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We investigate theoretical uncertainties and model dependence in the extraction of the nucleon-
A(1232) electromagnetic transition amplitudes from the multipole data base. Our starting point is
an effective Lagrangian incorporating chiral symmetry, which includes, at the tree level, the pseu-
dovector nucleon Born terms, leading #-channel vector-meson exchanges, and s- and u-channel A ex-
changes. We express the nucleon-A transition magnetic dipole (M1) and electric quadrupole (E2)
amplitudes in terms of two independent gauge couplings at the y NA vertex, and fit these to various
multipole data sets. We find a large sensitivity to the method used in unitarizing the amplitude, and
extract the E2/M 1 ratio (EMR) to be negative, with a magnitude of around 1.5%. The resonant
amplitudes in this work are of interest to the test of topical hadron models inspired by QCD: the
sign of the EMR, extracted by us, is in accord with that predicted by most realistic models, and its
magnitude lies between the predictions of the quark shell model and the Skyrmion model. Finally,
our work provides a phenomenologically satisfying unitary amplitude for pion photoproduction off
nucleons, which can be used as a realistic starting point for theoretical studies of this process in
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complex nuclei.

I. INTRODUCTION

With the advent of quantum chromodynamics (QCD)
as the theoretical framework of the strong interactions in
the standard model, the spectroscopy of hadrons has tak-
en a new importance' in the context of the application of
QCD to describe the structure of hadrons. In the non-
perturbative domain, however, QCD is very difficult to
apply directly to this problem. Only for heavy mesons
are lattice calculations beginning to give some insight
into rigorous results. A comprehensive treatment of had-
ron spectroscopy in the framework of QCD is still far
away, and the current generation of models can only
build some aspects of it into their basic structure. Hence
the adjective “QCD inspired” is often used to describe
these often imperfect models.

In this quest for better applications of QCD, elec-
troweak transition amplitudes are beginning to provide
powerful tests! of the quality of emerging models. Thus,
for excited-baryon spectroscopy, there is a continuing
need to determine accurately the three-point function
YNN* (N denotes nucleon and N* an excited baryon),
from the experimental data of increasingly superior quali-
ty, and to contrast them with their best theoretical esti-
mates. To this end, a new generation of “medium-
energy”’ accelerators, such as the Continuous Electron
Beam Accelerator Facility (CEBAF) in Virginia, are be-
ing built to complement the high-energy facilities. In the
former, continuous-wave (cw), electrons will be available.
Thus, it will soon be possible to study y NN* vertices
with polarized hadron targets and polarized electron or
photon beams with high precision. In facilities such as
the Brookhaven Laser-Electron-Gamma Source (LEGS),
the photon polarization is nearly 100% and can be varied
at will. This exciting experimental prospect calls for a
careful theoretical examination of the vast data already
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available.? Our work here is an example of this effort>*

in the A(1232) region.

Discovered first, the A(1232) resonance enjoys a special
place in the family of baryon resonances. Its structure
has interesting features in the nonrelativistic quark mod-
el: to give one example, the nucleon-A mass splitting is a
measure of the color-hyperfine interaction among the
quarks. The nucleon-to-A electromagnetic transition,
which can be magnetic dipole (M1) or electric quadru-
pole (E2), is, in the simplest version of the nonrelativistic
quark model, a direct determinant of the role of the
color-magnetic interaction, which gives rise to a small,
but nonvanishing, E2 transition amplitude.5 This is in
sharp contrast to the virtual-photon three-point function
vY,NN* in the domain of perturbative QCD: there the E2
and M1 amplitudes are predicted® to be equal, this being
a hundredfold increase in the ratio of the E2 to M1 am-
plitudes and a change of their relative sign. Thus, testing
both of these predictions is an important goal in our un-
derstanding of hadron structure in the two distinct
domains of QCD.

In this paper we are concerned with the real-photon
piece of that test. The electromagnetic transition ampli-
tudes are also of special interest to other models of had-
rons such as deformed bags,” Skyrmions,® hybrids,® and
so forth. From the point of view of extracting the reso-
nant amplitude from data on photoproduction of pions,
the A(1232) resonance offers an important simplification:
its strong decay is only via the mN channel. Our objec-
tive in this theoretical paper will be to exploit this simpli-
city and examine the theoretical problems involved in the
extraction of the N—A resonant amplitudes from the
vast data already in literature. Results obtained in this
work should thus be of immediate interest to particle
physicists in the following way: hadron-structure theor-
ists can get a feeling for the magnitude of theoretical un-
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certainty in extracting the y NA amplitudes from the ex-
tant experimental data. The experimentalists, planning
better studies on this problem at the emerging medium-
energy electron or photon facilities, should get a hint on
which specific observables need to be determined with
improved precisions, to aid further the quality of extrac-
tion of the resonant Y NA amplitudes. Finally, our work
here is of relevance to the studies of pion photoproduc-
tion off complex nuclei, wherein a satisfactory impulse
amplitude for the process on a single nucleon is the start-
ing point!® of the theoretical description.

In this paper we examine pion photoproduction from
threshold through the A(1232 MeV) resonance region in
the framework of an effective-Lagrangian approach, !!:12
following and extending the works of Olsson and
Osypowski.!> We are thus able to investigate both reso-
nant and background pion-photoproduction mechanisms.
We also address many of the ambiguities associated with
the effective-Lagrangian approach. The effective La-
grangian uses the pseudovector (PV) coupling in the nu-
cleon Born amplitudes, and thus incorporates the low-
energy theorems'* of current algebra and the hypothesis
of partially conserved axial-vector current (PCAC). The
off-shell ambiguity'® of the massive spin-2 field is exploit-
ed in this approach by introducing three allowed arbi-
trary parameters (the off-shell parameters), one for each
of the two Yy NA vertices and one for the 7NA vertex.
This generalizes the procedure of Olsson and
Osypowski, 1> who first emphasized differences of this ap-
proach from the dispersion theoretic ones.!® The ease of
incorporating low-energy theorems, investigating the pos-
sible role of z-channel vector-meson exchanges without
serious double counting and without violating the low-
energy theorems,!>!” and a treatment of A-resonance
propagation in a more general way than the Breit-Wigner
form,'® are three important features of the Olsson-type
approaches.

One important extension of the Olsson formalism is the
inclusion of two independent gauge couplings, g, and
g4, at the Y NA vertex [see Egs. (12) and (13)]. Nath and
Bhattacharyya'® (NB) have recently argued that it is not
possible, for any value of the off-shell parameter, to
derive eight Pauli-Fierz-type constraints for an elementa-
ry spin-2 field, and the g,, and 7N A couplings are com-
patible with these constraints only for specific values of
the off-shell parameters. One of the objectives of this pa-
per is to test this contention of NB, in view of the
theoretical questions as to whether the NB conjecture is
applicable to an extended particle (such as A). We have
found that setting g,, =0 fails to reproduce the E,
(T'=2) multipole (due to an E2 photon), and thus we
have adopted the attitude of Olsson and fitted g, and
g, and the off-shell parameters to the data.

Since one of our main objectives is to investigate the
model dependence in the extraction of the electromagnet-
ic transition amplitudes from the data, freedom in the
gauge coupling is absolutely essential for the determina-
tion from the multipole data of a possible electric quadru-
pole (E2) contribution to the ¥y NA transition amplitude,
a subject of considerable current interest! in the theory of
hadron structure. It also turns out to be of some impor-

tance in the discussion® of neutral-pion photoproduction
below the charged-pion threshold, on which experimental
data?' from Saclay and Mainz have become recently
available, and caused considerable excitement in the
particle-physics community due to their apparent
disagreement with the predictions of the low-energy
theorems and their extensions.

We also differ from Olsson by considering a variety of
unitarization procedures (of which the Olsson ansatz'® is
a special case), and their effects on the extraction of the
resonant Y NA transition amplitudes. This is interesting
for exploring the model dependence introduced by the
unitarization recipes in determining the resonant ampli-
tudes, and their phenomenological successes as given by
the quality of corresponding multipole fits. We examine
the possible energy dependence of the unknown parame-
ters, particularly in the resonant sector, by choosing the
multipoles to be fitted in different energy regions. Final-
ly, we fit different multipole sets available in the litera-
ture,?? 26 with primary emphasis on fitting those of Pfeil
and Schwela®® (PS), and Berends and Donnachie?? (BD)
because of their completeness in information. We also
take into account the new data bases?* 26 added to these
rather complete, but dated analyses. This allows us to
infer the differences inherent in various extant multipole
sets, and draw some conclusions on future directions of
better multipole analyses.

As we have already indicated, our two primary objec-
tives are to examine the model dependence of the extrac-
tion of the resonant Yy NA amplitudes from the existing
multipole data and to provide a unitary theory for the
pion photoproduction from nucleons for application in
complex nuclei. Our work has already exposed!® limita-
tions of nonunitary impulse operators?’ in use before our
work. Here we will not discuss implementation of our
amplitude into a nuclear calculation. While the theoreti-
cal understanding of pion photoproduction in complex
nuclei in the first resonance region is not yet complete,
primarily due to the lack of treating the role of pionic
single-charge-exchange reactions and the possible medi-
um modifications of the impulse operator in a single
theoretical framework, our present work provides a key
ingredient in that process. Tremendous experimental
progress®® at the current generation of electron accelera-
tors, and continued expectation of better quality experi-
ments at the newer cw machines provides a strong chal-
lenge for further theoretical understanding of the com-
plex nuclear processes.

This work has important differences with our earlier
works*? on the y NA transition amplitudes. In Ref. 29,
two of us extracted, in a model-independent fashion, the
K-matrix residues in the A region. Although these are
important quantities, they provide information for only
two multipoles (the E,, and M, both T=3) and at
only one energy, whereas we also want to understand the
entire pion-photoproduction amplitude from threshold
through the A region. We emphasize that the transition
amplitudes we obtain here are model dependent, in con-
trast with those of Ref. 29, but the spread of values ob-
tained from different unitarization methods give us a
measure of the theoretical uncertainties in extracting the
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helicity amplitudes for the y N«>A transition from the
data, needed in comparing with hadron model calcula-
tions of the transition amplitudes. Finally, we supersede
our earlier work>* by considering several data sets,
several unitarization methods, and a more realistic back-
ground contribution.

The remainder of this paper is organized as follows.
Section Il contains our main theoretical discussion on
how we structure our analysis. Sections III and IV are
interdependent: they comprise the results of our analysis
and their critical discussions, respectively. Section V de-
tails a summary of our conclusions. Some technical de-
tails of our calculation, helpful for relating our work to
others in the literature, are contained in the Appendix.

