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We study the transverse spin-dependent nucleon structure function gz(x, Q ) in leading order at
large Q . After reviewing the operator-product-expansion analysis of gz(x, Q ) we calculate the
twist-3 contributions which arise from quark-gluon interactions and quark masses in the bag model.
The result confirms the presence of significant twist-3 e(fects in gz(x, Q ). We discuss two questions
raised by our analysis: the validity of the Burkhardt-Cottingham sum rule and the relation to previ-
ous calculations of gz(x, Q') in versions of the parton model.

I. INTRODUCTION

Spin-averaged deep-inelastic lepton-nucleon scattering
has greatly contributed to our knowledge about the
quark-gluon structure of the nucleon. Further under-
standing of nucleon structure can be obtained from
scattering by a polarized nucleon. ' The proton's dom-
inant spin-structure function g &

(x, Q ) has been measured
at SLAC (Ref. 2) and CERN (Ref. 3) with increasing ac-
curacy. The data has stimulated many theoretical papers
on the spin structure of the proton. Recently, the
HERMES and SMC Collaborations have proposed to
measure the spin structure functions of both the proton
and neutron with unprecedented accuracy. Undoubted-
ly, future data will continue to stimulate interest in the
spin physics of the nucleon.

The nucleon's second spin-dependent structure func-
tion, gz(x, Q ) has never been measured, and there have
been few theoretical studies of it. This paper seeks a
qualitative understanding of gz(x, Q ), in particular, its
physical significance and origin. In Sec. II we review the
standard operator-product-expansion analysis which
shows that gz(x, Q ) is related to the matrix elements of
both twist-2 and 3 operators. The twist-3 operators arise
from quark-gluon interactions and quark masses. In Sec.
III we develop further the space-time interpretation of
gz(x, Q ). Ignoring radiative corrections, we sum the
operator-product expansion and obtain an "impulse ap-
proximation" to gz(x, Q ). This approach is easily ap-
plied to the bag model. Also, it provides a formalism for

I

analyzing the Burkhardt-Cottingham sum rule,
J@z(x,Q )dx =0, showing explicitly how it may be
violated. In Sec. IV, we calculate the twist-3 contribution
using the bag model, with the bag boundary simulating
the soft gluons responsible for quark confinement. The
result shows that the twist-3 contribution is as important
as twist 2, the latter being related to g, (x, Q ) by
Wandzura-Wilczek sum rules. Therefore the future
measurement of gz(x, Q ) will provide a unique oppor-
tunity to study quark-gluon interactions through high-
twist effects. In Sec. V we explain the transverse spin-
structure function in a general parton picture and show
explicitly that the transverse momentum and off-shell
partons are responsible for the large effects associated
with the transverse nucleon polarization. Finally, we
summarize our discussions in Sec. VI.

II. OPERATOR-PRODUCT EXPANSION
AND KINEMATICS

We start our discussions on the spin-dependent struc-
ture functions with the operator-product-expansion
(OPE) method, which is the most reliable for analyzing
the deep-inelastic processes. Unfortunately, the early
OPE analysis of gz(x, Q ) in Refs. 9—14 is partly wrong
because of incorrect identification of twist-3 operators.
The correct analysis was done later in Refs. 15—18. We
largely follow and slightly expand their discussions in this
section.

We begin with the hadron tensor

W„(q,P,S)= ' f d'g e"«PS~[J„(g),J.(0)]~PS &I,4~

where q is the virtual-photon four-momentum and P and S are the target four-momentum and spin, respectively
(S = —M, P =M, S P =0). We normalize the nucleon state (PS~P'S') =2P (2zr )|l (P —P')5', .

