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Hard part of the y-glnon cross section in deep-inelastic scattering off polarized target
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We analyze in detail the problem of separation of the hard y-gluon cross section in polarized
deep-inelastic scattering, closely related to the current dispute over the existence of the so-called
anomalous gluon contribution to the Aavor-singlet part of the nucleon polarized structure function
g, {x). We find that maintaining the factorization property of the full y-nucleon cross section
beyond the leading order in a, gives an unambiguous definition of the gluon contribution to the first
moment of g&(x), independent of the value of soft momentum scales, such as quark and gluon
masses, involved in the problem. Consideration of the soft contribution, which cannot be calculated
reliably in perturbation theory, hints at the possible violation of a naive, constituent-quark-model
pattern in polarized quark distributions for light flavors, as advocated earlier by Jaffe and Manohar.
We argue that the latter conclusion should have an important impact on the current phenomenolo-
gy of polarized quark distributions in the nucleon.

3CXS
AG,2'I = g 4qf-

f =u, d, s

instead of (twice) the total quark helicity, g&bq&. In Eq.
(1) it was assumed that at the scale of the EMC experi-
ment Q —10 GeV, only lightest Ilavors are active. For

Recently, there has been a considerable debate about
the existence of the so-called anomalous gluon contribu-
tion to the nucleon spin. ' The theoretical conjecture
was first made by Efremov and Teryaev, ' but unfor-
tunately their paper contained some mistakes. Later the
idea was reformulated by Altarelli and Ross, Carlitz,
Collins, and Mueller, and Altarelli and Stirling. They
pointed out that in deep-inelastic scattering of a photon
off a longitudinally polarized nucleon target the effective
y -gluon interaction via the box graph induces a contri-
bution to the first moment of the singlet part of the g &

structure function which is proportional to the gluon po-
larization. Moreover, while at first glance it is of a higher
order in o.s(Q ), it does not vanish when Q ~ oo because
the gluon polarization b, G ( Q ) grows like lnQ . Such be-
havior is somewhat different from what we know about
deep-inelastic scattering from an unpolarized target,
where contributions of this sort are suppressed by an in-
verse power of lnQ . In the language of operator-product
expansion this term is interpreted as arising from the
gluon anomaly in the divergence of the U(1) axial-vector
current; hence its name "anomalous gluon contribu-
tion. " Its existence may help to explain the surprising re-
sult of the recent European Muon Collaboration (EMC)
experiment, i.e., a surprisingly low value of the first mo-
ment of g~&, the polarized structure function for a longitu-
dinally polarized proton. This result has been interpreted
by many authors as an indication that only a very small
fraction of the nucleon s helicity is actually carried by
quarks. ' The anomalous gluon correction changes this
interpretation in the sense that now the EMC measure-
ment is to be related to the combination.

large and positive AG this formula can help to bring the
quark contribution on the left-hand side of (1) closer to
its value —1, preferred by phenomenological considera-
tions.

This interpretation has been seriously criticized by the
authors of Refs. 11 and 12. Their position can be sum-
marized in the statement that, in the leading twist, there
is no local gauge-invariant gluon operator which could
contribute to the operator-product expansion for the first
moment of g, (x). Our idea is that the only way to decide
which party is right to go deeper from the level of formal
arguments into actual derivations, and hope that sooner
or later at least one path must end up with a contradic-
tion.

Our aim in this paper is to analyze carefully a deriva-
tion of Eq. (1) within perturbation theory, i.e., the calcu-
lation of graphs depicted in Fig. 1. The main problem is
that in QCD one has to take care to select only those con-
tributions that are manifestly insensitive to long-distance
physics. This is usually done by restricting the phase-
space integration to the regions where quark propagators
are far offshell, i.e., both m —k, m —(k +q —p))pf t where pf„, is the factorization scale taken to be
large enough that the perturbative expansion in a, (pt„,)
is meaningful. Maintaining the factorization property of
the total cross section to the order of n, requires, in gen-
eral, the contribution from virtualities smaller than pf, t
to be identified with the polarized quark distributions.
We will discuss this issue in more detail in the second
part of the paper. Our result is that if certain care is tak-
en about this factorization there is no ambiguity in the
existence of the hard-gluon contribution to the nucleon
helicity, independent of the particular values of the low-
momentum scales, such as quark and gluon masses, in-
volved in the problem. By "certain care" we mean that
the adopted regularization mechanism does not modify
the chiral structure of the perturbation theory. More
precisely, we require that a factorization scheme does not
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FIG. 1. The elementary graphs leading to a photon-gluon
coupling. g„ is the photon momentum p„ is the gluon momen-
tum.