II. FORMALISM: VARIOUS ASPECTS
OF OUR THEORETICAL ANALYSIS

A. y NA transition amplitudes

The electromagnetic transition from the nucleon (%+,

=1)tothe A (3%, T=3) can be either magnetic dipole
(M1) or electric quadrupole (E2). Based on Lorentz in-
variance and gauge invariance, we may write the matrix
element for this transition:

. e _ _
le.~=—2Mun737’5 gialy ke, ~v€k,)

824
—— . — . v
+2M(P,, €k,—P,-ke,) |ux,

where M is the nucleon mass, k is the photon four-
momentum, P, is the nucleon four-momentum, €, is the
photon polarization, u, is the nucleon spinor, u} is the A
vector-spinor, and 7; is the 2<>1 isospin transition ma-
trix. We note that there are other definitions® of iM;,
but they are equivalent when the baryons are on shell.

In the conventions of the Particle Data Group,31 we

can write the electromagnetic transition amplitudes as

172
Fo——¢€ ka kaM, _ 8aM,
6M (My+M) | M Eu""oMm |
(2)
and
172
M=t | K (3M 5 +M)
12M | Mum | |Bats
824 M

The electromagnetic partial widths, using typical values
of M1 and E2 amplitudes extracted in this work, are

_ kiM(M1)?

= ~1 M
MU T IM, 7 MeV, @
_ 3KaM(E2) 2X 10 % MeV 5
E2 M, ev, (5)

where k, =(M3% —M?)/2M,, M, being the mass of the
A. Recall that the 7N decay width is about 100 MeV.
The helicity amplitudes are related to E2 and M1 by

_\/__

As we have pointed out earlier, there is considerable
discussion in the recent literature on the parameter g,,.
Many authors'>?7 have set g,, =0, but if the E2 and M1
are to be independent, g,, must be kept arbitrary. It has
to be determined, along with g,, by a fit to the multipole
data. In fact, from Egs. (2)-(5), we find g;»~=35, and
g,a=~6. If g,,=0, then we would obtain the result
E2/M1=—(M,—M)/(3M,+M)= —6%, whereas our
extracted values for E2/M 1 are =—1.5%.

Another point about Egs. (2) and (3) is that E2 and M1
depend on M ,. Different parametrizations of the 8,3, the
phase shift in the 33 channel in 7N elastic scattering, give
values for M, ranging from 1215 to 1250 MeV, and the
fits to the data are roughly equivalent. Fortunately the
uncertainty in E2 and M1 due to that in M, is not large.
One might also consider using the T-matrix pole position
for M, (which is complex), thereby making the E2 and
M1 amplitudes complex. While more detailed calcula-
tions might give complex E2 and M1, as some authors
show, *? the current generation of baryon models predict
real E2 and M1. Since we want to provide constraints for
these models, we assume M, to be real and to lie in the
range 1215 <M, <1250. This illustrates that care must
be taken in comparing the transition amplitudes extract-
ed from the data with those predicted by baryon models.

B. Pion-photoproduction amplitude

The E2 and M1 depend on two parameters g,, and
824> Which should be determined from the data. Here we
focus on extracting the gauge couplings from the pion-
photoproduction data. In the future we hope to be able
to use the data on radiative pion capture and Compton
scattering to constraint g, and g,,.

A general problem in any extraction of N *<>y N ampli-
tudes is the separation of the resonant and background
contributions to pion photoproduction, and in the A reso-
nance region, we may take advantage of the multipole
data sets to test how well the background is known. The
s-channel A exchange gives a resonant contribution only
tothe M, (T=3) and E,; (T =3) multipoles. We use
the standard definitions and notations for the mul-
tipoles. %33 These multipoles also contain background
contributions: in our effective-Lagrangian approach, the
physics of the background contribution can be tested by
its success in predicting other nonresonant multipoles.

Olsson and Osypowski!® have previously investigated
the background contributions to the (y,7) amplitude in
the A resonance region. They found that the following
contributions give a good account of the nonresonant
multipoles (all multipoles except the E3%* and the M3%?).

(1) Pseudovector (PV) nucleon Born terms.

(2) t-channel w and p exchange.
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(3) Nonresonant A exchange. This includes the
crossed, or u channel, A exchange as well as contribu-
tions from the spin-1 part of the A field. 34

The amplitudes for the PV nucleon Born terms are well
known, and are given in the Appendix for completeness.
There are a few important items to note.

(1) The PV nucleon Born terms generally dominate the
background and contribute to all multipoles. There are
no free parameters for these terms.

(2) We have not introduced any form factors into the
amplitude and the Born terms are gauge invariant. One
can make use of the form factors at various vertices, but
this would require special care to maintain gauge invari-
ance. In our fits, we are not forced to use explicit form
factors. We discuss this point further in Secs. IID and
IVB.

(3) We have found that other single-particle exchanges
are small in the energy region of interest here, due pri-
marily to smaller photon and/or pion coupling strengths,
and the fact that other resonances are far away. There is
also the possibility of a o term* contributing to the S
waves (S, P, etc. refer to the pion-nucleon relative angu-
lar momentum), which we have ignored since for isospin
1 and 3 it is expected to be small. This is because the
Ey, (T=1,3) multipoles are dominated by the Kroll-
Ruderman®® term arising in charged-pion production.
However, it is expected®® to be of some importance in
threshold 7° production.

The effective Lagrangian we use for ¢-channel o and p
exchange is

ely = 8r2 =
L= €pigF" V' Mgy Ny Vi + o No NV,

(®)

where V* is the p or w field, II is the pion field, N is the
nucleon field, F* is the electromagnetic field tensor, and
VA =37 V*—3"V7; m is the pion mass.

The isospin content of the z-channel vector-meson ex-
change is such that  contributes to the isovector ampli-
tudes, and p contributes only to the isoscalar amplitudes.
As a consequence of this, p exchange may be decoupled
from the A exchange, since the A contributes only the
(+) and (—) isovector amplitudes.

The radiative coupling A, may be determined from the
V —my decay width using

eAL k3

ry  .,.=—,
V=mr 12rm?

9
where k is the photon three-momentum. From the data
on radiative decays,31 we get A,=0.36 and ?» =0.11. For
the strong couplings,>’ gm=~1 8 3.2, gpz/gpl ~4.3-6.6,

g,1~8-14, and g.,/g, =~0-(—1). The vector-
dominance predictions®® are 8p2/8p1=(k,—k,) and
82 /801 =(k, Tk,), where k, and k, are the anomalous

magnetic moments of the proton and neutron, respective-
ly.

We find that the pion-photoproduction data generally
favors g, =~ —g,; rather than g ,~0 (a result in agree-
ment with Olsson and Osypowski'?), but the value of g,

has little influence on the extracted values of the E2 and
M1 amplitudes. We consider variations of the VNN cou-
plings in the above range to test the sensitivity of the E2
and M1 amplitudes to the vector-meson exchanges.

C. Contributions to the amplitude involving A

The effective Lagrangian for the 7N A interaction and
the y NA interaction'® i

L=L,ya+Lya +Lya > (10)
where

gaNA

Loys==22(3DN70,,(Z)A +H.c. , (11)

Liys—8% 5o (v P+

YNA T M ,uk( )7/1/7/57-3N H.c., (12)
egon —

Liya= 4M§AM0 (X)ys7 (3, N)F*+H.c. . (13)

Here, A" is the A field, 7 are the —<—>
matrices (see the Appendix) and

0,,(Z)=g,, +[L(1+42) 4 +Z]y 7, . (14)

isospin transition

This interaction has been extensively discussed in the
literature.'>'* The form of 0, has been chosen to give
the most general Lagrangian (hmited to the number of
derivatives above) that obeys the same point transforma-
tion* as the free spin-3 Lagrangian. This guarantees
that the parameter A4 that appears in O,, and in the
propagator will not appear in any physwal matrix ele-
ment. *

The electromagnetic part of the A interaction Lagrang-
ian reproduces the general transition amplitude, Eq. (1),
when evaluated in the tree approximation. Note that Eq.
(1) is independent of the off-shell parameters, which is
consistent with the fact that the residues of the photopro-
duction amplitude in the tree approximation are also in-
dependent of the off-shell parameters. Nath and Bhatta-
charyya!? have shown that problems occur with the field
theory of point spin-3 particles unless g,, =0, Z =1, and
Y=0. As we discussed earlier, this constrains the ratio
E2/M1 to be =—6%. We find that these constraints,
particularly g,, =0, are much too restrictive for a phe-
nomenological description of the spin 1<>3 transitions be-
tween composite particles. We keep g, and g,, as free
parameters to be fitted to the multipole data. Finally, we
note that the choices of Nath and Bhattacharyya of g,,,
Z, and Y do not solve all the problems of interacting
spin-2 fields. (An example of a consistent theory of in-
teracting spin-3 particles is supergravity. *!)

The A exchange contains both resonant and non-
resonant contributions. The nonresonant contributions
come from the u-channel exchange, the spin-1 part of the
A propagator, and the anti-A exchange. Thus, when the
A-exchange contribution is decomposed into multipoles,
all the isovector multipoles receive a contribution from it,
indicating that g5, 8,4, X, Y, and Z must be fitted to all
multipoles, for consistency. This is in contrast with pre-
vious works**~* where g,, and g,, were determined by
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fitting just the resonant multipoles. In practice we have
fitted only those multipoles with / <1, / being the 7N or-
bital angular momentum. This is dictated by the fact
that most multipole analyses fit multipoles up to [=1,
taking the nucleon Born terms for the higher partial
waves. Recall that PV and pseudoscalar (PS) couplings
give identical multipoles (in the tree approximation) for
I>1.

D. Unitarity problem for the strong channel

The tree approximation yields real amplitudes and
therefore violates unitarity, since Watson’s theorem® re-
quires the phase of the amplitude to be nonzero. Furth-
ermore, the s-channel A exchange gives a pole on the real
axis in the tree approximation. The common origin of
these problems is the neglect the final-state interaction
via pion-nucleon rescattering. While the problem of 7N
rescattering should be treated dynamically,**~* we fol-
low the spirit of Olsson and implement unitarity phenom-
enologically, since no consistent relativistic, gauge-
invariant, dynamical treatment of this problem, is yet
available, despite many brave attempts* to improve the
situation.

