(2L+ 1)f L~L(i/2j

+2[(L' + I )TL(1 2 LI /I/)2) +LTL (I/2), L (I/2) ]

L + 1/2 L —1/22L (L + 1)(TL(1/2)L(1/2) TL(1/2)L{1/2) )

&(2L +3)(L + 1)TL(3/2)L(1/2) + L (2L 1)TL(3/2)L(1/2)

&(2L —1)(L + 1)TL(3/2)L(1/2) I (2L +3)TL(3/2)L(1/2)
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TABLE II. The amplitudes IL'(3/2)L(1/2) of Eq. (4) in terms of the partial-wave amplitudes
J

TL'(3/2)L(1/2) for L =—L'+2.

L =L'+2

L =L'+2

L'+3 25Z L (3/2)L(1/2)
—( 1) (2L +4) TL (3/2)L+2 1/2

5 + L'(3/2)L (1/2) ( 1 ) (2L 2) TL'(3/2)L —2, 1/2
2 L i 1/2 L' —3/2

the variable introduced by Mattis and Mukerjee in Ref. 4.
By using a standard identity relating 3-j and 6-j sym-
bols, one may write these amplitudes in the form

cident meson to proceed along the positive z axis, which
makes

Yl. (&,P) = [(2L +1)/42r j'~'5~o .

T & —g ( 1)M
LL'

MM'

L'

X T ', Y ~ (O'P')Y (8$)* (3)

tL
w J s'+ JT I',, L, = g (2J, + 1)( —1)

J,

s' J,S J
J TL's'Ls r (4)

~ J
where I have introduced the quantities T I', t„which are
defined by

With this choice the summation over M and M' in Eq. (3)
reduces to the single term with M'=M, . The arguments
(hereafter suppressed) of all spherical harmonics which
occur henceforth are understood to be (O', P'), the angles
of the outgoing meson. With this choice, those ampli-
tudes with M, negative are related to those with the
same, but positive value, by parity.

Then, using the numerical coefficients given by Kar-
liner and Mattis in their Tables XV and XVII, one may
calculate the predictions of the three-Aavor model for the

TM in terms of their reduced partial-wave amplitudes
t

rgb, L. The results may be summarized as follows.
For J, =M, =0, the seuen s-channel SU(3) amplitudes

To(I2) [here the final baryon is in the octet and p denotes
the various SU(3) representationsj, may be written as
linear combinations of four reduced amplitudes which I
call f j

where the standard 6-j symbol has been used. When
s =

—,', one may use expressions for the 6-j symbols given

in Ref. 8 to obtain the explicit form of the T L', L, (i/2) for
s'=

—,
' and —,'. They are shown in Table I when L =L' and

in Table II when L =L'+2.
In the remainder of the paper I shall choose the in-

To(p) —g C(IYj( )f (Irj
I IYI

The four f j j have the following partial-wave expan-

TABLE III. The coefficients CI ~(p) of Eq. (5) expressing
the s-channel SU(3) amplitudes To(p, ) in terms of the f j

TABLE IV. The coefficients CI I(p) of Eq. (7) expressing
the s-channel SU(3) amplitudes T', (p) in terms of the gI
when the final baryon has spin —,'.

T()(p ) /&2

&27127 &

& iol lo&

& 1ol lo&

2
15
1

5

1

20
1

4—1

4v'5
0

14
135

1

15
4
15
3

20
1

12

4&s
0

f jO, oj f j l, oj f j 1/2, 1j f j1/2, —1j

1

9
1

5
1

5
1

2
1

2

2~S
1

&3T)(p)

( tol to)

(1o11o &

&s, ls, &

& 8,18, )

( 1,0I

6
135
—1

15
2
15—3
20—1

12—1

4v's
0

I 1/2, 1I

4
27
—2
5

I 1/2, —
1

I

1

135
1

15
1

15
1

10—1

6—1

2V'S
—1
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TABLE V. The coefficients CI I(p) of Eq. (7) expressing the
s-channel SU(3) amplitudes T&(p) in terms of the gI I, when
the final baryon has spin —,'.