In polarized electron and nucleon scattering, spin-dependent effects are related to the antisymmetric part of the had-
ron tensor W„. By Lorentz invariance and gauge invariance 8'„can be constructed from two scalar functions

g &
(x, Q ) and gz(x, Q ) for a spin- —,

' target:

W„=i@„z g, (x, Q )S +gz(x, Q ) S P— (2)
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where Q = —
q and v=P q. In the Bjorken limit in @CD, bothg, (x, Q ) and g2(x, Q ) scale tog, (x) andg2(x) modu-

lo logarithms.
The spirit of the operator-product expansion is to expand the product of currents at light-cone separation in terms of

the renormalized local operators. In the Bjorken limit the importance of an operator is determined by its twist or
light-cone singularity of its coe5cient function. Keeping twist-2 and -3 operators in the spin-dependent part of the ex-
pansion we have

J (g)J„(0)~„=ie„„d
n =0,2,

X Fz„(k'—ie4o p')O2

+ X F3, ;(4'—i&to p')O3, (3)

where Oz, ' " and O3 " denote twist-2 and -3 operators, respectively, and I'z,. and I'3; are corresponding
coeKcient functions. The index i runs over operators with the same Lorentz structure and twist.

Using the expansion (3), we calculate the virtual-photon forward Compton amplitude on the nucleon:

T„.(v, q') =i fd'ge" &(PS~ T(J„(g)J,(0))~PS ),
for ]v ~

( —
q /2 in the complex v plane (otherwise the expansion is not convergent). The result is

(4)

T„(v,q )=ie„2 q
n =0,2,

' n+1
2

qi, qi,

X g F2;(Q,p )(PSi02 "iPS )+ F3,(Q,p )(PSi03, ' "iPS )
n

where the F(Q )'s are Fourier transformations of the corresponding g functions:
n

Fn (Q2 p2) &

( &)n( q2)n+1 d4$ei9 ZFn (g2 && p2)8

q

Fn (Q2 2) —1( &)n( 2)n+I n+1 n

f d g e '~ ~F3, ( g i e,p )—,
q

where we choose the appropriate factors to simplify the expressions under the impulse approximation.
To proceed further, we introduce the nucleon forward matrix elements of the local operators:

(PS 02,. ' ' "~PS)=2a,"S,IS P 'P ' P "I—(traces),

where 4& symmetrizes all indices, and

(PSIO3 ' "~PS)=2d,"SA[S P 'P ' . P "I —(traces),

where A antisymmetrizes cr and p, and S symmetrizes p„p2, . . . , p„. The scalar matrix elements a;" and d;" depend on
the nucleon structure and the renormalization scale p at which the operators are defined.

To connect the Compton amplitude in the region where the expansion (5) holds with the physical hadron tensor in

Eq. (1), we use the dispersion relations. The analysis is standard, and the result is an infinite set of sum rules for the mo-
ments of the structure functions:

f x "g, (x, Q )dx =
—,
' pa, "(p )F2;(Q,p ), n =0,2, 4, . . . ,

0
(10)

f x "g2(x, Q )dx =—
2 n+1

'g a,"(p')F,",.(Q,p') —g d;"(p )F3;(Q,p'), n =2,4, . . . .

We emphasize again that all operators with a twist higher than 3 are negligible at high Q in the sum rules. Equations
(10) and (11) show that g, (x, Q ) receives contribution from twist-2 operators alone, whereas g2(x, Q ) receives contri-
butions from both twist-2 and -3 operators. The twist-2 part of the g2(x, Q ) can be constructed from g, (x, Q ):

i g&(y, Q')
( Q2)WW —

g ( Q2)+ f '
dy (12)

In general, we write
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g ( Q2) ( Q2)WW+g ( Q2)

where g2(x, Q ) represents the twist-3 contributions only:

(13)

n —2 4
0 2 n+1 (14)

Now we consider candidates for twist-2 operators in QCD. For definiteness we assume three flavor quarks: u, d, and
s. For fixed n there are eight Aavor-octet twist-2 operators involving quark fields only:

"=&'"&1[/(0)y y D 'D ' D "Akiti(0)] —(traces),

where A, k (k =1, . . . , 8) are SU(3) Gell-Mann matrices and D"=K+igA" is the covariant derivative. There are two
fiavor-singlet twist-2 operators. One is the same as Eq. (15) with A, k replaced by the unit matrix. The other involves

gluon fields:

0 ~1~2 ~n n —lg 1 G oAD~1'D~2. . . D1 n —1G1 n 1
2,g

n 3)1 In L

4
gS[it1(0)D '. D ' 'G 'D '+' . D " 'y "y p(0)] —(traces),

The number of twist-3 operators is an increasing function of n. For simplicity we neglect the Aavor structure of
operators in the following discussion since it is the same as for the twist-2 operators. The following two sets of opera-
tors are all twist 3:

'n 2
) 1 in l gg[g(0)D ' D ' 'G 'D '+' . . D " 'y "itj(0)] —(traces) .