The unitarization of the pion-photoproduction ampli-
tude is intimately related to the 7N scattering, and there-
fore we first describe the unitarization of the tree approx-
imation to 7N elastic scattering in the A region. Our
main purpose here is not to provide a model of 7N
scattering. We do note that it is possible to obtain the
scattering lengths and volumes starting from an effective
Lagrangian,*® and 835 can be accurately reproduced. '8

The unitarization of the effective-Lagrangian ampli-
tude is not unique, and for the nonresonant partial waves

S+ (all partial waves except £3/2), our ansatz is
qf it =tans,, , (15)
i5
qf;.=sind, e '+, (16)

where f# is the tree approximation to the amplitude.
This is equivalent to assuming that the tree approxima-
tion gives K-matrix elements with

qf 1+ T4
— == =K = .
1+igf;+ 1+=9f tan§, 17

The unitarization methods used here can be viewed as
procedures to account for the absorptive corrections
from higher-order diagrams. It is assumed that the
dispersive corrections only renormalize the masses and
couplings to their physical values and that the variation
in the masses and couplings away from their defining
point can be ignored. Other authors*>~* have also made
models for the dispersive corrections. Weinberg*’ has
outlined a framework within the context of a chiral-
invariant effective Lagrangian whereby loops may be cal-
culated. The important point is that in higher orders ad-
ditional vertices appear, and Weinberg’s approach is not
equivalent to approaches that introduce a cutoff and
iterate the PV-Born terms. Thus, in our opinion, the
dispersive corrections in this problem are not yet well un-
derstood.

I

As noted above, the K-matrix approach can be used to
reproduce the scattering lengths and volumes for mN
elastic scattering. It would be interesting to know how
well this approach reproduces the nonresonant phase
shifts throughout the A region, but as far as our approach
to pion photoproduction is concerned, the answer to this
question is not too crucial. If the model fails at some
point, as it must, we may always consider adding addi-
tional particle exchanges in order to improve agreement
with the data. The important question in this model for
pion photoproduction is whether the additional particles
also contribute in the tree approximation to the (y,)
amplitude. For example, our initial amplitude for 7N
scattering could come just from s- and u-channel nucleon
exchange. To improve the model we could add a ¢-
channel o exchange, but since there is no oy coupling
(violates C), there would be no t-channel o contribution
to pion photoproduction. Thus, we believe that we are
considering all the important tree-level contributions to
pion photoproduction in this energy region. There is also
a theoretical problem?® of accounting for the observed?!
7° photoproduction cross section near threshold. This
may be connected to the last item we have just discussed.

To further illustrate our approach, consider the 7" ma-
trix for pion photoproduction in terms of the K matrix
(at the moment we are concerned with nonresonant par-

tial waves and multipoles): T =K (1+iT). Ignoring
terms of order e?,
T,.,=K,,(1+iT.,), (18)
) I
or equivalently with 7, =sind_ e ", we have
is__
T,,=K,,cosd e , (19)

where ., is the wN scattering phase shift. The assump-
tion we make is that K, is given by the tree approxima-
tion, and therefore we may use the experimental phase
shifts as input to our pion-photoproduction calculation.
We note, in Olsson’s method of unitarization the follow-
ing relation holds:

is_
T,,=K,,e , (20)

which differs from (19) by a cosd,,,, term. Since §,,520°
for the nonresonant phase shifts in the A region, this has
less than a 10% effect on the nonresonant multipole am-
plitudes.

Although we can get away here without making a care-
ful theory of nonresonant 7N scattering, we must make a
reasonable model for resonant 7N scattering because the
pion-photoproduction amplitude depends on gy, and
M,, which are strong-interaction parameters. The pa-
rameter Z in L_y, can also be determined from 7N
scattering, but this would require making a model for
nonresonant 7N scattering. We fit Z to the pion-
photoproduction data and compare it with the value ob-
tained from an analysis of 7N scattering by Olsson and
Osypowski.*®

The s-channel A contribution to 7N scattering in the
33 channel is
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M, T\(s)
A A AT
af i+ Mi—s €
where

2 3
g (E,+M)W +Mp)q

T y(s)= aNA\Ef - A (22)

24mm WM,

There are also background contribution to f3/?, which

we simply write as
qf5, =tandy . (23)

We now consider the unitarization of the resonant 7N
partial wave in the Olsson, 18 Noelle,*® and K-matrix ap-
proaches. These methods give

1+etandy
qf 1+ =tand; 3= —— — (24)

€+ntandy ’

where 7= +1 for the Olsson ansatz, —1 for the Noelle
ansatz, and O for the K matrix ansatz. As we shall show,
all three approaches give roughly equivalent fits to the 8,
phase shift and are in good agreement with other parame-
trization of 8;;. We also encounter the well-known prob-
lem*® that gy, and M, are mildly sensitive to the form
of parametrization of &;;.

In Olsson’s method we use a trick first developed by
him.!® We have

5 1+etandy 25)
t = e |
a3 €+tandy

Now setting tand;;==1 and solving for €, we get
€(tand;;==*1)==+1. (26)

We thus have two equations from which we may solve for
the unknowns g.ya and M,. Using the phase shifts list-
ed by Berends and Donnachie,?? we find g,y,=1.935
and M, =1216.53 MeV. With gy, and M, now known,
we can use Eq. (25) to solve for 53.

In the K-matrix approach, we treat the tree-level am-
plitudes as K-matrix elements and obtain

M T A(s)
tand;;=qf 2, +qf R, =tand, -i—Az—A . 27
MA )

In this approach, the mass of the A is the energy at which
833 passes through 90°. The coupling constant gy, may
be determined by the residue of the K matrix pole.?
From the phase shifts given by Berends and Donnachie
(BD), we obtain M, =1232.49 and g,yp =2.15 It is also
useful to assume some functional form for tand, and fit
the 855 phase shift throughout the A region. This will al-
low us to look for form-factor effects and also give an
idea of how good this unitarization method is. In partic-
ular, we assume

3

+b

5

41, (28)

tand, =a | L
B m m

and fit @, b, M, and g,y to 833. The form of (28) is
chosen to give the correct threshold dependence g3 plus

the additional free term ¢q°. We obtain a=0.100,
b=-—0.012, M, =1231.65 MeV, and gy, =2.164, with
a x? per degree of freedom of 0.45. Since the errors on
833 are not given by BD, we have assumed conservatively
an error of 1 degree at every energy. The background
phase shift 65 is in good agreement with the theoretical
prediction of 8 obtained by Olsson.'® If we allow some
energy dependence of g ya of the form (which is valid for
W in the neighborhood of M, )

B(s—M3%) C(s—M3)?

M3 M

gerA(s):gerA(Mi)+ » (29)
we find B =0, C~ —1.47, but the x? per degree of free-
dom actually increases to 0.46. This amounts to a varia-
tion in g,y (in the s channel) of about 10% over the en-
ergy range considered here.

In Noelle’s method,

833=08x+83 , (30)
where we assume 85 is given by (28) and
M, T\(s)

2 ’
My —s

tandp = 31

with T',(s) given by (22). We again fit the parameters to
the &;; phase shift and obtain a=0.084, b = —0.0096,
M, =1250.13 MeV, and gy, =2.4604 with a x? per de-
gree of freedom of 0.45.

It is interesting to note that for both the Olsson and
K-matrix methods we could find energies at which we can
determine M, and gy, independently of what is defined
to be background in that model. This is also true for
Noelle’s method. Recall that the partial wave f3%? has a
pole in the complex W plane when cotd;;=i. Thus, in
Noelle’s method,

tan8, +tand
tandy = ————— 2 = —j | (32)

1—tandztandy B
where all phases are evaluated at the T-matrix pole posi-
tion. This implies

(1—itandy)(1—i tandgz)=0 . (33)

This gives tandz = —i provided tandz#—i. At the T-
matrix pole position, W=(1210—50;{) MeV,3! and as-
suming we can extrapolate (28) into the complex W
plane, we obtain tandy =~(0.20—0.12i) at the pole posi-
tion, implying that tan§; = —i at the pole. We thus find
from the 7T-matrix pole position’! g y,=2.53 and
M, =1254 MeV, in good agreement with the values ob-
tained in the fit.

In summary, g,ya and M, are determined by the ener-
gies at which tan§;;==%1,,—i, for the Olsson, K-
matrix, and Noelle methods, respectively.

It is interesting to compare the above three unitariza-
tion methods for 7N scattering in an expansion and asso-
ciate the terms in the expansion with terms in a perturba-
tion series. To illustrate the usefulness of this approach,
first consider the case where f is zero, and iterate f ig-
noring the dispersive corrections
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af 1+ =frll+ifg +(ifg P+ -+ 1= L (34)

- 1—ifR ’
the final expression being valid for any value of fr. We
see that with fz =0, this is precisely what all three uni-
tarization methods for T yield. For an arbitrary back-
ground,

tand SR+ fg
T=4/1+=1"} tans L+nfrfp—i(fr+rfg) 35
which we formally expand
T=(fp+fp) |1+ X [i(fr+fg)—nfrfe]"|. (36)

n=1

For simplicity, consider the terms up to f%f7 with
pt+q=3:

T=(fr+fp1+il(fr+fp)—0frSs
—(fR+2f RS+ 5], (37)
or
T=fr+fptifR+2frfat/B)—fR—f3
— B+ fRfstfaf3) - (38)

Thus, the three methods discussed earlier disagree on the
contribution of the f3fp and fxrf3 terms. In the ap-
proximation of ignoring dispersive corrections, assuming
separability, and summing an infinite subset of unitary di-
agrams, we would have for the f3 f5 terms the diagrams
of Fig. 1, indicating that the coefficient of the f3f5
should be —3 as given by the K-matrix (the minus sign
arises from the phase i obtained from each of the inter-
mediate propagators when evaluated on shell). To this
order, and also to higher orders, Noelle’s method ‘““under-

~o -
-
~. —— -—— -
~ a a a
~ -
~ -

FIG. 1. Diagrams of the form f§ f§ with p +¢=3 (see text).

counts” the number of diagrams (i.e., the coefficient of
the background-resonance interference term is smaller
than what one obtains based on the above arguments) and
Olsson’s method “overcounts” the number of diagrams.

E. Unitarity for photoproduction of pions

The tree approximation for the M}/? and E3%? pion-
photoproduction multipoles takes the form

A =AB+—]€! ) (39)
where, for the M3/? multipole,
eS km
4g1TNAS2q M(W+M)
x |gia (3w + 20— 52— (40)
81a M ’
and, for the E3}/? multipole,
—eS km(W —M) SN
Np= ! - gia— 22 , (41

with S1(2,=\/E,-(F)+M,-(f), i and f being the incoming
and outgoing nucleon, respectively, and € is given by (21).
Ap is the projection of the nonresonant contribution in
these multipoles. We may also define

w
Row )= —(W —M) g1a 7 82A M @)
EM IW+M W(W—M) '

gm”‘ngm

When W =M,, this agrees with expressions (2) and (3),
and the results we give are for (Rgyv)p, with M, given

by the appropriate unitarization procedure. We will also
give results for W, the energy at which R gy =0, to show
that in most fits > 1500 MeV.

In Olsson’s approach, the pion-photoproduction ampli-
tude in the resonant channels is unitarized in the follow-
ing manner. The background is assumed to be separately
unitary and, thus,

Ap— Age’® (43)

where 85 is calculated from (25) by taking the 8,5 as in-
put. We note that A, includes all contributions to the
resonant multipoles except the s-channel A exchange. In
particular, 4 has contributions from the u-channel A
exchange. Thus, Az=Az(gr,8:4,X,Y,Z), the argu-
ments of Ay being in parentheses.