f71
m ' —k'~;„=m ' —(k +q —p)';„=p'x + (2)

where x =Q /(2p q) and Q = —
q . It is seen that keep-

ing a gluon mass different from zero may not be
sufficient, because no matter how large p is the small-x
region is not in the hard part. Moreover, when the dia-
grams in Fig. 1 are considered as part of a larger process,
the y*-N scattering, the gluon virtuality becomes an in-
tegration variable, which has no fixed value. Finally, we
would like to be able to see what happens for light
quarks, such as u, d, or s. To avoid difficulty we look for
a cutoff procedure independent of quark and gluon
characteristics. We choose to discuss three choices,
which we propose to call the k~, the k, the light-cone

lead to any breaking of helicity conservation in the
quark-gluon vertex, additional to chiral-symmetry break-
ing that is already present in the theory because of
nonzero values of quark masses.

Most probably, almost none of the statements we make
here are new to an expert. Arguments similar to ours
have been scattered over the current literature on the
problem; ' but nevertheless we find it useful (and
hopefully the reader will agree with us) to bring them to-
gether.

In this paper we are interested only in what happens in
the Bjorken limit, when Q = —

q —+~. Investigations
related to possible scaling violations will be reported in a
forthcoming paper.

Our starting point is the calculation of the cross sec-
tion for the scattering of y* on a polarized gluon. In the
lowest order in a, there is a contribution from the two
graphs depicted in Fig. 1. We take both a quark mass
different from zero and a gluon four-momentum squared
p = —p (not to be confused with the factorization scale
squared pr„,) in the anticipation of the fact that a gluon
in a nucleon is typically off shell by an amount of a few
hundreds MeV. As we keep all terms proportional to p
and m, the resulting expressions are lengthy and cornpli-
cated and we are not going to quote them here; they coin-
cide exactly with what was found, for example, in Ref. 13
if we take their regulator scale to zero, as discussed
below.

To isolate the hard contribution we have to introduce a
cutoff. Actually, if either m or p is different from zero,
the expression for the cross section is finite, but is does
not yet mean that it comes entirely from the perturbative
domain. In fact, one can show that the minimal virtuali-
ty of the quark line in Fig. 1 is given by

cutoffs, respectively. Note also that because we cut off
the sum of two graphs, not each graph separately, our
procedure does not induce a violation of gauge invari-
ance.

To perform actual calculations we go to a special refer-
ence frame, namely, the y*g center-of-mass frame, and fix
the direction of the photon and gluon three-mornenturn
along the z axis. Such a choice does not violate Lorentz
invariance, provided that we will be able to express all
our results by Lorentz invariants. In this frame, the kz
cutoff is simply the requirement that the square of the
perpendicular component of the momentum k" which
Rows in the loop in Fig. 1 is larger than some scale
kJ ' pf t Because in our frame k~ =(k +q —p)j, see
Fig. 1, the minimal virtuality of the quark propagators in
Fig. 1 is constrained by

m —k ~;„=m —(k+q —p) ~

m +k~;„=p x+
1 x

It is worthwhile to note at this point that, contrary to
popular belief, the k~ cutoff procedure is Lorentz invari-
ant. To see this it is sufficient to note that in the y*g sys-
tern the k~ is just a projection of k", in a covariant, Min-
kowskian sense, off the plane spanned by four-vectors p
and q. Indeed, following Ref. 14 we can define the pro-
jector

„.+ (q p)(q'p +q "p ) q'p"p" p—'q"q"—

(4)

and denote by k " the covariant vector k "=R"k .
Then, in the Bjorken limit, the k~ cutoff corresponds to
the requirement that

For the second cutoff we follow Ref. 13; namely, we
demand simply that

m —k ~;„=m —(k +q
—p) ~;„~A, =pr„, .