written as linear combinations of three reduced ampli-
tudes g I "I:

&3T,'(p }

&27127&

(10[10)

g Il oI

—1

6v'S
—v'10

12
—1

—1

12

I 1/2, 1I

—4v'S
27

I 1/2, —1I

2

27&x
—2

3&10—1

v'5
1

3

Ti( ) y ( [I, Y[( ) [I, Y[

The three gI I have the following partial-wave expan-
sions:

(4 )i/2 [1,0[ —y [i pI + 2L + 1 [i 0[
L ' L(L+1)

2L +3
k + I,LL

sions in terms of the reduced partial-wave amplitudes of
Ref. 1: L(L+1)

2L, +1

1/2
1YL,

4~f [ ' [= g (2L+1)rLLL[PL,
L

(4~)1/2g [1/2, +i[ y ( $1/2, +1[ (i/2, +i[ )
L l

4~f [' ') = y [(2I.—1)rI' '( «+(2L +1)r("[
L

L (L +1)
2L, +1

Y1 (Sb)

+(2L +3)r['+ I LL ]PL,

4~f [i/2, +i[ g [L [I/2, +1[ +(L + 1)r(1/2, +1[ ]P
L

(6b)

(6c)

The numerical coefficients C[ [(p) are given in Table IV
for s'=

—,', and in Table V for s'= —,'.
For J, =2,M, arbitrary (it is sufficient to choose

M, ~0), the four difterent s-channel SU(3) amplitudes
T~(p) (when the final baryon is in the decuplet) are mul-

tiples of one reduced amplitude hMI' I:

where PL represents the standard Legendre polynomial
whose argument is cosH'. The numerical coeKcients
C[ [(p) are given in Table III.

For J, =M, =1, the seven s-channel SU(3) amplitudes
T', (p) (when the final baryon is in the octet), and the four
T,'(p) (when the final baryon is in the decuplet) may be

T2 ( ) C [1,0[( )g [1,0[ (9)

Note that the numerical coefficients are independent of
the index M. The partial-wave expansions of the h~I' I

for M=0, 1, and 2 are

4~h Ii' [ = g PL I 3[&(L'+1)(L'+2)rf'+[, L L +2+ &L'(L' —1 lr('"[i L L 2]
L'

[(I.'+1)rf", [. L,L, ——(2I. '+1)rf',0[L +L'r('+0). ..]I, (10a)

Sa
3

1/2 ' 1/2

~ Ii p) ~ L'(L'+1)
2L'+ 1

1/2

Y1 2
L +2 I1 0L' L I+ 1

L +1,L'L'+2

1/2L' —1

L'
I 1,0I+L' —1,L'L' —2

+[(L'+1) [', —(2L'+1) $' +L' $' [, ]/[L'(L'+1)] ',

8m

3

1/2

h)i p[
L'(L' 1)(L'+1)(L'+2)

2L, '+ 1

1/2
2YL.

(10b)

X [[(L +1)(L +2)] rf'+I L'L +2+[L (L 1)]
+[(L'+1)z[', [i L,L, —(2L'+ 1 )rLI.[L.+L' [' [, L,L. ] j[L'(L'+ 1 )]I (10c)
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TABLE VI. The coe%cients C~' ~(p, ) of Eq. (9) expressing
the s-channel SU(3) amplitudes TM(p) in terms of the h$'o[,
when the final baryon has spin —.

TM

—1

135&2—1

30
1

10&2
1

6&10

&27127&

& io~lo&

&sls, &

The numerical coefficients C(' [(p) are given in Table
VI.