The resonant piece is modified by

i¢
i:—a Ej\fiy , (44)
where
——=sin(8—85)e'" " (45)
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The phase ¢ is determined from Watson’s*> theorem:

A=ABeiSB+—€J%%=|A|ei5- 46)
The solution for ¢ is

$=8,+8; , (47)
where

Ap

sind, = N (48)
The resonant multipoles finally take the form

A=Nsin(8—385+8,)e™ . (49)

This method fails if | 45| > |N|, which can happen for
the E3%* multipole. For our case, we overcome this prob-
lem by applying Olsson’s method directly to the helicity
amplitudes* rather than to the multipoles, with the helici-
ty amplitudes defined by

Ay =1GE, +M,,) (50)
L
BH=~23(E,+—MH). (51)

There is nothing unique about unitarizing the helicity
amplitudes. We could have chosen some other combina-
tion of E}/? and M3/? to unitarize as long as each is M}/
dominated and the transformation is orthogonal.

In Noelle’s method, the final form of the resonant mul-
tipoles is

A =( Agcosd+N sindg )e® . (52)

This unitarization method works for any ratio Az /N and
has recently been used by Cenni, Dillon, and Christil-
lin.*!

Treating the tree-level amplitudes as K-matrix ele-
ments, we obtain

N

A =cosd® AB+?J . (53)

This is not the best form of the amplitude for fitting the
data because one must make sure that cosd and € go to
zero, with cosd/e€ finite, at the same energy. Recalling
that in the K-matrix approach

tand=tan8p + % , (54)
Eq. (53) may be recast in the form
sinde ®
=————(edAy+N) . 55
A 1+etandy (€4 ) 5%

This is the best form of fitting the data and also works for
any values of N and 4.

The different unitarization procedures differ on how to
incorporate the wNN final-state rescattering. If there is no
background contribution so that tandz = A =0, then all
three methods trivially agree and give

A =N sinde’® . (56)

However, the background is important, especially for the
E3/2 multipole. The importance of the background for
mN scattering can be seen by comparing various values of
M, and gy, obtained in the various approaches. How-
ever, even if tandz =0, and all three methods are identi-
cal in form, it is not guaranteed that all methods will give
the same M, and g_y, since the (model-dependent)
width is being evaluated at different energies. Finally we
note that for all methods, 8§ =~ 15° near resonance.

III. RESULTS

The amplitude has been cast in a (model-dependent)
unitary form and g4, €54, X, Y, and Z may be fitted to
the pion-photoproduction data. We choose to fit the
multipoles rather than the observables (cross section, po-
larizations, etc.) for the following reasons. First, all the
observables may be expressed in terms of the multipoles,
and thus if the extracted multipoles are a good represen-
tation of the observables, and our model gives a good fit
to the multipoles, then our model should also be in good
agreement with the observables. We show below that our
model is in good agreement with the observables.
Second, the resonant piece of the A contributes only to
the E3/? and M3/? multipoles. How well the background
in these multipoles is known can be gauged by how well
the model reproduces the nonresonant multipoles. Third,
deficiencies in the model may be more apparent when
comparing with the multipoles than when comparing
with the observables. For example, the failure to repro-
duce the M !/? multipole might indicate the importance of
inelasticities in the P, phase shift.

In the first resonance region, very few theoretical as-
sumptions are needed for the energy-independent mul-
tipole analyses, but in many cases the different multipole
sets are not in good mutual agreement, reflecting the
difficulties in extracting multipoles from the cross section
and polarizations. Since it is not clear which of the ex-
tant multipole sets is the best, we give our results for vari-
ous sets available in the literature. This gives us some es-
timate on the errors arising due to the imprecision of the
multipole data base. For most data sets, we have per-
formed fits to the full energy range, and also to a truncat-
ed energy range around W =M ,. This procedure allows
us to test the need for form factors, particularly at the A
vertices. The fits to the data have been done with all
three unitarization procedures and with different o NN
couplings. We also compare the K-matrix parameters
predicted by the various fits with those extracted model
independently from the data.

When investigating the effect of theoretical uncertain-
ties, for example, the uncertainties in the @ NN couplings,
on the extracted E2 and M1 amplitudes, we have used the
data of BD and to a lesser extent the data of PS. This is
because these data sets have been fully isospin decom-
posed, and the data of BD are available every 10 MeV
from a photon laboratory energy of 240 to 450 MeV. Fi-
nally, for the data sets that have used only the yp data,
and thus are not fully isospin decomposed, we have in-
cluded p exchange with g, =2.66, g, =16.23, and
M ,=770.3 MeV. This choice of g,; and g, gives a good
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FIG. 2. The real part of EJ, in units of 107 3M ! vs photon
laboratory energy, E,. The dashed line is the PV nucleon Born
contribution and the solid line is PV nucleon Born plus p ex-
change. The data are from Berends and Donnachie (circles) and
Pfeil and Schwela (triangles). The parameters used are those of
Table I(a), row 1.

fit to the 7=0 multipoles (see Figs. 2-5).

Tables I(a) and I(b) give the results from the various fits
to the full energy region. The data sets are indicated by
the initials of the authors whose data have been fitted:
Berends and Donnachie?? (BD), Pfeil and Schwela?® (PS),
Grushin et al.® (GRU), Get'man et al.'* (GET), and
Miroshnichenko et al.?® (MIR). The column “unit” con-
tains an abbreviation for the unitarization procedure used
in the fit: Olsson (OL), K matrix (K), and Noelle (N).
The resulting values for g,,, g,4, X, Y, and Z are given
along with the x? per degree of freedom, Y3. To give an
idea of the quality of our fits to the experimentally ex-
tracted resonant multipoles, we also have included X%'IE’

150 200 250 300 3900 400 450
- (MeV
E,}, eV)

FIG. 3. Real part of MJ_. Curves and data same as in Fig. 2.
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FIG. 4. Real part of E{,. Curves and data same as in Fig. 2.

which is defined as the sum of the x? for the E3}/? and
M3/ multipoles divided by 2(N —1), N being the number
of data points fit in each multipole. We also give x5
which is the sum of the y? from the nonresonant mul-
tipoles divided by 8V —5. Finally, we include the global
averages for our fitted quantities, AVG, as well as aver-
ages restricted to a given unitarization method, AVG U,
to illustrate the model dependence in the extraction of
the parameters.

Tables II(a) and II(b) give the values for the N<«>A elec-
tromagnetic transition amplitudes, as defined in Egs. (2)
and (3), resulting from g,, and g,, given in Table I. E2,
M1, A, ,,, and A4;,, are all in the standard units of 1073
GeV™!2, and the E2-to-M1 ratio (EMR) is given in per-
cent. We have also included, in units of MeV, the energy
W at which Ry becomes zero. For all entries in this
table, we have used the mass of the A appropriate to the
unitarization method used in the fit.
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FIG. 5. Real part of M{,. Curves and data same as in Fig. 2.
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TABLE I. (a) Results for the y NA gauge couplings g, and g,,, and the off-shell parameters X, Y,
and Z obtained from different fits with g, = —g,, =7.98. Also given are the total x? per degree of free-
dom, y%p, the ¥? from the resonant multipoles, ¥3,z and the y? from the background multipoles, x%.
The overall average is given along with the averages for a fixed unitarization method. SD is the stan-
dard deviation calculated with N —1 weighting. GET10 and GRU6 have been excluded in the global
average for Z. Including these values gives Z =1.37%6.05. (b) Results for gauge couplings and off-
shell parameters obtained for different values of g, and g,,. The first number below the data set being
fitted is g,,; and the second number is g,,. The notation is as in (a).

2

Data Unit g1a 824 z Y X XbrF X X3
(a)
BD22 OL 4.56 5.49 —0.24 —0.53 2.39 14.2 4.74 13.0
BD22 K 5.00 5.18 —0.27 —0.89 3.81 29.7 59.3 15.1
BD22 N 5.79 3.34 —0.28 —1.24 9.25 77.2 21.6 24.1
PS11 OL 4.74 6.00 —0.38 —0.65 2.81 5.04 6.95 3.37
PS11 K 5.15 6.30 —0.40 —0.66 2.87 27.5 101 3.16
PS11 N 5.83 6.54 —0.49 —0.34 2.95 69.8 272 4.25
GETI10 OL 4.66 5.34 +1.26 —0.25 0.03 84.5 298 13.0
GETI10 K 5.05 5.54 —0.20 +0.17 —0.18 27.3 46.4 16.2
GETI10 N 5.79 5.58 —0.22 —0.04 0.49 431 411 324
MIRI11 OL 4.06 4.34 —0.22 +1.20 —2.81 1453 5971 14.2
MIR11 K 4.65 5.55 —0.19 +0.47 —1.05 1000 4077 17.6
MIRI11 N 5.25 5.52 —0.15 +0.10 —0.30 1424 5768 34.1
GRU6 OL 4.82 5.04 +23.2 —0.31 —0.35 5.13 2.19 4.62
GRU6 K 5.22 5.97 —0.45 —1.01 4.23 33.6 1.53 33.2
GRU6 N 5.93 6.39 —0.43 —0.84 4.29 31.6 2.75 31.0
AVG 5.10 5.47 —0.30 —0.32 1.90
SD 0.55 0.82 0.11 0.63 2.96
AVG U OL 4.57 5.24 4.72 —0.11 0.41
SD 0.30 0.61 10.35 0.75 2.28
AVG U K 5.01 5.71 —0.30 —0.38 1.94
SD 0.22 0.43 0.12 0.66 2.40
AVG U N 5.72 5.47 —0.31 —0.47 3.34
SD 0.27 1.28 0.14 0.56 3.79
(b)

BD22 OL 4.52 4.40 +0.69 —0.40 0.73 32.0 7.60 30.1
14,0
BD22 OL 4.60 7.21 +0.10 —0.10 0.23 11.6 15.5 7.8
0,0
BD22 OL 4.55 5.59 +0.39 —0.33 0.56 17.6 5.2 16.3
8,0
BD22 OL 4.59 6.23 —0.53 —0.42 4.31 8.50 5.60 7.12
3.46,
—23.2
BD22 OL 4.29 0.00 —0.31 0.74 28.1 47 16.5
8,—8 fixed
BD22 K 5.00 5.43 —0.04 —0.39 1.23 32.7 57 18.7
8,0
BD22 K 5.07 7.05 —0.10 —0.04 0.21 21.2 53 8.16
0,0
BD22 N 5.72 3.97 —0.23 —0.73 4.53 78.7 209 27.4
8,0
BD22 N 5.82 6.24 —0.19 —0.06 0.57 62.3 189 16.0
0,0
GETI10 OL 4.66 5.49 8.25 —0.31 —0.28 87.4 305 14.2

8,0
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Table III contains the results of the fits to the truncat-
ed energy region for g4, 854, X, Y, and Z. The notation
is the same as in Table I. For the truncated fits, we have
restricted the fits to the following energy regions; BD,
320<k; <380 (7 points); PS, 300=k, =380 (5 points);
GET, 300=<k; =380 (5 points); and MIR, 300=k,; =380
(5 points), where k; is the photon laboratory energy in
MeV. We did not perform a truncated fit for GRU since

the data set is already limited to six energies around the
A mass. Table IV is analogous to Table II, but contains
the electromagnetic amplitudes resulting from the trun-
cated fits.