4
(18)

However, not all of them enter the operator-product expansion [Eq. (3)] independently. The current product is even un-

der charge conjugation, whereas operators RI and SI are not charge-conjugation eigenstates. It is easy to show that the
combinations RI —R„ I and SI+S„ I are charge-conjugation even. The former are n/2 —1 in number, and the latter
are n /2, giving a total of n —1 operators. In addition, there is a twist-3 explicitly quark-mass-dependent operator

~ n+1
m S[g(0)m [y,y"']y D"' . D""g(0)],

where m is the quark-mass matrix. Therefore, for the Aavor nonsinglet there are a total of n linearly independent

operators which enter the operator-product expansion. For the Aavor singlet there are additional operators constructed
from the gluon fields alone.

The twist-3 operators are a direct manifestation of quark-gluon interaction and quark masses. The main eAect of the
gluons inside of the hadron is, of course, confining quarks. Therefore, the twist-3 contributions should be large in any
realistic nucleon model with confinement. Their effect on g2(x, Q ) cannot a priori be neglected in comparison to the
twist-2 operators. Our bag-model calculation in Sec. IV will be an explicit example of a large twist-3 contribution.

III. g1(x) AND g2(x) IN THE IMPULSE
APPROXIMATION: MODELS AND SUM RULES

The operator-product description outlined in the previous section is rather cumbersome for the treatment of simple
models. In particular, if one is not interested in QCD radiative corrections, it is convenient to sum the OPE to obtain a
light-cone description of deep-inelastic structure functions. Quark and gluon distribution functions are then related to
the Fourier transforms of matrix elements of bilocal operators along the light cone. At any stage radiative corrections
can be restored by taking moments of the distributions, which project out local operators or, equivalently, by using the
distributions as initial data in Altarelli-Parisi evolution equations. '

In this section we present the light-cone treatment of the structure functions g, (x, Q ) and g2(x, Q ). We have two

objectives in mind: First, we will use this formalism to calculate g &
and gz in the bag model; second, this is a particular-

ly easy way to see what might go wrong with the derivation of the Burkhardt-Cottingham sum rule.
To calculate g, (x, Q ) and g2(x, Q ) we take the Bjorken limit of Eq. (1) and use the light-cone expansion

[&~(g),J (0)]=1I('(g)6'y„S(g)y Q(0) —it1(0)6'yg( g)y„g(g)+ . . —' (20)

where 6 is the quark charge matrix and the ellipses denote terms less singular on the light cone. S(g) is the free-field
causal function

S(g)= [f(g),1((0)j =(ir)+m)A(g, m)= Q(g )E(g )+ .
2&

(21)
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Substituting for S, performing some y-matrix algebra, and isolating terms antisymmetric in p+ v, we find

8'„=i@„&q f d'g e'& ~5(g')e(g')(PSIq(g)6') ),y(0)+y(0)6'l y, q(f)IPS) . (22)

In Eq. (22) we have ignored terms which vanish as Q ~ m. This result could equally well be derived from the OPE
since all the coeKcient functions are simple if radiative corrections are ignored. In particular, all twist-3 operators can
be summed to give a simple operator

03 ' ' " =i "SA [P(0)Q y y D 'D ' . D "P(0) )
—(traces) . (23)

Combining it with the twist-2 operator, we immediately
arrive at Eq. (22).

As written, Eq. (22) is not gauge invariant. This is be-
cause we have suppressed factors of the form

S(r)=sexp &gf 'a„(X)dX" (24)

f gz(x)dx =0 .