At this point the main point of the paper has been es-
tablished by direct computation, namely, that the thirty
SU(3) amplitudes are predicted to be linear combinations
of ten reduced amplitudes. Given a table of SU(3) cou-
pling coefficients, one may use my tables to work out the
predictions of the three-flavor model for any reaction in-
volving octet pseudoscalar mesons and octet or decuplet
final baryons. (It should be pointed out that the results of
Ref. 1 were derived using the "baryon first" convention
for the SU(3) isoscalar factors. If one wishes to use my
results as they stand, one must respect the same conven-
tion. ) Since there are far fewer amplitudes than SU(3) al-
loys, many new linear relations among amplitudes for
different reactions may be derived. However, as I show
in the next section, it is preferable to use t-channel rather
than s-channel SU(3) representations.

For completeness, the relations among my t-channel

spin amplitudes T~ and the spin-projection amplitudes

T, , are given in Table VII.

III. THE t-CHANNEL SU(3) AMPLITUDES

The fact that the two-Aavor model is much simpler
when expressed in terms of amplitudes having definite t-
channel isospin suggests that the three-Aavor model
might be simpler when expressed in terms of amplitudes
having definite SU(3) quantum numbers in the t channel.
Since the relevant SU(3) crossing matrices may be found
in the compilation of Rebbi and Slansky, it is easy to
cast the results presented in the previous section into t-

J
TABLE VII. The amplitudes TM of Eq. (2) expressed as

linear combinations of the spin-projection amplitudes T, ,
Final baryon spin s'=

—,
'Final baryon spin s'= —,

'

P " (1/2)(1/2)
p —8/

3T1 = T( 1/2)(1/2) V3T1 =
2 ( T( 1/2)(1/2) +&3T(—3/2)( —1/2) )

+5Tp 2T(1/2)(1/2)

&5T1 =
2

("~ 3T( 1/2)(1/2) T( —3/2)( —1/2) )2 1

2=5 T2 —T( —3/2)(1/2

TABLE VIII. The coefficients C[[I~I(&) of Eq. (5) expressing
the t-channel SU(3) amplitudes To(p, } in terms of the f [ [. The
SU(3) notation is (BB'~MM'&.

f [1/2, —1[f [0,0[ f [1,0[ f [1/2, —1[Tp(p)/&2
—1

15
0
1

10—1

2&S

2

45
0
1

10—1

2&S
1

2—1

2~S
2

—1

135
0

—1

10
1

2V'S

2
45
0
1

10—1

2&S—1

&io~io&

&s, fs, &

2
1

2~S
2

channel language. The only caveat is that Karliner and
Mattis have used the convention "baryon first" in deriv-
ing their results, whereas Rebbi and Slansky present
crossing matrices relating the reaction M +B~M'+B'
to M+M'~B+B', which is "baryon second. " The
phase factors necessary to convert the s-channel SU(3)
amplitudes of Ref. 1 to the "baryon second" convention
may be found in Table II of Ref. 6. For the reaction

8+8—+8+8

it amounts to changing the sign of the & 8[ ~ 8z ) amplitude.
For the reaction

8+ 8—+8+ 10

the signs of the (8~82) and the &27~27) s-channel ampli-
tudes must be changed. With these modifications, one
may use the results of Rebbi and Slansky to derive the re-
sults displayed in Tables VIII—XI. In these tables, the
SU(3) index p is now to be understood as denoting the
various t-channel SU(3) representations (the BB' repre-
sentation on the left, the MM' on the right). In the t

TABLE IX. The coefficients CI I(p) of Eq. (7) expressing
the t-channel SU(3) amplitudes T,'(p) in terms of the g I

when the final baryon has spin —'.
f1,P {1/2, 1 I 11/2, —1 I"t/3T) (p)

&2712»

& io~lo&

&s, s, &

&s ls, &

8

135—2
15
3
10
1

2~S—1

6—1

2v'S
0

—8
135—2
15—3
10—1

2v'S
—1

6—1

2v'S
0

1

15

—1

6—1

2&S
0
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TABLE X. The coefficients CI I(p) of Eq. (7) expressing the
t-channel SU(3) amplitudes Ti(p) in terms of the gI ~ when

the final baryon has spin 2.

