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Equation of state of strange quark matter and strange star
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Using a relativistic version of the Landau theory of a Fermi liquid and a density-dependent
quark-mass approach to confinement, the equation of state of strange quark matter has been de-

rived. This equation of state is used to study the stability and some global properties of a strange
quark star.

Properties of strange quark matter have become a to-
pic of current high interest, particularly after the specula-
tion of Witten' some years ago that strange quark (SQ)
matter may be an absolute ground state of bulk hadronic
matter near the normal nuclear density. This speculation
was investigated by a number of authors ' using the most
popular phenomenological bag model. In a recent
work, using a dynamical density-dependent quark-mass
approach to confinement, it has been shown that SQ
matter may be the true ground state of bulk matter only
at a very high density (7—8no, no=0. 17 fm is the nor-
mal nuclear density). This work differs significantly from
the results obtained by earlier authors. SQ nuggets may
be produced at the time of first-order cosmic phase tran-
sition in the early Universe; however, this idea was criti-
cized by Applegate and Hogan and it has been shown
that as the Universe cools down to the temperature
T-10 MeV, SQ matter evaporates completely.

The other possibility of SQ matter formation is at the
core of a neutron star (density & 5no) or if the density of
the neutron star is sufficiently high the whole star may be
converted to a quark star. Since SQ matter is energetical-
ly favorable, light quarks are converted to strange quarks
through the weak processes

u +d~u +s,
s~u+e +V, ,

d~u+e +v, ,

u +e ~d +v~

and a SQ star is formed. In the weak reactions (1) a
dynamical chemical equilibrium is established.

In this Brief Report, following Plumer et al. , we shall
derive an equation of state for SQ matter using the rela-
tivistic version of Landau theory of a Fermi liquid, which
was originally developed by Baym and Chin and use a
density-dependent quark-mass model of confinement. We
shall use this equation of state to study some global prop-
erties of the SQ star. Since Landau theory is applicable
for a system in which there is a one-to-one correspon-
dence between the bare particle states of the original sys-
tem when there was no interaction and the dressed or
quasiparticle states of interacting system, it is therefore
applicable to the SQ system only when a dynamical equi-

8
mu d=

3nB

8I =pl +
3n B

(2a)

(2b)

where 8 is the constant energy density in the zero density
limit (n ~0). We assume that the effective masses of
light quar. ks become negligible in accordance with our ex-
pectation from asymptotic freedom and restoration of
chiral symmetry at very high density; on the other hand,
the strange quarks have a non-negligible current mass
m, ( = 150—300 MeV).

Then we have the chemical potential of the species
i (=u, d, ors):

librium is established.
Lacking a trustworthy description of confinement of

quark matter at very large baryon densities, most authors
have fallen back on the phenomenological bag model
which a priori assumes that, within the bag, quarks are
asymptotically free. But the recent results from lattice
calculations show that quark matter does not become
asymptotically free immediately after the phase transi-
tion; it approaches the free gas equation of state rather
slowly; in this context the bag model is thus an inade-
quate description of confinement. There exist in the
literature, however, other phenomenological descriptions
of confinement, namely, the dynamical density-dependent
quark-mass model, ' ' the chromodielectric model, "the
chiral chromodielectric model, ' etc.

In this Brief Report we use the first alternative model
of confinement, which has been widely discussed in the
literature; for the sake of completeness, though, let us re-
view very briefly the basic idea. The first step in this
direction was originally taken by Pati and Salam, ' who
pictured confinement as a quark having a small mass in-
side and a very large mass outside. Confinement is mim-
icked through the requirement that the mass of an isolat-
ed quark becomes infinitely large so that the vacuum is
unable to support it.

To obtain the equation of state [P=P(e)] of SQ
matter, we parametrize the variation of masses for non-
strange (u and d ) and strange (s) quarks with the
baryon-number density of the system in the following
manner:
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p, =(pF +m, +bpz )'~2,

where pF is the Fermi momentum of the species i and

(3) 6B~ C, p —m,
6;(p, ns)= j p, , (ns)

p p +m, .

(pF ™
PFi 4 i 2 2 1/2 i

p (pF +m;) dPF (4)

Then the pressure is given by

+m (n, ) dp .