Inverting Eq. (26) and differentiating,

g '(x)= — f dA, e ' Ag(k),

(30)

(31)

where I is a path connecting 0 to P and P denotes path
ordering of the exponential. This term is important in
the calculation of the twist-3 contribution to gz(x, g ),
but not in the largely kinematic calculation of this sec-
tion, and so we will not write it explicitly.

The matrix elment in Eq. (22) may be parametrized in
terms of three invariant functions of g and g P:

(Pslg(g)Q y y g(0)+(0 g")IPS )

=S f (g, g.P) iP g S g (g—, g p)

+Pk S h (k' k p») . (2S)

f (g.P)= fdae' & f(a), '

g(g P)= fdae' ~ g(a),
(26)

with the proviso that f(a) and g(a) are to be understood
as distributions at a=O. Substituting Eqs. (25) and (26)
into 8'„,we find

e'W„=ie„&
v

f(x) q S g'(x)
4 v 2

and comparing with Eq. (2), we conclude

g, (x)+gz(x) = —,
' f(x),

g~(x)= —,'g '(x) .

(28)

(29)

With these results in hand we investigate the
Burkhardt-Cottingham sum rule

Comparison with the OPE analysis of the previous sec-
tion shows that f, g, and h are finite at g =0 (modulo
logarithms generated by radiative corrections). In light
of the 5(g ) in Eq. (22), only f (O, g P) =f (g P), —
g (O, g P) —=g (( P), and h (0,( P)—:h (g P) will contribute
to O'„. A simple dimensional analysis shows that
h (g.P) does not contribute to leading order in Q to ei-
ther g&(x, g ) or gz(x, g ), and so we ignore it hence-
forth.

To proceed, we introduce Fourier transforms for
f(g P) andg(g P):

A+ag(A, )= (33)

[The gz(x) arising from this g(k) does not vanish for
x ) 1. This shortcoming is inessential: g(A, ) can be al-
tered so that the support (x ~ 1) restriction can be
satisfied, leaving the long-range (A,~ ~ ) behavior intact. ]
Then an easy calculation gives

gz(x) =
—,'cae '~ —

—,'c5(x), (34)

which formally satisfies the sum rule. Note that the suc-
cess or failure of the Burkhardt-Cottingham sum rule de-
pends on the long range behavior of g (g -P) and cannot be
determined by examining short-distance properties of the
current product [Eq. (3)] alone. Also note that such
singular long-range behavior of light-cone correlation
functions has been known for many years.

Note finally that subtleties in the gz sum rule do not
spoil the important sum rule obeyed by g&(x): Integrat-
ing Eq. (28),

f dx [g&(x)+gz(x)]= f dA, 5(A, )f (A, )

=f(0), (35)

where A,
—:g P We .can calculate fdx gz(x) from Eqs.

(29) and (31) [remembering gz(x) =gz( —x)], and prouid
ed we can exchange the x integration with the k integra-
tion, we obtain

f dx gz(x)= f dA, A, 5(A, )g(A, )=0, (32)
0 oo

since g (A. ) is expected to be regular at A, =O (on the basis
of the OPE or the structure of equal-time commutators).
The only way the sum rule can fail is if the x and A. in-
tegrals cannot be exchanged. This will happen in the fol-
lowing circumstances

(1) If g '(x) is so singular that Jodx gz(x) does not ex-
ist. This occurs if g (A, ) —I /X~ with p ( 1 as A, ~ oo.

(2) If g (A, ) —I /A, as A, —+ ~, then gz(x) has a 5 function
at x =0, and while Eq. (31) still holds formally, the 5
function is not detectable experimentally, and so the mea-
sured g~(x) would appear to violate the sum rule.

To verify that this may indeed occur, suppose
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and since Jdx g2(x)=0 regardless of subtleties such as 5
functions, we have

f dx g, (x)=f (0), (36)

which is equivalent to the Bjorken or Ellis-Jafte sum rule,
depending on the target.

The long-range behavior which invalidates the
Burkhardt-Cottingham sum rule does not occur in simple
models. Equation (30) is known to be satisfied in QCD
perturbation theory through order g . ' It is also mani-
festly valid in models such as the bag model in which
correlation functions have finite support in space-time.
In these models Fourier transforms such as f(a) and
g(a) are analytic functions of a and cannot behave like
Eq. (15). Of course, such models also fail to produce or-
dinary Regge behavior, which requires nonanalytic be-
havior in structure functions as x -~0.