We have fitted all the T = and T = multipoles with
=1, I being the pion-nucleon orbital angular momen-
tum. The minimization has been performed by the
CERN routine MINUIT with the function

TABLE II. (a) Transition amplitudes resulting from the fits listed in Table I(a) in units of 1073
GeV ™72 Also given are the EMR (in percent) and the energy W (in MeV) at which Ry becomes
zero. (b) Transition amplitudes resulting from the fits in Table I(b).

Data Unit E2 M1 A, . Az EMR (%) w
BD22 OL —3.47 249 —119 —218 —1.39 1590
BD22 K —5.98 282 —132 —249 —2.12 1780
BD22 —14.3 343 —150 —309 —4.18 3240
PS11 OL —2.96 258 —125 —226 —1.15 1490
PS11 K —3.78 288 —138 —253 —1.31 1540
PSi1 —5.97 337 —159 —297 —1.77 1680
GETI10 OL —4.14 255 —121 —224 —1.63 1640
GETI10 K —5.25 284 —134 —251 —1.86 1710
GETI10 N —8.36 337 —156 —299 —2.48 1950
MIR11 OL —4.34 223 —105 —197 —1.95 1760
MIR11 K —3.75 266 —125 —299 —1.44 1570
MIR11 N —6.34 304 —143 —269 —2.09 1790
GRU6 OL —5.36 264 —124 —234 —2.03 1800
GRU6 K —4.85 293 —139 —258 —1.66 1640
GRU6 N —6.75 343 —161 —303 —1.97 1740
AVG —5.71 288 —135 —254 —1.94
SD 2.78 38 16 35 0.71
AVG OL —4.05 250 —119 —220 —1.63
SD 0.91 16 8 14 0.37
AVG U K —4.72 283 —134 —248 —1.68
SD 0.96 10 6 11 0.32
AVG U N —8.34 333 —154 —295 —2.50
SD 3.45 16 7 15 0.98
Bi)22 OL —5.79 249 —116 —221 —2.33 1930
14,0
BD22 OL +0.30 247 —124 —214 +0.10 1200
0,0
BD22 OL —3.22 248 —119 —218 —1.30 1530
8,0
BD22 OL —1.93 249 —122 —217 —0.77 1380
3.46
—23.2
BD22 OL —14.9 247 —101 —223 —6.05 always
8,—8 neg.
BD22 —5.36 281 —133 —248 —1.90 1730
8,0
BD22 —1.63 282 —138 —245 —0.58 1350
0,0
BD22 —12.4 337 —150 —303 —3.68 2710
8,0
BD22 —6.71 337 —158 —298 —1.99 1750
0,0
GET10 OL —3.82 254 —121 —224 —1.50 1750

8,0
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TABLE III. Results for the truncated fits. Notation same as Table I(a).

used in the truncated fits is given in the text.

DAVIDSON, MUKHOPADHYAY, AND WITTMAN

The precise energy region

Data Unit g1a 8aa Y4 Y X XbF XME X3
BD7 OL 4.64 6.73 —0.13 —0.42 1.58 8.30 0.98 8.07
BD7 K 5.11 6.97 —0.23 —0.72 2.47 50.3 177 8.65
BD7 N 5.83 6.99 —0.27 —1.08 3.94 163 630 14.8
PS5 OL 4.73 6.36 —0.26 1.82 —4.19 2.60 3.10 1.89
PS5 K 5.03 6.51 —5.38 —0.34 —0.50 48.0 199 2.51
PS5 N 5.63 7.09 —0.15 —0.20 —0.34 109 463 3.17
GETS5 OL 4.67 5.66 7.49 —0.30 —0.25 157 603 19.2
GETS K 5.02 5.87 —0.25 0.86 —1.71 22.0 21.0 17.2
GETS5 N 5.74 6.37 —0.21 0.26 —0.30 154 541 30.3
MIRS OL 3.97 5.34 —0.46 —1.38 5.32 3243 13992 44.8
MIRS K 4.56 5.86 6.70 —0.31 —0.29 2169 9318 39.2
MIRS5 N 5.14 6.26 —0.22 1.44 —3.88 4169 12 852 1231
AVG 5.01 6.33 0.55 —0.03 0.15
SD 0.54 0.56 3.40 0.97 2.83
AVG U OL 4.50 6.02 1.66 —0.07 0.62
SD 0.36 0.64 3.89 1.35 3.95
AVG U K 4.93 6.30 0.21 —0.13 —0.01
SD 0.25 0.54 4.96 0.68 1.77
AVG U N 5.59 6.68 —0.21 0.11 —0.15
SD 0.31 0.42 0.05 1.05 3.20

ot

(W)

(57)

being minimized. Here, ReM{(W) is the real part of the
ith experimental multipole at energy W, o; is the experi-
mental error and M/ is the prediction of Mf. Although
the XZ has many local minima, we have found that the

TABLE IV. Transition amplitudes for the truncated fits.
Notation same as Table II(a).

Data Unit E2 Ml A,, A, EMR (%) W
BD7 OL —0.97 251 —124 —218 —0.39 1300
BD7 K —199 284 —139 —248 —0.70 1380
BD7 N  —4.76 336 —161 —295 —142 1570
PS5 OL —2.12 257 —125 —224 —0.83 1400
PS5 K —2.82 281 —136 —246 —1.01 1450
PS5 N  —3.67 323 —156 —283 —1.14 1490
GETS5 OL —349 255 —122 —224 —1.37 1550
GETS5 K  —437 282 —134 —248 —155 1610
GETS5 N —6.04 332 —157 —292 —1.82 1690
MIR5 OL —1.77 215 —105 —188 —0.82 1400
MIRS K  —267 254 —123 —223 —1.05 1460
MIRS5 N  —3.89 295 —142 —259 —132 1540
AVG —3.21 280 —135 —246 —1.12
SD 1.44 37 17 33 0.40
AVG U OL —2.09 245 —119 —214 —0.85
SD 1.05 20 9 17 0.40
AVG U K  —296 275 —133 —241 —1.08
SD 1.01 14 7 12 0.35
AVG U N  —459 322 —154 —282 —1.43
SD 1.08 18 8 16 0.29

final parameters given by MINUIT do not depend on the
starting parameters for the present problem. Finally, the
€rrors on parameters given by MINUIT are generally much
smaller than the errors given in Tables I and III. The
averages and errors (denoted by SD) in these tables are
simply the usual average and standard deviation (with
N —1 weighting) of the appropriate parameters.

IV. DISCUSSION

We start this section with a few remarks on the fitting
of the multipole data sets. As remarked earlier, the ad-
vantage to fitting the multipoles is that small dynamical
effects in the amplitude are more visible, provided that
the multipoles themselves are reliably extracted. To give
some examples, we find that the parameters X, Y, and Z
are determined by very specific multipoles. We can clear-
ly see the u-channel A effect in certain multipoles. Final-
ly, by examining the E{/? multipole we can gain informa-
tion on the nonvanishing value of the resonant E2 ampli-
tude. Of course, all this information is buried in the ob-
servables, the multipole decomposition nicely sorts this
out.

The largest disadvantage to fitting the multipoles is
that the different multipole sets are in poor agreement if
we believe the given errors. Table V is a comparison of
the M3}/? multipole as given by BD, MIR, and GET at
energies common to all sets. We have combined the data
sets to obtain the (weighted) average multipole and error,
and then have calculated the scaling factor, s (not to be
confused with the square of the c.m. energy), as defined
by the Particle Data Group?! (PDG). Since s> 1 indi-
cates inconsistent data, we conclude that only at the first
energy are the sets in agreement, and the discrepancies
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TABLE V. A comparison of the M3/? multipole at various photon laboratory energies, E y» as given
by Berends and Donnachie, Miroshnichenko et al., and Get’'man et al. The weighted average is given

along with the scaling factor, s.

E, BD MIR GET AVG S
250 23.2 0.3 23.28 +0.20 23.18+0.28 23.2410.14 0.23
280 26.1 £0.2 26.43 +0.07 25.92+0.08 26.20+0.05 341
300 20.8 +0.1 22.78 +0.05 21.24+0.04 21.75+0.03 18.4
320 9.841+0.04 13.94 £0.02 11.08+0.02 12.21+0.01 84.2
350 —4.331£0.02 —2.307+0.004 —4.43%0.01 —2.6610.004 152
360 —8.931+0.04 —6.32 +0.01 —7.661£0.03 —6.59£0.01 52.1
380 —12.2 £0.1 —10.73 £0.03 —11.66+0.03 —11.24+0.02 21.7
400 —13.2 +0.1 —12.81 +0.04 —13.22+0.05 —12.994+0.03 4.79
420 —13.2 0.1 —13.20 +0.07 —13.55+0.08 —13.324+0.05 2.51
450 —11.8 £0.2 —12.43 +0.12 —13.24%0.11 —12.72+0.08 4.97

are largest around the resonance energy of E y =340
MeV. Although this table illustrates the worst cases, we
conclude that the errors on the multipoles have been gen-
erally underestimated. As a consequence, we do not
know if any statistical significance should be attached to
the x? in Table I, but the y? are still useful when compar-
ing different fits to the same data set. We hope the
discrepancies amongst the multipole data sets can be
resolved by future experimental research at the emerging
facilities.

A X,Y,Z

In an analysis of BD’s data, Olsson and Osypowski
found Z=-—0.291+0.10 and Y =0.78+0.30 with
8,1=798 and g, = —6.46. Withg, ,=—g,,=7.98 and
8.2 =0, we find that the best fit to BD’s data is obtained
with Z =—0.31 and Y=0.74. With arbitrary g,,, we ob-
tain the best fit with Z=-—0.24, Y=-—0.53, and
X=2.39, but these values are very sensitive to the values
of g, and g_,. For example, with g, =g, =0, the best
fit occurs for Z=0.10, Y =—0.10, and X=0.23, and the
x? is reduced by about 20%. On the other hand, Y3, in-
creases by a factor of 3. We should recall that Olsson
and Osypowski*® found Z = —0.45+0.20 in an analysis
of N scattering.