Using this cutoff, the authors of Ref. 13 arrived at the
conclusion that the first moment of the hard part of the
polarized gluon splitting function is equal to —

—,'a, /2m

per fiavor, not —a, /2n. , as was found in Refs. 2—4. This
mysterious result partially motivated the current
research. We will see later that the discrepancy is due to
the fact that the A, cutoff procedure does not respect the
helicity conservation of the quark-gluon coupling.

The choice of the form of the third cutoff is dictated by
consideration of the light-cone wave function of a
helicity-one gluon. For reasons which will become clear
soon we take it in the form

k~+mp+ ~A =px(l —x)
To isolate properly the hard contribution we consider

all cutoffs to be "large enough;" i.e., pf„, must be
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than the confinement size, or AQCD After performing
some algebra and taking the Bjorken limit, i.e., neglecting
terms proportional to p /Q and m /Q compared to
unity, the resulting expressions still depend on the dimen-
sionless ratios p /p, r„„m /p, r„„and pr„t/Q . For per-
turbative QCD to be a reliable tool we need pr„t to be
much larger than all sof't-momentum scales involved, and
therefore from now on we assume that
m, p «pt.„t« Q . Note that we now discuss explicitly
the case of light fIavors. With the above assumption we
obtain the following expressions for polarized gluon split-
ting functions corresponding to different cutoff schemes:

A (x)=C (2x —1) ln +ln —1
/ci Q 1 —x

2 XPrac~
(Sa)

A (x) =C(2x —1) ln +ln ——1Q 1

2 XBrac~
(Sb)

and

2

A (x)=C(2x —1) ln +ln —1

Pic~
(8c)

where C =a,X&/2~, X& is the number of active flavors,
the caret over A denotes the hard, perturbatively calcul-
able part, and the superscripts on the left-hand side of
(8a) —(8c) indicate the cutoff' scheme used.

Several comments are now in order. First, we note
that the results (Sa) —(Sc) do not depend on the value of
m and p, provided that they both are much smaller
than pz„,. It is as it should be; both m and p represent
soft scales, and therefore by definition cannot influence
the hard part. What happens in the other physically in-
teresting case where m ))p&„„which presumably is the
case for heavy flavors, was discussed in details in Ref. 15
and we will come back to this question at the end of the
paper. Now, the expression for A " (x ) coincides with
that obtained by Altarelli and Ross, Ref. 2. There has
been discussion in the literature' about the validity of
their calculation because some terms proportional to m
were explicitly neglected there, and therefore gauge in-
variance was violated. In accordance with previous
finding, ' ' ' what we find here by including all terms,
but cutting off quark virtualities in a gauge-invariant
fashion, is that the terms neglected by Altarelli and Ross
do not contribute to the hard part of the y'g cross sec-
tion, defined with the help of k~ cutoff. Finally, expres-
sion (9b) corresponds to the cutoff procedure introduced
in Ref. 13.

Now, we compute the first moment of the 3's, denoted
by ( A ). We might be surprised to see that while (8a)
and (Sc) give ( A ) = —C, from (8b) it follows that ( A )
actually equals —

—,'C. At first glance there is nothing
which differentiates the A, cutoff from the other two. To
understand what has really happened we have to resort to
another type of reasoning, namely, to look at arguments
which allow one to maintain the factorization property
beyond the leading order. ' '

In the following few paragraphs we reiterate the
reasoning which helps one to organize corrections to

deep-inelastic scattering which are of higher order in n,
into factorizable form. We choose to follow closely the
arguments of Ref. 18. In the case of y*-nucleon scatter-
ing the factorization theorem states that in the Bjorken
limit the physica1 cross section factorizes in the form

~3V (" Q' ~~)=~q «Q'»r'act)fq/N(»I fact ~N )

+&g (x, Q', p,'„t)a fg/„(x, I,'„„mx),
(9)

where (3 denotes convolution, m~ stands for all possible
low-energy scales, including m and p, and sum over
quark flavors in implicitly assumed. The physical mean-
ing of the above equation is that after fixing a suitable
factorization scale p&„„all large-distance contributions
are organized into quark and gluon distributions in a nu-
cleon, i.e., fq/z and fg/2q. The hard y*q and y*g cross
sections, represented by & in (9) are by definition free of
long-distance contributions and thus calculable 'perturba-
tively.