IV. BAG-MQDEI. CAI.CUjLATIQN

As we discussed in the previous sections, the structure
function gz(x) receives contributions from both twist-2
and -3 operators, and the latter are related to the quark-
gluon interactions and quark masses. In order to esti-
mate the importance of the twist-3 operator on g2(x),
which determines how interesting gz(x) is, we evaluate
gz(x) in the bag model. The bag boundary simulates the
confinement efT'ects which arise from quark-gluon interac-
tions. The twist-3 eAects are therefore due to the bag
boundary. As a result, the measurement of g2(x) will
provide nontrivial constraints on the nucleon models.
We do not expect this calculation to provide a quantita-
tively accurate prediction for gz(x). Instead, we view
this as a toy model or cartoon, lacking Regge behavior
and the proper x —+1 limit, but giving a rough estimate of
the size of g2(x).

The impulse-approximation formulas for g&(x) and
gz(x) in Eqs. (28) and (29) are determined covariantly.
However, for model studies it is easier to calculate them
in a particular frame. For simplicity, let us choose the
nucleon rest frame where P„=(M,O, , 0)0. To calculate

g, (x) we polarize the nucleon in the z direction (defined
to be the opposite direction of the virtual-photon three-
momentum); then S„'(O,O, O, M). Substituting S and P
into the general decomposition for 8'„" in Eq. (2) and the
impulse-approximation limit [Eq. (22)], we identify

i&2q, fd'g e'~ ~S(g')e(go)
Sm

x &»'~y~g)6') +)"q(o)

X f ydy. to+2tot,
13'min I

2

+(x~ —x),
where cu„ is the nth root of the bag eigenequation,

(39)

~ntan~„=—
Q)~ 1

(40)

and y„„.„=~xRM —co„~. R and M are bag radius and nu-
cleon mass, respectively. In our calculation we fixed the
dimensionless parameter RM =4'„. The functions to
and t, are defined through

t(~„, y)= f 'du u'J, (u~„)g, (uy) . (41)
0

We used the SU(6) wave function for the proton. The re-
sult of g& (x) is plotted as solid curve in Fig. 1.

Next, consider the nucleon to be polarized perpendicu-
lar to the photon momentum, say, in the x direction; then
S'„=(O,M, O, O). In this case we find the transverse struc-
ture function

lq3
g~(x)+gz(x)= — f d ge'~ ~5(( )e(g )

8~

After integrating over g+ and g~, we have

g, (x)+g2(x)
1 f iq+e

8~v'Z

x(» ~q(g )6'q'1'y(0)

(42)

Again, after substituting in the bag wave function, it be-
comes

where q+ = —Mx/+2. Substituting in the bag wave
function from Ref. 21, we have

5'„RM
g, (x)=

36vrj 0 (co„)(co„—1)

where q3 is the photon three-momentum. After integrat-
ing over g+ and gi in Eq. (37), we have

g, (x)= f dg e + (Ps'~i'(g )6 y+y'f(0)
8~

g, (x)+g2(x) = 5m, MR

36m jo(co„) (co„—1)

xf ydy to —t',
ly;„1

+(x~ —x) . (44)

+q(0)6'~+)"q(g )l~s'&,
(38)

Now the structure function g2(x) can be obtained by sub-
tracting out the known g, (x). It is shown in Fig. 2 as a
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FIG. 1. Proton's spin-dependent structure function g&(x) in
the bag model.

FIG. 2. Proton's spin-dependent structure function g2(x) in
the bag model. The dotted line is the twist-2 contribution, the
dashed line is twist 3, and the solid line is the sum of the two.

solid curve.
The g2(x) calculated from Eq. (44) contains contribu-

tions from both twist-2 and -3 operators. The twist-2
part can be calculated from Eq. (12) once g, (x) is known
and is shown as a dotted curve in Fig. 2. The twist-3 part
is, therefore, just the di6'erence between the solid and dot-
ted curves. We show it as a dashed curve in the same
figure. The result clearly shows that, at least in the bag
model, the twist-3 contribution to g2(x) is not small. It is
interesting, however, that the twist-3 and -2 contributions
are of opposite sign, and the net g2(x) bears the sign of a
twist-2 part.