The off-shell parameters are also very sensitive to the
data set being fitted, and in some cases the off-shell pa-
rameters show a large dependence on the unitarization
method. In particular, fitting the data of GET and GRU
with Olsson’s method gives Z=1.26 and 23.2, respective-
ly. On the other hand, fitting the same data with K or N
gives —0.43SZ < —0.22. There are also large correla-
tions (as given by MINUIT) amongst the off-shell parame-
ters, but g, and g,, are only slightly correlated with the
off-shell parameters. They are, however, correlated with
each other. The correlation between g, and g,, arises
because the M}/%, having relatively small errors com-
pared to the E}/% essentially fixes the linear combination
of g5 and g,, appearing in Eq. (40) with W=M,, i.e.,
the M3/? multipole essentially determines

MA(MA_M)

81a(BMpy+M)—g,, M

Despite the large uncertainties in the off-shell parame-
ters, it is useful to compare our results with the parame-
ter choices of Nath and Bhattacharyya'® and Peccei. !24°
The value g,, =0 is ruled out not only by the E37% but
also by the E{/* and E}/? multipoles. Figures 6 and 7
show the large g,, contribution to these two nonresonant
multipoles. The contribution to the E}/? is due solely to
the u-channel A exchange, whereas the A contribution to
the E3/? multipole contains both s- and u-channel contri-
butions. Although all fits rule out g,, =0, the status of Z
and Y is less certain. In none of our fits do Nath’s values
arise, and setting Z=0.5, Y=0 generally results in a large
increase in the y2. For many fits Z is close to —0.25, but
Y and X generally differ widely from —0.25. Most fits
give |Z|$0.5, but there are large exceptions. As dis-
cussed by Nath, Etemadi, and Kimel,* there seems to be
no firm basis for Peccei’s choice of the off-shell parame-
ters, and as we have discussed here and elsewhere,3*
Nath’s choice of the off-shell parameters and particularly

40.0

35.0

30,0

REAL EO0+ (1073 M)

20.0

15.0

150 200 250 300 350 400 450
MeV)
E7 (Me

FIG. 6. Real part of E}{*>. The dashed line is the PV nucleon
Born and the solid line is the total contribution including w and
A exchanges. The w contribution is negligible here. Data as in
Fig. 2.
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FIG. 7. Real part of E3/%. Curves and data same as in Fig. 6.

g,» seem to be too restrictive for a phenomenological
description of transitions between composite particles.
Unfortunately we do not know how to predict these pa-
rameters starting from a composite model of hadrons.

Regardless of the values of the off-shell parameters, we
find that Z is determined largely by the M3/2 multipole,
Y by the M}/% and X by E}/*3/2. The other multipoles
are largely insensitive to the off-shell parameters. What
we mean by this can be illustrated by an example: if we
vary Z keeping all other parameters fixed, it is the M 37>
multipole that is affected the most.

B. Background multipoles

Before turning to the resonant multipoles, we must
mention one concern, which is the lack of form factors,
particularly at the @ and A vertices. In the s channel, the
A is close to being on shell (W =M ,) throughout the en-
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FIG. 8. Real part of M!/2. Data as in Fig. 2. The long-
dashed line is the PV Born, short-dashed is the PV nucleon
Born +w, solid line is the PV nucleon Born +w—+A, and the
solid line with a plus through it is the PV nucleon Born
+w+ A+ P,;;(1440).
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FIG. 9. Real part of M3/2. Curves and data same as Fig. 8,
except P;;(1440) contribution not shown.

ergy region we are fitting, and thus the lack of a form fac-
tor is justified. @However, in the u channel,
(u —Mi)/MZ ~ —0.7, indicating that the A is far off
shell. Given the quality of data and our general agree-
ment with the data (see Figs. 6—13), we see no clear need
for form factors. The insertion of form factors will prob-
ably change the values of the off-shell parameters, and
thus it is fair to assume that the off-shell parameters and
the w exchange may be mocking up for us effects of form
factors.

In Figs. 6-11, we show the results of our fit with
gia=4.56, g,,=549, Z=-0.24, Y=-—0.53, and
X=2.39 using Olsson’s unitarization method. The data
are from BD (circles) and PS (triangles). The long-dashed
line is the PV nucleon Born contribution, the short-
dashed line (when shown) is the PV+w result and the
solid line is the total result. If the short-dashed line is not
shown, the o contribution is small. We find sizable o

contributions for the M}7%, M1/2, and M3/? multipoles
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FIG. 10. Real part of E{?2. Curves and data same as Fig. 6.
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FIG. 11. Real part of M /2. Curves and data same as Fig. 9.

under the assumption g, =—g,, =7.98. Most of these
multipoles receive sizable nonresonant A contributions.
In Fig. 8 we show the large u-channel A contribution to
the M |72 multipole. The A contribution to this multipole
is largely independent of the off-shell parameters, and
therefore is primarily due to the spin-3 part of the field.

We also shown in Fig. 8 the effect of the Roper
[P,,(1440)] resonance to the M}/? in the zero width ap-
proximation, using the parameters of the Particle Data
Group.’! In this energy region, the Roper resonance
produces about a 10% effect on this multipole. This mul-
tipole deserves more theoretical and experimental investi-
gation as it is the multipole that should first show devia-
tions from Watson’s theorem due to inelasticities in the Py,
channel.
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FIG. 12. Real part of E}{?. Data same as Fig. 2. The dashed
line is the PV nucleon Born; the solid line is the total using
Olsson’s unitarization method; the solid line with a plus
through it is the total using the K matrix, and the solid line with
X through it is the total using Noelle’s method.
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FIG. 13. Real part of M3/%. Data same as Fig. 2. The long
dashed line is the PV Born, short dashed is the PV nucleon
Born +w, the solid line is the total using Olsson’s method and
solid line with X through it is the total using Noelle’s method.
The K-matrix result falls between Olsson’s and Noelle’s lines
and is not shown.

C. Resonant multipoles

The constraint of Watson’s theorem has a small effect
in the background multipoles, but it is crucial for the res-
onant multipoles. For all data sets except PS, we have
used the phase shifts given by BD, and this may account
for some of the poorness of fit to the other data sets (Ref.
29). PS have given the real and imaginary parts of the
multipoles, and in fitting their data we use their phase
shifts. Grushin et al. have not used Watson’s theorem in
their analysis, thereby obtaining an independent estimate
of the imaginary part of the amplitude. The errors for
the imaginary part are quite large, and thus it is difficult
to say to what degree Watson’s theorem is to be correct-
ed. Since we assume Watson’s theorem to be valid, and
since the errors obtained by GRU are large, we simply
use the phase shifts of BD in conjunction with the
former’s real part of the multipoles. Recall that small
violations of Watson’s theorem are expected even below
the two-pion threshold due to the pion mass difference
and Compton scattering.

1. g

Within a given data set and unitarization method, g,
is determined to within about +0.10, or about 2%. This
variation is due to uncertainties in the @ couplings; the
error given by MINUIT for g,, is typically =~1X 1072 If
the data set MIR is excluded, then the different data sets
give the same g, to within £0.1, using the same unitari-
zation method. For example, using Olsson’s unitariza-
tion procedure (OL), with g, = —g,,=7.98 and exclud-
ing the MIR data set, we get g,, =4.70%0.11, whereas
including the MIR data gives g,, =4.57+0.30. Similar
results hold for other unitarization procedures. The un-
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certainty in g;, is due mostly to the unitarization
methods. The average of all data sets gives
g,4=5.01+£0.22 for the K matrix (K), and
g4 =15.721+0.27 for Noelle’s method (N), and the overall
average is 5.1040.55, with a range from 4.06 to 5.93.

The dependence of g, on the unitarization procedure
can easily be understood. The M3/? is dominated by the
s-channel A contribution and this contribution comes pri-
marily from g,,. Thus ignoring the background the g,,
contributions, we would have

M2 812AngA . (58)
s —M3+iM,T,

At resonance, using 'y < g2, we would obtain

M B (59)

8aNA

Therefore, as g, ya becomes large, so should g;, for a
given value of the multipoles. We shall discuss below
why this does not work too well for g,,. Recalling that
g.na=1.935, 2.1643, and 2.4604 for OL, K, and N, re-
spectively, we obtain from BD’s data g, /g,nya =2.36,
2.31, and 2.32 for the OL, K, and N unitarization
methods, respectively. Similar results hold for other data
sets, but the value of g, /g x4 is different than for BD’s
data. We emphasize that the value of g, /g, ya is well
fixed, despite large uncertainties in the w couplings and
the off-shell parameters.

2. ga

The ratio g,,/g8,ya is not nearly as constant as
g1a/8-na> and for BD’s data the trend is the opposite;
g,a decreases as gy, increases. This is indicating that
the background multipoles, which receive a contribution
proportional to g,,8.ya, are playing a large role in the
determination of g,,. Indeed if we choose some values of
the off-shell parameters and fit g;, and g,, to just the
M3/ and E3/2, we find that g,, /g, ya is fairly constant
for BD’s data. We should point out that the procedure of
fitting g,, and g,, to just the resonant multipoles of BD
gives vastly different values of g,, compared to fitting all
multipoles. The other data sets do not exhibit a large
difference for the value of g,, when fitting all the mul-
tipoles or just the resonant multipoles.

Our final results are g,, =5.24+0.61, 5.71+0.43, and
5.47£1.27 for the OL, K, and N unitarization methods,
respectively, with a global average of 5.41+0.85 and a
range of 3.34 to 6.54.

3. Truncated fits

Truncating the fits to W =~ 1230 MeV has little effect on
g1a giving a global average of g, =5.00%+0.54 with a
range of 3.97 to 5.83. g,, is slightly increased to
824 =6.3310.56 with a range from 5.34 to 7.09. The
truncation effects are largest for BD’s data.

D. Transition amplitudes

The M1 amplitude, and consequently 4,,, and 4;,,,
is determined primarily by g;,. As can be seen from Eq.
(3), the g,, contribution is about 5% of the g, contribu-
tion. Our global averages are

M1—289+37, A,,=—136%16,
Ay, =—256134,

all in the standard units of 1073 GeV~!/2, Within a
given unitarization method, the “errors” on these quanti-
ties are about 15 if the MIR data are not included, and
about =15 if the MIR data are included.

The E2 transition moment, and therefore the EMR, is
not well determined. Our global averages are

E2=—5.71+£2.73 ,
E2/M1=—(2.00x0.67)% ,

where E2 is in units of 1072 GeV~!”2, The energy at
which Rgy goes to zero is W X 1500 MeV, implying that
Rgy <O for W< W.

There seems to be no correlation between x3,; and g,,
goa- If we arbitrarily average those values of g, and g,,
which correspond to a Y3, S100, then we obtain
g12=5.1410.46 and g,, =5.37£0.98, in excellent agree-
ment with the averages in Table I(a).