&3T1(P)

&27i27)

& lol lo &

1

3v'10

I 1/2, 1 I

2
27+'S

2
3v'10

1

v'5
—1

3

I 1/2, —11

—2
27&5—2
3v'1O
—1

v'S
—1

channel, the constraint of time-reversal invariance for
8+8~8+8 is that the 10 and 10 amplitudes are identi-
cal, and I show only the former. The t-channel ampli-
«des (stisz) and (Szis, ) are distinct, in contrast to the
s channel, where time-reversal invariance requires their
equality.

A casual inspection of these new tables is sufFicient to
reveal the remarkable simplifications that occur when the
predictions of the model are presented in the t-channel
form. Here is a summary.

First, for the To amplitudes, the following relations
hold:

constrained, and one may express the three gI I ampli-
tudes in terms of them.

For spin- —,
' baryons (decuplet), the T& amplitudes are

simply related to their counterparts for spin —,'. One ob-
sel ves

spin —,
' spin —,

'

(8i8, ) =2(8~is, &,

(8I82) =2(spi82)

& loi lo& =
& loi lo& .

2

(13a)

(13b)

(13c)

(13d)

For the TM amplitudes things are quite simple. The
three amplitudes corresponding to the (27) representation
in the t channel are free (one for each M) while all others
(nine) are zero. This is reminiscent of the I, =J, selection
rule, inasmuch as only the (27) has any I, =2 content.

These relations establish the main premise of this
work. The symmetry implied by the three-flavor Skyrme
model is most apparent when expressed in terms of am-
plitudes of definite t-channel spin J, and definite t-
channel SU(3) representations.

(s, is, ) = —&s&s, is, &,

& 8
I s, &

= —~s ( s
& I 8& &,

(1 la)

(1 lb)

IV. ELASTIC SCATTERING
AND THE REDUCED t-CHANNEL AMPLITUDES

& loi lo) =o . (1 lc)

Those amplitudes with (1), (27), diagonal ( 8, ), and ( 82 )

are unconstrained, and one may express the four f (

amplitudes in terms of them.
Then, for the T', amplitudes (spin —,' final baryon), the

following equations hold:

(s, ls, )=
v'5

2 2 3
(12a)

&s, ls, )=, &s, ls, ), (12b)

& li»=o . (12d)

The amplitudes with (10), diagonal (8, ), and (sz) are un-

&27I»&

& lol lo)

&sls, &

v'2
27
0

TABLE XI. The coefficients CI' I(p) of Eq. (9) expressing
the t-channel SU(3) amplitudes T~(p, ) in terms of the hg' ~,

when the final baryon has spin 2.

TM

2(1 i
1 & =(K p+K p)+3(~+p+~ p)

+4(K+n +K n),
2(27i27) =S(K+p+K p) —(~+p+~ p)

—4(K+n +K n),
2(s, i8, ) = —(m. +p+m p)+(K+n+K n),

(14b)

(14c)

where the expressions on the right-hand side refer to the

The relations I have established among the reduced t-
channel SU(3) amplitudes have a large number of experi-
menta1ly verifiable consequences. Since elastic-scattering
cross section and polarization measurements involving
charged ~ and E. beams have been performed over a wide
range of energies, it appears judicious to see what the
model says about them before confronting inelastic reac-
tions. It turns out that using the elastic amplitudes, one
may determine the four reduced non-spin-Aip, and the
three reduced spin-Aip amplitudes. In addition, five con-
straints among the elastic amplitudes are found. Mesh-
kov and Yodh- have provided a table of elastic-scattering
amplitudes in terms of t-channel SU(3) quantum num-
bers, from which one may derive the following results. If
one forms, for example, the six combinations of elastic-
scattering non-spin-flip amplitudes ~+@+a p,
X+p+K p, and K+n+E n, which correspond to
C =+I exchange in the t channel, then the three even-C
combinations may be used to determine. the diagonal (1),
(8, ), and (27) reduced t-channel non-spin-Hip amplitudes.
One finds
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corresponding combinations of non-spin-flip elastic am-
plitudes.