Following Ref. 15, the twist-3 contribution can also be
calculated from a set of operators which explicitly de-
pends on the interactions. Using the equation of motion
for quarks in the bag,

where we used the shorthand 5+=5(g—R) and
o „=(il2)[y,y„]. If there is no bag boundary, this

CTP ) gP p
operator is identically zero. We define a function U(x)
through

(SiP+ PiS+ )xU—(x)

iq+ g

8~

X(PS~I/(g )o y 5 $(0)

P(0)5soi+—y P(g )~PS ) . (47)

Then it is easy to show

t'8g(g) =5(g—R)1t(g),

we transform the twist-3 operator in Eq. (23) into
~ n

(45) f U (x)x "dx =
—,
' d„.

Therefore, the twist-3 contribution to g2(x) is

(48)

g2(x)=U(x) —f dy .
i U(y)

x y

(46) In the bag model we obtain

I

5'„ oo yminU(x) = y dy toj o(~n Vo(y)+ [toj &(oi„)ji (y)+ tij o(oi„)jo(y) ]36~j o(ro„)(co„—1)x &m;n y
2

ymin+ t& j&(oi„)j&(y) +(x~ —x) .
y

(50)

The result of Eq. (50) agrees with the dashed curve in Fig.
2. This confirms the physical interpretation of g2(x) and
is a check on the algebra.

There is another twist-3 operator [Eq. (19)] if the
quarks are massive. The contribution from the mass

I

operator is expected to be small for the valence quarks in
the nucleon because the up .and down quarks are nearly
massless. However, the strange-quark mass is of the
same order as AQCD and cannot be neglected. To appre-
ciate the eFect of quark mass, we calculated g2(x) for a
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fictitious proton with mass 1650 MeV and up- and down-
quark mass 150 MeV in the bag model. The formula for
the mass contribution can be obtained from U(x) by re-
placing 6& by mq. The result is shown in Fig. 3. As be-
fore, the dashed curve shows the total twist-3 contribu-
tions. The bag-surface contribution is shown by the
heavy-dotted curve, whereas the mass contribution is
shown by the dot-dashed curve. Both contributions add
constructively in most of the x range.

Actually, the spin-dependent structure functions g, (x)
and g2(x) in the bag model were calculated sometime ago
in Ref. 22. The result for gz(x), however, is somewhat
different from ours. To understand what the difterence is,
we rewrite Eq. (22) as

0=ie„& q

where 3 is a four-vector:

(51)

J d ge'q ~6(g )e(g )
8m

x (,PSl q(g)6'y y'y(0)

+g(0)6 y y g(g)lPs) .

(52)

In general, 3 can be decomposed as

g&+gz
~2 ~3

0.4

0.2

QQ Q 0

The term we have labeled g3 does not contribute to either
measurable structure function. If g3 were omitted and
one took a positive or negative component of 3 and
identified it with the standard decomposition in Eq. (2),
one would possibly pick up an extra term for g, (x) and

g2 (x ). Hughes chose the cr =negative component with
the proton spin in the z direction. Without subtracting
g3(x), he arrived at

g2 (x)= — —Jdg e
8~&Z

x (P&lg(g )6'y'y'it(0)

+y(o)6'y'y'q(g )IPs),
(54)

which is wrong. In our calculation we have deliberately
chosen the nucleon polarization to avoid the unphysical
g3(x) contribution.

As a final check on the calculation of gi(x) and gz(x),
we start with the sum rules (10) and (11). The simplest
expressions are obtained by choosing the tensor indices in
Eqs. (8) and (9) and the nucleon polarization so that the
trace terms are minimized or vanish. The result coin-
cides with our expressions for gi(x) and g~(x). Other in-
dex choices require trace terms which show up in the
final expressions. If the choice is made as in Ref. 22, a
trace term is needed in Eq. (51) to cancel out the g3(x)
contribution. We followed that path and obtained the
same result as with Eq. (44).