The results of M1, 4,,,, and A;,, from the truncated
fits are in agreement with the full fits:

M1=280+37, A,,=—135%17,
Ay, =—238+31 .

The results for E2 and the EMR are slightly reduced in
magnitude, and slightly better determined;

E2=-—3.21+1.44 ,
E2/M2=—(1.121+0.44)% .

E. Observables

In Figs. 14-23 we compare our results with the
differential cross section (do /d()), photon asymmetry
(2), recoil nucleon polarization (P), and target asym-
metry (7T) at various energies and angles for the reactions
yp—pm° and yp—n7". The agreement with the data is
generally very good, although there are a few discrepan-
cies. The data are from the Bonn compilation of pho-
toproduction data,”®> Get’'man et al.,>® and Belyeav
et al.>* In these figures we show comparisons of predic-
tions of do/dQ, 2, P,and T for different unitarization
methods and different multipole data sets. The solid line
in these figures is obtained from the fit of BD’s data using
Olsson’s unitarization method, and generally is in the
best agreement with the data. The short-dashed line is
obtained from Noelle’s method, again fitted to BD’s data.
We see that Noelle’s method leads to larger cross sections
than Olsson’s method, which is a reflection of the fact
that the M3/? (see Fig. 13) is larger in Noelle’s method
than in Olsson’s method. The dash-dotted curve arises
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FIG. 14. Differential cross section in microbarns per steradi-
an for N7t vs cm angle (in degrees) at a photon laboratory en-
ergy, E,, of 260 MeV. The data are from the Bonn compilation
(Ref. 52). The solid curve is calculated using Olsson’s unitariza-
tion method with the parameters fitted to BD’s data [Table I(a),
row 1], the short-dashed curve is calculated using Noelle’s
method with the parameters fitted to BD [Table I(a), row 3], and
the dashed-dotted curve is calculated using Olsson’s method
with the parameters fitted to MIR [Table I(a), row 10]. The
long-dashed curve includes only the S and P wave contributions
to the solid curve.

from using Olsson’s unitarization method, but fitted to
the data of MIR. Again, the reason that this cross sec-
tion is smaller than the other two is a reflection that the
M37? is smaller in MIR’s data than in BD’s data (see
Table V). We also show for w1 production (Figs. 14-16
and 19-21) the predictions when only S and P waves
(long-dashed line) are kept in the calculation of the ob-

40

Nt

E‘ =320

30

20

do/dQ (pb/sr)

50
O (deg )

FIG. 15. Same as Fig. 14 with E, =320 MeV.
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FIG. 16. Same as Fig. 14 with E, =380 MeV.

servables using Olsson’s method with the parameters
fitted to BD’s data. For 7° production, the higher partial
waves are a small effect, and then only at forward and
backward angles.

We remark here that all partial waves resulting from
the PV nucleon Born terms and vector-meson exchanges
have been included in the calculations of the observables.
This is achieved by subtracting off the nonunitarized mul-
tipoles (i.e., the tree approximation to the multipoles)
from the #’s,'® and adding on the unitarized multipoles.
This can also be done for the A contribution, but should
be a small effect. This is supported by the fact that the
higher partial waves for 7° production resulting from the
u-channel nucleon exchange are small. In fact, the
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FIG. 17. Differential cross section for pm° at E, =260 MeV.
Data and curves as in Fig. 14, except the contribution from only
the S and P waves is not shown since it is nearly the same as the
full calculation.
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FIG. 18. Same as Fig. 17 except E, =320 MeV.

higher partial waves for pion photoproduction are dom-
inated by the f-channel pion exchange [in the gauge
6#=(0,e)]. It is interesting to note that 7" (Fig. 21) is not
very sensitive to the higher partial waves. Although we
may convince ourselves that this is correct by examining
the manner in which the s enter into the expression for
T, we do not currently have a deeper physical under-
standing of why T is not sensitive to the higher partial
waves. Finally, the differences we show here for the ob-
servables are the extremes. For example, the K-matrix
predictions lie between the predictions of the Noelle and
Olsson methods. Also, the fits to the MIR data give the
largest variation in g;,.
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FIG. 19. Photon asymmetry for N7+ vs cm angle at
E, =380 MeV. The calculation is done using the unitarization
method of Olsson with the parameters fitted to BD’s data. The
data are from Ref. 53.
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FIG. 20. Recoil nucleon polarization for N7 vs cm angle at
E, =380 MeV. Curve and data as in Fig. 19.

F. K matrix residues

It is possible? to extract from the multipole data sets
the K-matrix pole position and residues for wN elastic
scattering and pion photoproduction in a model-
independent manner. For the resonant partial wave and
multipoles we have, for the K-matrix elements,

A

K,,=—2—+B,
== T (60)
c
Kpp=—"—+D,
T (61)
1.0
i ///:_____‘ N\
. \
//
L
— 0
| E,=380 N=n*
-1.0 1 1 1 1 1 Il 1 1 Il 1 1 1 | 1 11 1
0 S0 100 150
8 (deg )

FIG. 21. Target asymmetry for N7* vs cm angle at E, =380
MeV. Curve and data as in Fig. 19.
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FIG. 22. Photon asymmetry for p7° vs cm angle at E » =380
MeV. Curves and data as in Fig. 17.

where we ignore Compton corrections and M; is the en-
ergy at which the 65, phase shift passes through 90°. Evi-
dently, C=—Re(K ;) and 4 =—Re(K,,) (this is true
for both the M3/* and the E34?). Here we assume
A,B,C,D to be smooth functions of W. Converting to
the T matrix, treating the electromagnetic channel as a
perturbation to the strong channel, and adding necessary

kinematical factors, we find, for the resonant partial wave
3/2

R
_d_ 2y 1
dW(RefH- ) 2C (62)
and, for either resonant multipole 4,
_ . d __—A4
_——dW(ReAy,,) 7\/q_kC2 , (63)
1.0
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i
4 4
— 0 ' I I -
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FIG. 23. Target asymmetry for p7° vs cm angle at E » =380
MeV. Curves as in Fig. 17 and data from Ref. 54.
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TABLE VI. A comparison with experiment of the K-matrix
residue parameters (in units of 107 3m ~! MeV™!) predicted by

various fits.

Data Unit xg (1073) XM
BD Expt 4.91£2.94 —0.667+0.02
BD22 OL 12.28 —0.661
BD22 K 13.99 —0.661
BD22 N 25.60 —0.652
BD7 OL 5.48 —0.666
BD7 K 4.69 —0.665
BD7 N 9.34 —0.649
PS Expt 5.89+7.88 —0.693+0.030
PS11 OL 9.82 —0.683
PS11 K 8.88 —0.677
PS11 N 11.36 —0.652
PS5 OL 7.82 —0.678
PS5 K 5.66 —0.651
PSS N 6.84 —0.626
GET Expt 7.68+2.60 —0.635+0.013
GETI10 OL 12.44 —0.652
GETI10 K 12.24 —0.661
GETI10 N 15.82 —0.652
GETS5 OL 11.87 —0.651
GETS K 10.16 —0.655
GETS5 N 11.48 —0.642
MIR Expt 6.83+1.44 —0.662+0.013
MIRI11 OL 12.15 —0.563
MIRI11 K 8.72 —0.606
MIRI11 N 12.09 —0.589
MIRS5 OL 12.29 —0.542
MIRS5 K 6.21 —0.592
MIRS5 N 7.23 —0.572
GRU Expt 12.06£5.20 —0.642+0.147
GRU6 OL 13.76 —0.629
GRU6 K 11.24 —0.679
GRU6 N 12.55 —0.666

where all quantities are evaluated at W =M ;. From the
phase shifts given by BD, we find C=57.1 MeV. In
Table VI we compare the predictions of x,, and Xy ob-
tained from the various fits in Tables I and II with those
extracted directly from the data using a Lagrange inter-
polating function.®®> The notation is the same as Table I,
and X,y are in units of 107*m ~! MeV~!. The errors
are obtained by a combination of propagation of the quot-
ed error on the multipole, and an estimate of the accura-
cy of the interpolating function. See Ref. 29 where the
discrepancies amongst the multipole data sets are taken
into account, and an additional relation for A is given.

We see that the values of y; obtained in various fits are
often not in agreement with experiment. If we consider
only the fits in which x is in agreement with the data,
we find a slightly smaller E2, but still a large spread,
E2=—3.5+1.8. The spread in values is not only a
reflection of the fact that y is different for different data
sets, but also of the fact that E2 is different in the
different unitarization methods.

To illustrate this model dependence in the extraction of



90 DAVIDSON, MUKHOPADHYAY, AND WITTMAN 43

the resonant parameters it is useful to compare the fits to
BD’s truncated data set using the K and OL methods of
unitarization. These two methods give quite similar re-
sults for X, ¢, and yield good agreement with the experi-
mental  values.? In  particular, OL  gives
Xp=5.48X10"3 and yx,=—0.666 while K gives
X =4.69X1073 and y,, = —0.665. Comparing the tran-
sition amplitudes as defined by (2) and (3) we see that the
agreement is rather poor; OL gives E2=—0.97 and
M1=251, while K gives E2=—1.99, and M 1=284. The
EMR is also quite different, OL gives —0.39% while K
gives —0.70%.

To further illustrate the model dependence of the
quantities E2 and M1, consider our fit to BD’s data using
OL with g, =g,, =0 [Table I(b)]. In this fit we obtain
E2=+40.3, and near the resonance the fit to the experi-
mental E3/? is very good, the theory is within the error
bar of every data point in the energy range 320 < k; < 390.
Despite the change in sign of E2, this fit gives
X =3.6X10"* which is in agreement with experiment.
Thus, by changing the background we find a fit in which
E2 changes sign, but the K-matrix residue does not
change sign and is in agreement with experiment. Doing
the same fit with K also gives a Y in agreement with ex-
periment and an excellent fit to the E}/? near resonance,
but in this case we obtain E2= —1.6.

The fact that E2 and M1 can vary so much when Y
and Y, remain stable illustrates the model dependence of
the decomposition of the amplitude into a resonant piece,
which we hope to compare with baryon models, and a
nonresonant piece. To be explicit, in the K-matrix uni-
tarization method, the expressions for A4 (Mj;) and
C(M,;) are

_ 8onaE;+ Mg’ )
24m2M337T ’
_ e88,(qk)* g na
M 967 My, Mm (M;;+ M)
M3y (M33;— M)
X glA(3M33+M)_g2AT , (65)

and

A= _651S2(qk)3/2g77-NA(M33 _M)
E 967M 33 Mm (M3 +M)

. M
g1a~ 824 M

>

(66)

where all kinematical variables are evaluated at W =M ;.