While hard y-quark scattering exists already in the
leading, zero order, the hard y-gluon cross section starts
only at the order of a, . To identify it from the full cross
section in this order, represented by the hard part of the
graphs in Fig. 1, it is sufhcient to notice that the full y-
gluon cross section has the same factorization property:
namely, that' '
~g (x Q iit~)=&q (x, Q,pt„t) f / (x,p, ,'„„m~)

+&g (x, Q', pt'„t) fg/ (x»t'.„„m~),

where, , as previously, we collectively denote by m~ all
relevant low-energy scales.

Now, we consider Eq. (10) in the lowest nontrivial or-
der of perturbation theory. The y-gluon cross section on
the left-hand side starts at order a„and obviously the
same is true for its hard part &~ (x,Q, p,r„t). Therefore,
to maintain consistency we have to identify

fg/g (x,Q,pr„t) with its zero-order form,
f / (x,Q,pr„t)=5(1—x). The perturbatively calculated

fq/g (x /lf tpl+) is of the first order, and so we take for
the hard y-quark cross section its lowest-order form,
representing the cross section for hard-photon scattering
off a pointlike fermion. After collecting all the above fac-
tors into (10) we obtain

~g (x Q ~pi'act) tTg (x~tQ ~~~)

& x
q ( ~Q»tact)fq/g(X React~ nX) ~

which defines the first-order hard y-gluon cross section.
In the lowest order of perturbation theory there is no

difficulty in identifying 8~ (x, Q, pt„t); it is actually a
constant, the cross section for hard-photon scattering off



43 HARD PART OF THE y-GI.UON CROSS SECTION IN DEEP-. . . 67

a pointlike fermion. For consistency, however, we should
include in (9) also the first-order corrections to the hard
y-quark cross section. They are known to be suppressed
in the first moment of g, (x) by a factor of a, (tMf„t), and

therefore should be negligible for a sufficiently large fac-
torization scale. After inserting o'g (x, Q, pr„t) into Eq.
(9) we obtain the parton-model formula valid to the first
order in n, : namely,

O
q

(X Q Pfact)fq/N(X Pfact~mN )

+[og(x, Q, mN) oq —(x,Q,pr„t)f / (x,pf„„mN)]f /N(x, pf„„mN) . (12)

We see explicitly that, because the low-energy scales mN cancel in the brackets on the right-hand side of (12), the
above formula has the form of Eq. (9); so, factorization is maintained through first order. Therefore, by comparing with
(9) and identifying factors convoluted with hard-quark and hard-gluon cross sections as quark and gluon distribution
functions, respectively, we have the unambiguous prescription for an identification of possible gluonic contributions.
One may ask, however, what if terms in (12) are regrouped, so that we have

oQ (x,Q, mN)=og~(x, Q, mN)t3fg/N(x, pf„„mN)

++q (X Q t f t) [fq/N( t f t N ) fq/g «Pfa«™N)fg/N(X, P'f .t, (13)

instead of (12)? In QED, where soft physics is well un-
derstood, it makes no difference, as regrouping a finite
number of terms cannot change the final result. In QCD
there is a big difference: the factorization property as
given by Eq. (9) is part of the definition of quark distribu-
tions. To see this note that otherwise there could not be
any theoretical input (at least at the present stage) to the
calculation of the total cross section, as perturbation
theory allows us to compute only o'. But what we now
would like to identify as "gluonic contribution" to the to-
tal cross section, the first term on the right-hand side of
(13) explicitly fails to obey factorization of large- and
low-momentum scales, and therefore cannot be regarded
as a correct expression. It follows that, within presented
scheme, there is no ambiguity in the definition of the
gluonic contribution in (9) induced by hard y-gluon
scattering.