C; =n, /n (5)

is the fraction of the species i (u, d, or s) present in the
system, nq is the total quark number density =3nz.

Electrons are assumed to be noninteracting and mass-
less; then

Pe PF

where g; =6 for quarks and 2 for electrons; then we have

BC,m
m, =

PF,.

for i =u or d,

BC;~
m, =m,'+

PF,

(8a)

(8b)

for E =s.
Since a chemical equilibrium is established among the

participants we have, from Eq. (1),

Pd Pu+Pe ~

Ps Pu+Pe .

(8c)

(8d)

From the overall charge neutrality of the system, we have

2n„=nd +n +3n

and finally the baryon-number density is given by

Now the number density of the species i (u, d, s, or
e ) is given by

3
giPF, .

n;=
6~

Ps@(ng ) = 3ns g p; C;+p n esp
i= Q, d, s

(14)

Hence for a given ns, one can express Ps& =Ps&(es&) for
fixed B and m, , which is the equation of state for SQ
matter at T=O. Now the equation of state should locally
satisfy the restriction imposed by special relativity; the
energy density Es& should be Positive and the sPeed of
sound

C2- as
BE

(15)

4.00

3.00

should not exceed the speed of light.
For large values of n~ it becomes constant for both ud

and uds (SQ) matter and is —I /&3.
Using this model of confinement, we have investigated

the stability of noninteracting SQ matter at zero tempera-
ture (see Ref. 5). We have seen that SQ matter may be an
absolute ground state of matter only at very high density
( —8no). Furthermore, to make the nonstrange quark
matter (ud) just unbound (e„din+ slightly greater than
Mz), we have taken B' =265 MeV (see the solid curves
of Fig. 1 in Ref. 5). Similarly we have chosen B'~ =235
MeV, for which the ud matter becomes just bound (see
the dotted curves of Fig. 1 in Ref. 5).

In the case of interacting SQ matter, to reproduce the
qualitative nature of the solid curve (as mentioned above),
we have to take B' =197 MeV for which the solid
curves are almost reproduced and the interacting non-

ne = ,'(n„+nd+n, ),— (10)

which remains constant throughout the processes.
We can solve Eqs. (8c)—(10) numerically to get

pF (i =u, d, s, or e) for different values of ne and fixed
I

B and m, . Then the energy density of the SQ system is
given by

I F PF (ns )

esq= y, f e;(p, ng )p'dp+, , (11)
~ = d ~ 0 4m.

where e, (p, ne ) is the single-particle energy of the fiavor i,
which is given by

2.00P

1.00

0.0
0-0 300 6.00 9.00 12.00 &5.00

and

e, =[p +m, (n )s+b, , (p, n )s]'~~ (12) FICx. 1. Density profiles for different central densities with
8' =145 MeV and m, =150 Mev. Arrow indicates the radius
of the star.
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strange quark matter becomes just unbound. The density
for which e„z, /n~ becomes minimum (of course (Mz ) is
—5no. Since in the present context the dotted curves are
not so interesting, we have not studied the stability of in-
teracting nonstrange quark matter.

To study some global properties of a SQ star we con-
sider it to be a spherically symmetric object, which corre-
sponds to a nonrotating SQ star, and its stability is
governed by the general-relativistic equation of hydro-
static equilibrium for a spherical configuration of strange
matter, which is given by the Tolman-Oppenheimer-
Volkov equation'

3.00

2.50—

2.00—

—i.50-M

Mp

1-00-

dp
dr

Gm(r)p(r) 4mr P(r)
r m(r)c~

P(r)
p(r )c

2Gm (r)
rc

0-50—

0.0
0.0 4.00 8.00 i2.00

R (km)

I

16.00 20.00

and the subsidiary condition

de =4~r p(r),
dr

(16)

(17)

FIG. 2. M-R curves for a strange star: curve (a) B' =145
MeV, (b) B ' = 180 MeV, and (c) B ' =200 MeV and m, = 150
MeV, whereas curve (d) is for a neutron star.