In this model the dependence on tandp and Ap drops
out and the residues are determined by g, xa, M, &1a»
and g,,. Furthermore, M, =M, in contrast to the oth-
er unitarization cases, OL (M, <M;;) and N
(M, >M3;). In the procedures of Olsson and Noelle, the
background does not drop out at the K-matrix pole. In
Noelle’s method,

N

A =
cosbp ’ (67)

and, in Olsson’s method,

A <N cos(8,—8p) . (68)

Thus, in Olsson’s and Noelle’s methods the K-matrix resi-
dues are functions not only the resonance parameters, but
also the parameters, such as g, yy, Which describe the
background in that model.

G. Comparison with models

In Table VII we compare our results, obtained by
averaging the full and truncated fits, with the predictions
of the nonrelativistic quark model,*® the chiral bag mod-
el,” the Skyrme model,? a relativized quark model, >and a
hybrid model.® This list certainly is not exhaustive, and
variations within a model will certainly produce varia-
tions in E2 and M1. For example, it has been estimated
that expanding the basis in the nonrelativistic quark
model will change the EMR in this model to ~ —0.7%,°
bringing it into better agreement with our results.

The physics of the E2 transition in these models is
quite different. The E2 might arise solely by a photon-
pion coupling,® a photon-quark coupling,’®> or a com-
bination of both.”? Furthermore, in the quark models
the E2 may be the result of (1) d-state admixture com-

TABLE VII. A comparison of our results with various baryon models. A dash (-) means that the

particular result is not known to us.

Source M1 E2 EMR (%) Ay Az,

Nonrelativistic 206 —1.96 —0.4 —100 — 180
quark model,
Refs. 4 and 53

Chiral bag model, 290 —2.82 —0.9 —141 —254
Ref. 6

Skyrme model, 284 —8.80 —2.90 —129 —254
Ref. 7

Relativized - - —0.2 - -
quark model,
Ref. 4

Hybrid model, 229 —10.10 —4.4 —99.4 —207
Ref. 8

This work 285+37 —4.60+2.58 —1.57+0.72 —135£16 —251+33
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ponents in the nucleon and A arising from one-gluon
and/or one-pion exchange, (2) relativistic effects (nucleon
and A assumed “spherical” in their respective rest
frames), or (3) the pion cloud. Given the differences
amongst these models, it is satisfying to see that they all
give the same sign and order of magnitude for the EMR.
This is an important conclusion of our work: the EMR
extracted in our work agrees in sign and order of magni-
tude with most realistic models of the nucleon and A.
However, the uncertainties in the hadron model estimates
for the transition amplitudes are currently greater than
the results extracted in this work. Improvements in the
former are needed to motivate better quality experiments
possible in the emerging facilities.

V. CONCLUSIONS

We have investigated pion photoproduction in the A
(1232) resonance region using an effective Lagrangian
with a number of unitarization methods. Our model con-
tains five parameters describing the A interactions which
have been fitted to the various multipole data sets. Our
model is in good agreement with the multipoles and with
the observables, for all channels, and thus our derived
amplitude that describes pion photoproduction well off
nucleons can be used as input to a nuclear pion-
photoproduction calculation.

We have found that within a given unitarization
method we have adopted, the M1 transition amplitude
for the y—NA process is determined to within about
5%. The x? for the M3/? multipole fits that we have
achieved are, in some cases, quite large, but there are
large discrepancies amongst the multipole data sets
which need to be resolved. The E2 transition amplitude
is determined to within about 25% in a given unitariza-
tion method that we have used, reflecting the relatively
large errors for the E3/? multipole.

Our determination of the resonant amplitudes for the
¥ — NA transition can be summarized as follows:

M1=285+37, E2=—4.60+2.58,
E2/M1=—(1.57+0.72)% ,
A, ,=—135+16, A,,=—251+33,

where the amplitudes are in the usual units of 1073
GeV 172, These averages and errors are taken from both
the full and truncated fits including all data sets and uni-
tarization methods. Thus, the above errors reflect the un-
certainties in the experimental multipole base, and
theoretical uncertainties arising from the ambiguities of
the unitarization method.

The extracted amplitudes given above are of the same
order of magnitude as predicted by realistic hadron mod-
els, even as the latter contain theoretical uncertainties
that are considerably large, exceeding those of our
analysis. It is still interesting to see that our extracted E2
amplitude is nonzero, as predicted by realistic hadron
models, in disagreement with the null value in the naive
SU(6), SU,,(6) cases; its negative sign relative to the M1
amplitude is also in accord with realistic theoretical
works. The significance of this sign varies from one

specific model to another, and we are unable to sort them
out. It is important to stress here that the ratio of the
E2-to-M1 amplitudes for the real photon is very different
from that expected in the perturbative QCD regime,
thereby suggesting important dynamical effects as we go
away from the real-photon point.

In the future we can only hope that a more reliable
multipole data base can be obtained by more refined ex-
periments and analyses in new cw machines. However,
even when this becomes available, one will still be dealing
with the model-dependent extraction of the resonant pa-
rameters. In this work we have shown that different uni-
tarization procedures give M1 amplitudes that differ by
about £20% and E2 amplitudes that differ by +60%.
Possibly the y? could be used as a basis to rule out a given
unitarization method, but we find that different methods
work best for different data sets currently available.
Since we cannot judge which set is best, we have treasted
all sets on equal footing and have given equal weight to
all unitarization procedures. It is perhaps worth noting
that Noelle’s method never gives the best fit (as compared
to the other methods) to any data set.

The model dependence involved in the extraction of
resonance parameters is an old problem. The ultimate
test of hadron models will be a direct comparison with
the strong and electromagnetic scattering data.>’

Apart from the precise relation between the resonant
parameters extracted here and those calculated in topical
baryon models, there are several open questions. Since
we can definitely rule out the gauge coupling g,, =0, in
this approach, we conclude that the constraints derived
by Nath and Bhattacharyya'® on the parameters g,,, ¥,
and Z are too restrictive to apply to transitions between
composite particles. Unfortunately we do not know how
to predict the parameters X, Y, and Z starting from a
composite model of hadrons. Further work needs to be
done on the role of the o term in pion photoproduction
in the A region. The o term seems to be important for
threshold 7° production. Finally, calculation of the one-
loop corrections using chiral perturbation theory would
be an interesting theoretical step.
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APPENDIX

For completeness we give the amplitudes for the PV
Born terms, » and p exchange, and A exchange. The in-
variant amplitudes A4,(s,t,u) are as defined in Ref. 16, ex-
cept we use the conventions of Bjorken and Drell.>®
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The contribution from the PV Born terms may be writ-
ten as

A+,0,—= 1M2 +§- 1M2 F+FPV , (A1)
s — u—

where A=(A4,,4,,A4;5,4,), T'=

=£+%"diag(1,1,—1,1), E70 7 =(1,1,—1),
reo=2M (A2)
m
o= —2IM (A3)
m(m*—t)
+,0
r;—f’°=rf:°=—-—ef S (A4)
m
_ efk™°
V=114 )2— oyl (AS5)
and
I“234 (A6)
Also, —(Kp—“Kn)/Z and K0=(Kp+Kn)/2. s, t, and u

are the usual Mandelstam variables, and the other quanti-
ties are as previously defined in the text.
The contributions from the vector mesons are

A+(0):_ikw(P)gm(p)2 t (A7)
1 m M Mw(p) ’
Aoipr8 1
4T =€ (p)S w(p)2
2 m M Mi(p ’ (A8)
470 =0, (A9)
and .
AHO)"—;‘ p8olp) 352 . (A10)
crmer Mzzo(p)”"t
The g, contribution is
atom=|—L 45 L _Jam+ane, @
s—Mjy u—Mjy
with
8+,0,— aM 5
= M3 —M?*+2
Al 3 4t + 3MA ( m*)
3M2 (M2 M2+m2)] , (A12)
Ayt)y=—8"0", (A13)
A aM )+ 2
Ay(2)= —(2M +
’ 8 A 3MA
+ 3213'12 (M§—2M2+2m2)i ,  (A14)
A
_8t%” 4M>
A1)= 6M +4M ,+ M,
+ M (Mg—2M2+2m2)‘, (A15)

3IM3

(', T, 3,0, &

and
(—2,0,1)eg . ya81a
+,0,— — L
) oM . (A16)
The only nonzero components of A,j,‘,'o' ~ are
87 |B
b b _ 2
AlNp= M 4(a 1)(t —m*)
+Bm*—M (M +M,) (A17)
Afwp=— 2 apM s+ (ap+a+p) (A18)
4,NP I3 AT ’
_ 5~ |B
AI,NP ;M——i Z(a——l)(s_u) (Alg)
and
A =——— |apMy+ L (ap+a+p) |, (20
3,NP M2 AT
where a=1+4Z and f=1+4Y.
The g,, contribution can be written in the form
At=AF+ AL, (A21)

where A2=0 for all i. We find, for the pole (P) terms,
+
Afp=——— [MGt—2mV)+(s —MPIM,
P 6(s —M3)
a2 2
_i_M_:"_m_(s+M2) +sou ,
(A22)
M,—M 1 1
r —or "4 + , (A23)
Azp 2 s—M3  u—M3}
+
AQ—LP=——L—2— (3t —2m?)+5(s —M?)
P2 —M2)
__A—I—A_(S —M?*+m?) |Fsou ,
(A24)
+
Afl,:———c—z— (3t —2m?)—(s —M?)
’ 12(S—MA)
——AJ;IA (s —M?*+m?) |ts—u ,
(A25)
where
e &*
ci=——————g’z§;g2“ , (A26)
m

8"=—2and 8" =1.
The nonpole (NP) terms are
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A;—F,NP_O s (A27)
+
Afnp= (m2—[M(—L—X +Z +2ZX)
6M?2 2
—M,(Z +X +4ZX)]
C+
- S2Mm*(1+2X) , (A28)
6M?%
N +
A = (s —u)Z(1+2X), A29
3,NP oM ( ) ( )
+
Ainp= ¢ S[(m?—0)Z (1+2X)—m*(1+2X)] , (A30)
’ 6M3%
A :*C;(s—u)[M(—i~X+Z+2XZ)
1,NP 6M2A 5
—M,(Z+X +4XZ)], (A31)
AJNP=—C—2—[<m2—t)Z(1+2X)—m2<1+2X)], (A32)
’ 6M3

and

A;NP=~———C (s —uw)Z(1+2X) .

(A33)
6M3%

Finally, the 2— 1 spin transition can be represented by
three 2 X4 matrices S, S,, and S,. In our conventions,
the nonzero values of these matrices are

1

S’34=—S"“:T/‘—£ , (A34)
le3=—532=%—6 , (A35)
S}}1=Sy24=-—\/i—§ , (A36)
Sy13:Sy22=__‘_/i_g , (A37)

and
S2=5B=1v72/3 . (A38)
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