Arguments, which lead to (12), are of course based on
perturbation theory. Once factorization of scales has
been achieved we can safely assume that they hold

I

I

beyond perturbation theory, ' ' and we can use Eq. (11)
as a definition of the hard cross section og (x, Q,pf„ )t
and therefore compute the hard part of the polarized
gluon splitting function. Indeed, while on the right-hand
side of Eq. (11) we have quantities sensitive to nonpertur-
bative physics, the difference is free of any long-distance
contributions and therefore can be reliably computed in
perturbation theory. To do that we have to know, ac-
cording to Eq. (11), the first-order perturbative distribu-
tion of quarks in a gluon. It is given by the k~ integral of
the squared norm of the light-cone qq wave function of
the gluon tlfg (x, ki )

fq/g(x 9'fact mN) I [d'ki]I+g-(x ki)I'

(14)

Note the factorization scale pf„, which in general enters
here as a cutoff for the perpendicular momentum integra-
tion. In light-cone perturbation theory %g (x, ki) is
givenby ' '

u (xk+, ki)y eu .((1—x)k+, —ki)
%g (x, ki, p, p')=g

2V (2qr) x (1—x)[—p —(k i+ m )/(x (1—x) ]

As previously, we take the gluon mass = —p, p and p'
denote quark helicities and e is the gluon polarization
vector. As we are interested in polarized scattering,
f /g equals the difference of positive-helicity quark distri-
butions in helicity +1 and —1 gluons. By parity invari-
ance argument it can be expressed as the difference be-
tween positive- and negative-helicity quark distributions
in helicity + 1 gluon:

I

ments are readily computed with the help, for example,
of Table III in Appendix B of Ref. 20. For the reader' s
convenience we have collected them in Table I. After
some algebraic manipulations, according to Eqs.
(14)—(16), and integration over the azimuthal angle in the
ki plane of Eq. (14), we finally find

2
fq/g (X&Pfact& mN )

fq/g X&t fact& mN ) =~ (X~Pfact~ mN ) 0 (X&tttfact& N )
2 T 2 $ 2

(2x —1)ki+m
4m [p x(l —x)+m +ki]

(17)

(16)

where again m& denotes low energy scales, such as quark
and gluon invariant masses. The relevant matrix ele-

The cutoff present in (14) and (17) guarantees that the
kz integration probes only regions in the phase space
where the qq pair is soft; i.e., it is off shell by the amount
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X
2

1 —x

1/2

1/2

(k"+ ik~)

(k'+ ik~)

smaller than a quantity of the order of pf„,. To proceed
further we have to choose an explicit form of the cutoff.
The light-cone cutoff (7) means that we simply allow only
for qq pair virtuality, given by the energy denominator in
Eq. (13), smaller than pt„,. Two other cutoffs, defined by
Eqs. (3) and (6), do approximately the same.

For the moment let us assume, following Ref. 3, that
the quark mass m is much smaller than p, as it is for light
quarks in QCD. With this assumption, after evaluating
explicitly the integral in (17) and adding (equal) contribu-
tions from antiquarks we arrive at the following expres-
sions for the soft part of polarized gluon splitting func-
tions:

k~ (x,pt„„p)
2

&s Pfact
(2x —1) ln —lnx (1—x) —1, (18)2' p

2

A (x,pt„„p)= (2x —1) ln —1
p

(18b)

2

& (x,pt„„p)= (2x —1) ln +ln ——1 . (18c)
p

We want to remind the reader that formulas
(18a)—(18c) alone make no sense in QCD. They have
been derived using perturbation theory in a region, where
it does not apply. They make sense only when subtracted
from the "splitting function" A (x,Q, m&) inferred from
the full y-gluon cross section. Fortunately we do not
need to compute A here; it is given for the case when

p »m by the formula derived in Ref. 3, which for one
Qavor reads

2

(x Q, m&) = (2x —1) ln +ln —2 . (19)
2& p

Now, subtracting A (x,pt„„m&) for three light flavors
from A (x,Q, mz) to obtain the hard part
A (x, Q,pt„,), we get exactly expressions (8a) —(18c)
which is, we believe, a rather nontrivial check of the
whole line of reasoning. Note that any nonperturbative
mechanism, related to, e.g. , chiral-symmetry breaking,