V. REMARKS ABOUT THE RELATION
TO PARTON MODELS

The nucleon's deep-inelastic structure functions can
usually be interpreted in terms of Feynman's parton mod-
el. For the unpolarized structure functions Fi(x) and
Fz(x), the naive parton picture, in which the on-shell
partons move collinearly with the nucleon in the infinite-
momentum frame, was shown to be equivalent to the im-
pulse approximation or OPE in the simplest version. We
will argue in this section that such a simple parton pic-
ture breaks down f'or the transverse spin phenomena.
Our argument is based on reviewing various parton mod-
els for gz(x) and comparing them to the OPE analysis.
In the end we come to the conclusion that the parton-
model realization of the impulse approximation is com-
plicated; in particular, the parton's transverse momen-
tum, off-shell partons, or alternatively the quark-gluon-
coupled densities must be introduced. Therefore, the
parton-model language loses its advantage of simplicity
in this case.

The OPE analysis in Sec. II shows that there are three
sources of contributions to gz(x):

g2(x) =g~ (x)+gz"'(x)+g~ (x) . (55)
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FIG. 3. gz(x) for a fictitious proton with mass 1650 MeV and
the up- and down-quark masses 150 MeV. The heavy-dotted
line is the twist-3 bag-surface contribution, and the dot-dashed
line is the twist-3 quark-mass contribution. The meanings of
the other curves are the same as in Fig. 2.

The first term in the right-hand side of Eq. (55) comes
from the twist-2 operators in Eq. (15), the second from
the twist-3 operators responsible for the quark-gluon in-
teractions, and the third from the twist-3 mass operator
in Eq. (19). Now we turn to examine how each term is
contributed by parton models.

Let us first consider deep-inelastic scattering from a
free quark with momentum p", spin s", and mass m .
Denote 8'„ in this simple case as w„. An elementary
calculation yields
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w„" =
—,
' u (p, s)[y„(P+g+ m )y —(p~v) ]

Xu(p, s)5((p+q) +mq)

This claim was generated from Feynman's derivation of
the parton model for transverse spin, in which he arrived
at

=i@„~q s 5 I—Q2

&P 9'
(56) gT(x)= ge, [k,+(x)—k; (x)],

l

(59)

from which we read off

g, (x)=5(x —1),
(57)

g, (x)=c5(x —
—,
' ),

g2(x) =0, (58)

where c is just a constant. The result for g, (x) is com-
pletely reasonable, but for g2(x) is somewhat suspicious.
For a confined quark the 1/m infrared singularity ap-
pearing in the free-quark matrix element of the quark-
mass operator will be replaced by 1/AQCD The matrix
element of the mass operator between the nucleon ground
state will vanish smoothly as m —+0, as it should. There-
fore, we conclude that g2(x) in the parton model is
plaqued by an anomalous contribution from the quark-
mass operator, which persists in the massless limit.

A more realistic parton picture for the nucleon would
be to add a nontrivial quark momentum distribution.
Then the 5-function distribution for g, (x) would be
smoothed out, and g2(x) might be nonzero. However, we
suspect that the result for g2(x) would still be unreliable
on account of the mass-operator contribution. If it were
possible to eliminate the quark-mass-operator contribu-
tion while keeping quarks on shell, then one would expect
to obtain the Wandzura-Wilczek result for gz(x). A co-
variant parton model was studied in Ref. 24 in which the
Wandzura-Wilczek relation between gl(x) and g2(x) was
derived. However, it is not clear in their formalism how
the quark-mass-operator contribution was discarded.

At this point we would like to comment on the c1aim
that gT=g, (x)+gz(x) is small in the parton model.

gz(x)=0 .

In deriving Eqs. (57) we used (P —m )u (p, s) =0 and
u (p, s)y y u (p, s)=2s . This is a very surprising result
for a free particle for which one would think the
Wandzura-Wilczek relation [Eq. (12)] holds. If Eqs. (57)
were recast in the operator language of Sec. II, it would
be found that the twist-2 contribution to g2(x) given by
Eq. (12) is exactly canceled by the contribution of the
mass operator 0 ' ' " [Eq. (19)], yielding g2=0.
The explicit factor of m in 0 ' ' " is canceled by a
factor I/m in the free-quark matrix element of the
operator.