For the three C = —1 combinations, there is only one
t-channel SU(3) amplitude, the diagonal 82 representa-
tion, and one finds

2&8,I8, &
= —3(K+p —K-p)
= —15(vr+p —m. p)
= ——"(K+n —K n) .4

(15a)

(15b)

(15c)

These are not the Johnson-Treiman' relations of SU(6);
but a linear combination of them is the SU(6) sum rule of
Barger and Rubin:"

(K+p —K p) =(rr+p rr p)—+(K+n —K n) t (16)

which holds whenever the (10) amplitude is zero. At this
point the four t-channel non-spin-flip amplitudes are
determined, and two constraints among the elastic-
scattering amplitudes have been established. The optical
theorem then enables one to compare these predictions
directly to experiment, without using phase-shift analy-
ses.

The three independent t-channel spin-flip amplitudes
may also be determined using the elastic-scattering am-
plitudes. Again the even- and odd-C combinations must
be formed, and one finds the following results. Spin-flip
even C:

2(8, l8, ) = —'„'(K+p+K p)

=—", ( vr+p + vr p)

,",(K n+—K n) .

Spin-flip, odd C:

(10l10)= —2(K+p —K p)+2(vr+p rr p)—
+2( K+ n—K n),

(82l8z) = —(K+p —K p) ,'(7r+p —vr p—)—

—
—,'(K n —K n),

(17a)

(17b)

(17c)

(18a)

(18b)

with the constraint

(m+p mp) =3(K+—p —K )p+4( K+n —K n) .

One sees that, assuming that the six elastic non-spin-flip
and spin-flip amplitudes for the six elastic reactions are
available, there are five verifiable predictions, and the

seven t-channel SU(3) amplitudes are determined. Subse-
quently, the amplitudes for any reaction leading to a final
baryon in the octet are predicted by the model. In addi-
tion, the J, =1 amplitudes for reactions with the final
baryon in the decuplet are also unambiguously predicted.
It should be noted that the successful model of Stodolsky
and Sakurai' for the reaction mN ~+A amounts to keep-
ing only the J, = 1 amplitude. One may conclude that the
most significant amplitude for decuplet baryons is thus
predicted once the elastic amplitudes are known. Note
also that while the ~X amplitudes may be used to deter-
mine four of the seven reduced amplitudes, they are not
constrained by the model, in contrast with the two-flavor
case.

Finally I should comment on the J, =2, M, =0, 1, and
2 amplitudes, which the model predicts to be zero in the
nonexotic 8

&
and 82 t-channel representations, and

relegates to the exotic 27 t-channel amplitude.
Remembering that the reaction K p ~K:-* is a typi-
cal 27 t-channel reaction, one may conclude that the am-
plitudes h~I' I are probably quite small, except perhaps at
threshold.

V. CONCLUSIONS

The three-flavor Skyrmion model of the Karliner and
Mattis has been shown to be highly predictive for the re-
action M +B~M'+B', where M and M' are octet pseu-
doscalar mesons, B is an octet spin- —,

' baryon and B' an
octet spin- —,

' or decuplet spin- —,
' baryon. The thirty

different amplitudes which describe these reactions in the
limit of SU(3) symmetry are predicted to be linear com-
binations of only ten reduced t-channel amplitudes. Of
these, seven may be determined using amplitudes mea-
sured in elastic-scattering reactions. The remaining three
contribute only to the J, =2 amplitudes in decuplet pro-
duction; they correspond to (27) in the t channel and are
probably small. The model thus asserts that with a small
amount of experimental input, all the other reactions can
be predicted. This is a fairly bold claim, but the exciting
possibility of describing two-body hadronic reactions us-
ing a theory which claims kinship with quantum chromo-
dynamics justifies further investigation.
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