TABLE I. Matrix elements of the
U ((1—x)k+, —k~)y au~(xk +,k&) vertex, which defines qq
perturbative wave function of helicity +1 gluon (Refs. 3, 17,
and 18). e" is the gluon polarization vector, and p and p' denote
helicity of quark and antiquark, respectively.

vp ( ( 1 x)k kJ )p E'up(xk + k~ )

1/2
2

x(1—x)

should inhuence A and 2 in the same way, and there-
fore should be absent in A. We note of course that the
form of A depends on the particular regularization we
use; therefore, an unambiguous identification of the hard
part is not possible for moments higher than the first.
For the first moment, however, we arrived at the perfect-
ly well-defined expression for ( A ), manifestly free of any
long-distance contribution. We believe this corresponds
to the statement made in Refs. 1 —4. We must note, how-
ever, that our analysis is explicitly carried out only at the
tree level. To recover the full physical content of Eq. (1)
we have to assume that leading radiative corrections to
the hard part can be organized into the running coupling
constant a, (pt„,) still maintaining the separation of
scales seen in the lowest order. At the moment we see no
mechanism preventing this from happening, but certainly
this fact deserves explicit demonstration. We note that
recently strong arguments in favor of this conjecture have
been presented both in operator language and in pertur-
bation theory.

At the same time we note that the "soft" part of the
y*g cross section, corresponding to (18a)—(18c), which
we have to identify with the polarized quark distribu-
tions, hints that for light quarks nonperturbative effects
in QCD may result in polarized quark distributions
which would be far from naive intuition. For example, a
nonzero value for strange-quark polarization in a nu-
cleon should not be regarded as a surprise. In this point
we agree with the authors of Ref. 11 that the same
reasoning which leads to the so-called anomalous gluon
contribution to (1) suggests that there is no reason in
QCD to expect b.q's to be close, e.g. , to their SU(6)
values. But we see no reason to expect that for light
quarks these two contributions cancel either. They do,
certainly, for the case of heavy quarks, i.e., when
m »pf„„as discussed in Refs. 3, 15, and 16 and at the
end of this paper.

And what about the fact that in the case of A, regulari-
zation we find ( 3 ) = —

—,'C? It is interesting to see now
what has really happened. While

k~(A '(x,pt„„mtv)) =0=( A (x,pt„,mz)),
for A we have (for one flavor)

( A (x,pt„„mz) ) = ——
2 2'

Note that A (x,p, mz) has been defined by Eqs. (14) and
(17) in such a way that its first moment measures the
quark's helicity content of the gluon. The quark-gluon
coupling in the QCD Lagrangian respects helicity conser-
vation, and therefore one can expect that, as a conse-
quence of this symmetry, the first moment of
A (x,p, mdiv) should be zero, unless there is a specific
mechanism which breaks the symmetry. Clearly, the role
of such a mechanism is played here by the A, cutoff
prescription. Note that a calculation which leads to Eq.
(18c) has been done at the tree level, which suggests that
an appearance of the nonzero value of ( 3 (x,pt„„m&) )
in this case has nothing to do with the Adler-Bell-Jackiw
anomaly. It is a subtle problem why, if at all, one
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A '(x,pr„„m~) = (2x —1) ln —1 +1
2& m

(20a)

arid

A (x, pg~~t, m~ )

2
React

(2x —1) ln +lnx (1 —x) —1 + 1
2m m

(20b)

The full cross section A can be taken from the corre-
sponding calculation in Ref. 12. For one flavor we have

A (x, Q, mz)= (2x —1) ln +ln —1
o 2 ~s Q 1 —x

2& X

—2(1 —x) (21)

Now, subtracting (20) from (21) we get

A '(x, Q, p&„,) = (2x —1) ln +ln —1
Q 1 —x

(22a)

arid

A
(x Q,pr„,(x)= (2x —1) ln +ln —1

27T p

(22b)

which again agrees exactly with (8a) and (8c), respective-
ly. This agreement is indeed a good indication that
different momentum scales have been properly factorized,
and that low-momentum scales do not contribute to Eqs.
(8). It also demonstrates that, as long as p&„, remains
much larger than m, the hard part of A remains in-
sensitive to the chiral-symmetry violation induced by the
nonzero value of the quark mass. As previously men-
tioned, although A depends on the regularization scheme
under consideration, its first moment is scheme indepen-
dent and equals —cz, /2m. per quark flavor, in agreement
with Refs. 2 —4.

should avoid the A, cutoff or other regularization pro-
cedures which lead to similar results. It is a potentially
dangerous situation because, in the absence of any good
argument which discriminates one set of cutoffs in Eq.
(17) against others, there is an obvious question of the
uniqueness of the value of ( A ).