where G is the gravitational constant, p(r) is the local
mass density, P(r ) is the pressure, and m(r) is the mass
of a spherical object of radius r and uniform density p(r ).
Using the equation of state mentioned before these two
equations can be solved numerically for a given central
density p, (hence P, ) and fixed values of B and m, and
obtain p=p(r), P=P(r). The radius of a SQ star is
determined by P(r =R ) =0 and the total mass
M=m(r =R ). Repeating the same exercise for different

p, (for fixed B and m, ) we obtain different density
profiles p(r) which are shown in Fig. 1. Since the equa-
tion of state is a function of B (for fixed m, ) only, the
minimum density p, at the surface for which P =P, =0 is
independent of the central density p, . From this calcula-
tion we can also get M=M(p, ) and R =R(p, ). M first
increases with p, (dM/dp, )0), reaches a maximum
value M „,and then falls slowly. The central density
corresponding to the maximum value of M is the accept-
able largest value for p„above which dM/dp, (0 and
the system becomes unstable. Figure 2 shows the varia-
tion of M with R for three different values of B
(B '~ =145, 180, and 200 MeV). For the sake of compar-
ison we have plotted the M-R curve for a neutron star
also using the Bethe-Johnson equation of state. ' The
qualitative nature of the M-R curve for a SQ star in this
model is exactly the same as that obtained from bag-
model calculations. ' Unlike a neutron star, in the case
of a SQ star there is no lower limit for the radius R. For
M «Mci the major role in the stability of a SQ star is
played by the QCD interaction, unless the surface effect
becomes more important as in the case of strangelets. '

In this case,

(18)

As M increases and becomes ) 1MO, gravity starts to
dominate over QCD; the curve bends upward and ulti-

mately it becomes gravitationally unstable.
Although the results obtained for SN 1987A are re-

ported to be wrong, ' one can calculate the rotational fre-
quencies of a SQ star using the relation

1/2

6=2.4X10' (19)
Mo (km)

sec

which gives 0=1.023 X 10 sec ' (for B ' =145 MeV,

p, =4po, M „=2.55M&, and R =14.05 km),
0=1.15X10~ sec ' (for B'~ =180 MeV, p, =10.69po,
M,„=l. 664MO, and R =8.982 km), and
0=1.443X10 sec ' (for B'~ =200 MeV, p, =16.5po,
M „=l. 34MC, , and R =7. 178 km).

Another important quantity for a SQ star is the adia-
batic index I, given by

P+pc dP
Pc dp

(20)

which determines the stability of a gaseous sphere in gen-
eral relativity, and one can show that

I ) 4+0
R

(21)

where Az=2GM/c is the Schwarzschild radius and k is
a constant which depends on the parameters of the equi-
librium configuration. For large p, I —4 and there is a
minimum value of p=p„ the surface value below which
I becomes infinitely large.

Since the baryon density decreases from nz' at the
center (r =0) to n~" at the surface (r =R ), in this case
the self-consistent solutions of Eqs. (8)—(10) give

pF =pF (r ) and as a result electron density n, =n, (r ). At
I I

the core (r ((R ), p, —0 and therefore n„—n&
—n, (an al-

most fiavor-symmetric mixture). The electron density is
maximum at the surface but is very low compared to the
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baryon-number density ( —10 nz). Since the SQ star
has a very sharp periphery, the electron layer at the sur-
face is very thin ( —100 fm) and is strongly bound to the
positively charged-quark core by the Coulomb potential
Vc'=3p, /4=27 MeV, which is very large and is also a
function of the equation of state considered (i.e., depends
on a and m,').

Since the electronic crust is very thin and the quark
matter inside the star behaves like a superconductor
(charged quarks are fermions and form Cooper pairs), as
a result the vortex magnetic Gelds will get pushed to-
wards the crust region of the star almost instantaneously.
In the case of a SQ star, the time scale for Ohmic dissipa-
tion of the magnetic field, given by'

4
(22)

7TC

is extremely short, —10 ' sec, where o. —10 sec ', the
electrical conductivity of crust matter, and 6—100 fm is
the thickness of the electronic layer, which shows that if
a SQ star exists at all its surface magnetic field should be
very small.

Thus we can conclude that the equation of state of
strange quark matter obtained by using a relativistic ver-
sion of the Landau theory of a Fermi liquid with a
density-dependent quark-mass model of confinement can
explain the stability of a SQ star and can also predict
some theoretical estimate of the parameters which can be
measured experimentally (if they exist).
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