Now let us construct a parton model for the nucleon.
The simplest picture would be that the three massive
quarks, each of which with one-third mass of the nu-
cleon, rest inside of it with no mutual interactions. Then
gl(x) and g2(x) of the nucleon would be just the sum of
these of free quarks:

with the parton distribution function k,.+(x) [k; (x)]
representing the number of Aavor-i quarks with polariza-
tion in the same [opposite] direction of the nucleon spin
and with x fraction of the nucleon momentum. If the
massless limit is taken, one indeed obtains gT=O. How-
ever, in this model the zero-mass limit is inconsistent
with the nucleon's rest mass. The consistent way is to set
m =xM, as Feynman did in deriving Eq. (33.15) in his
book. If we apply Eq. (59) to the nucleon's rest frame,
then rotational invariance implies g2(x)=0, consistent
with the naive result in Eq. (58).

Therefore, parton models with on-shell partons at best
reproduce the correct twist-2 contribution if one knows
how to get rid of the singular contribution of the quark-
mass operator. All the twist-3 effects associated with the
gluon-quark mixing operators (17) and (18) are missing
from the parton picture. This is because the matrix ele-
ments of these operators between the free-quark states is
proportional to the antisymmetric tensor s„k —s k„,
which vanishes for massless on-shell quarks. Indeed, this
was the argument used by Wandzura and Wilczek to con-
clude that the twist-3 contributions to g2 are small.

Apparently, the essential ingredient missing from vari-
ous parton models is their off-shell nature. The quarks
inside of the nucleon are off shell because of confinement.
For an off-shell quark, s„does not have to be parallel to
k„even if the mass of the quark is zero. The twist-3 con-
tributions to g2(x) are directly proportional to the off'-

shell quark k . The off-shell quarks are also welcome be-
cause the contribution of the mass operator is naturally
suppressed by introducing the confinement scale. The
large off-shell nature of the quark in the bag is directly re-
sponsible for the large twist-3 effect shown in Figs. 2 and
3. An alternative way is to introduce gluon partons.
Then the matrix elements of the twist-3 operators are re-
lated to the coupled quark-gluon distributions. ' ' How-
ever, both pictures are complicated to develop.

Therefore, a complete account of the transverse spin-
structure function requires studies of off-shell partons as
well as the transverse momentum. Both, of course, are
related to quark-gluon interactions. Simple as the im-
pulse approximation [Eq. (42)] looks, the physics in terms
of the parton picture is much more complicated than that
of the spin-averaged structure functions.

VI. SUMMARY

We have discussed the structure function gz(x, Q ) in
the leading order in the Bjorken limit. We calculated the
twist-3 contributions in the bag model and found they are
non-negligible compared to twist 2, which can be deter-
mined from the measurement of g, (x). Therefore, the fu-
ture measurement of g2(x) can be used to study twist-3
operators which are intimately related to the quark-gluon
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interactions.
We did not discuss the Q evolution of the gz(x, Q )

when higher-order QCD corrections are included. If we
accept the point of view that model calculations for the
structure functions g, (x,p ) and g2 (x,p ) are defined for
some p characteristic of hadrons, we must calculate all
the twist-3 quark-gluon matrix elements at this scale in
order to calculate the full gz(x, Q ) at experimentally in-
teresting scales. Therefore, we need a nucleon model
with explicit gluonic degrees of freedom which is not
presently available.

Finally, the study of transverse spin physics in the par-
ton model is quite complicated. It requires the consistent
inclusion of the parton transverse-momentum distribu-

tion as well as the off-shell partons. Both effects are the
same order of magnitude as the confinement scale.
Furthermore, the singular contribution from the mass
operator must be carefully treated.

Note added in proof. After finishing this work, we
learned that the error in Ref. 22 was also pointed out by
J. Bartelski, Phys. Rev. D 20, 1229 (1979).
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