In fact, it is also relatively easy to see what happens
when the quark mass is large. ' ' If it is much larger
than p, but still much smaller than a minimal reasonable
value of p&„, (a likely case for charm quarks), the calcula-
tion of the A (x,pi.„„m~)gives

For m &)p&„, the results are quantitatively
different. ' ' In this case it is sufficient to note that if
this condition is satisfied and simultaneously pz„, is
sufficiently large, expression (21) can be regarded as a re-
liable result for the hard cross section. As the first mo-
ment of (21) is equal to zero, there is no contribution
from heavy quarks. It is as it should be, because for large
quark masses the anomaly is still there, but its contribu-
tion is exactly canceled by the mass term. ' ' ' In other
words, if we neglect the gluon virtuality, the first moment
of the box diagram receives the contribution —a, /2~
from the quark virtualities —Q and the contribution
+a, /2~ from virtualities -m . For large m, much
larger than AQCD it is a reliable statement, and there is
no net effect if the sum of the two is taken into account.
We want once more to contrast this situation with the
case of small m where this argument does not work
anymore because there is no way we can reliably use per-
turbation theory at small energy scales. The only way to
save factorization, and therefore the partonic interpreta-
tion, is to hide the large-distance contribution where it
really belongs, i.e., in the polarized quark distribution.
However, as pointed out by Jaffe and Manohar" the ex-
istence of such a term in perturbation theory may suggest
that there are potentially large, nonperturbative effects,
which inhuence polarized quark distributions in a nu-
cleon and therefore one should not be surprised if there
are experimental indications that polarized quark distri-
butions do not follow an SU(6)-inspired pattern. One
may try to argue that because the EMC experiment mea-
sured the combination (1), the soft and hard parts should
cancel in this case as they do perturbatively. We see no
reason for such an argument to be valid, because the
long-distance contribution is computed equal to +a, /2m.

in perturbation theory, and so this result is certainly un-
reliable in QCD.

What follows for phenomenology from this discussion
is that probably one should avoid intuition with the prin-
ciple of helicity conservation in the background while
constructing models of low-energy-scale quark and gluon
distribution functions. Difficulties with a phenornenolog-
ical interpretation of the EMC measurement, known as
the "spin crisis, " may indicate simply that an as-yet
unspecified, but very likely present, nonperturbative
mechanism which violates helicity conservation at low-
energy scales has been missed in the analysis. An exam-
ple of such a mechanism has been discussed recently in
Ref. 23.

In summary, we have discussed an issue of separation
of scales which is crucial to maintaining the factorization
of the cross section and hence partonic interpretations of
deep-inelastic scattering off a polarized nucleon target.
We have found that maintaining factorization beyond the
leading order unambiguously defines the gluonic contri-
bution to the first moment of the structure function g, (x)
in the form proposed in Refs. 2—4, provided that a fac-
torization procedure respects the helicity conservation of
tree-level QCD. This result holds independently of the
soft sector and is not sensitive to the ratio of quark and
gluon masses, provided both are chosen much smaller
than the factorization scale. We have noted, however,
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that in accordance with suggestions made in Ref. 11 per-
turbation theory results demonstrate the possibility of a
strong violation of naive quark-model intuition for polar-
ized quark distributions. A possible interpretation of the
EMC results would be that there is a moderate gluonic
contribution to Eq. (1) and a nonzero value of the
strange-quark polarization. Finally, we have also dis-
cussed briefIy the mechanism leading to the cancellation
of the gluonic contribution to the first moment of g, (x)
in the case of heavy quarks.
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