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Stability of the quasiregular singularities in Bell-Szekeres spacetime
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The behavior of geodesics and test minimally coupled scalar waves on the Bell-Szekeres space-
time is used to probe the nature of the quasiregular singularities present. Components of the stress-
energy tensor in a parallel-propagated orthonormal frame diverge as does a stress-energy scalar at
the quasiregular singularities. It is argued that this divergence makes the singularities unstable,
converting them into scalar curvature singularities.

I. INTRODUCTION

Both colliding plane-wave spacetimes and the nature of
spacetime singularities are interesting subjects in classical
general relativity. Here we consider their overlap. In
colliding plane-wave spacetimes the energy density of
each wave focuses the other, leading to the formation of
singularities. ' The nature of the singularities formed has
been the subject of discussion. In most eases a scalar
curvature singularity forms, but in at least one case, the
Bell-Szekeres spacetime, the only singularities are
quasiregular. In this paper we will consider the stability
of these quasiregular singularities.

Quasiregular singularities were first nained by Ellis and
Schmidt, who classified singularities in maximal, four-
dimensional spacetimes into three basic types: scalar cur-
vature, nonscalar curvature, and quasiregular. The obs-
tacle which bars the embedding of singular spacetimes
into larger nonsingular spacetimes is obvious for those
with scalar curvature singularities, where physical quan-
tities such as energy density and tidal forces diverge for
all observers who encounter the singularity. The physical
significance of the other two types of singularity is less
obvious. In the case of a nonscalar curvature singularity
some, but not all, observers feel infinite tidal forces as
they approach the singularity. It is still more curious
that for a quasiregular singularity no observers see the
physical quantities diverge, even though their world lines
end at the singularity in a finite proper time.

Quasiregular singularities are the mildest type of true
singularity, and they are also the least well understood.
By definition a singular point q is a C" (or C ) quasireg
ular singularity (k ~ 0) if all components or derivatives of
the Riemann tensor R,b,d, , evaluated in an ortho-

] k

normal (QN) frame parallel propagated (PP) along an in-
complete geodesic ending at q are C (or C ). In other
words, the Riemann tensor components and derivatives
tend to finite limits (or are bounded) in every PPQN
frame. Qn the other hand, a singular point q is a C (or
C" ) curvature singularity if some component or deriva-
tive is not bounded in this way. If all scalars in g b, the

antisymmetric tensor q,b,d, and R,b,d, , nevertheless
k

tend to a finite limit (or are bounded) the singularity is
nonscalar but if any scalar is unbounded, the point q is a
scalar curvature singularity.

Quasiregular singularities have been found in "Taub-
NUT-(Newman-Unti- Tamburino-) type*' cosinologies,
cosmic-string models, ' and in colliding plane-wave
spacetimes. ' One suspects from their strange properties
that although they occur in exact solutions of Einstein's
equations they may be unstable, so that the addition of
generic matter or fields to quasiregular spacetimes may
convert these mild singularities into a stronger form. We
have previously studied the stability of singularities in
Taub-NUT-type eosmologies using test scalar and elec-
tromagnetic fields. '" We conjectured that if one intro-
duces a test field whose stress-energy tensor evaluated in
a PPON frame mimics the behavior of the Riemann ten-
sor components which indicate a particular type of singu-
larity (quasiregular, nonscalar curvature, or scalar curva-
ture), then a complete nonlinear back-reaction calcula-
tion would show that this type of singularity actually
occurs. For example, if a scalar quantity such as T„T"
constructed from a test field's stress-energy tensor
diverges as a quasiregular singularity is approached, the
conjecture is that a scalar curvature singularity will actu-
ally develop if the field is allowed to influence the
geometry. Evidence for the conjecture was presented
from a few known exact solutions, Taub-NUT-type
cosmologies and Khan-Penrose spacetime. Evidence
showed also that most test-field wave modes do in fact
mimic scalar curvature singularities but that very special
wave modes can mimic nonscalar or quasiregular singu-
larities. " Therefore, if generic fields are added, one ex-
pects that the quasiregular singularities will be converted
into scalar curvature singularities.

In this paper we extend our conjecture to include the
quasiregular singularities in the Bell-Szekeres colliding
impulsive plane electromagnetic wave spacetime by ex-
amining the behavior of test scalar fields. We show that
the behavior of the fields and their stress-energy tensors is
similar to their behavior in Khan-Penrose spacetime and
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the Taub-NUT-type spacetimes. In fact, as in those
spacetimes, the quasiregular singularities appear unsta-
ble, and the conjecture predicts that they will turn into
scalar curvature singularities if a complete back-reaction
calculation is carried out.

r

v=m/2b ll=Tl/2s

II. GEODESICS AND TEST SCALAR FIELDS

In the Bell-Szekeres spacetime, ' 5-function elec-
tromagnetic waves propagate into an initially Aat region.
In the two-dimensional slice shown in Fig. 1, the planes
u =0 and v =0 are 5-function waves. Region I is Aat, but
regions II, III, and IV are curved. Using Rosen coordi-
nates, the double-null metrics are

s=o

FIG. 1. Colliding impulsive electromagnetic waves. The sur-
faces u=0 and U=0 are 6-function plane electromagnetic
waves. The dashed lines L are quasiregular singularities.

ds 2du dv dx dy

II: ds =2dudv —[cos(au)] (dx +dy ),
III: ds'=2du dv —[cos(bv)]'(dx'+dy'),

IV: ds =2du dv —[cos(au —bv)] dx

—[cos(au+bv)] dy

(lc)

(ld)

where a=0, 1 depending on whether the geodesics are
null or timelike, and where xp, yp vp x p yp are constants
of integration. If either xp or yp is nonzero, then v be-
comes positive for some u &~/2a and the light ray or
particle passes out of region II into region IV.

Cieodesics that remain in region II are those for which

o y =yo v =vo+ —,'eu,
Using the better-behaved Brinkmann coordinates, Clarke
and Hayward show that the lines L at u =~/2a, v &0
and at v =sr/2b, u &0 are quasiregular singularities, that
the only singularities in region IV are on the wave fronts
u =0, v =~/2b and v =0, u =sr/2a, and that region IV
may be extended. However, the presence of the singulari-
ties in region IV means that there is no unique extension;
Clarke and Hayward describe two natural extensions in
their paper.

We are interested in the stability of the quasiregular
singularities at L in regions II and III. To investigate
their stability, we will describe geodesic and scalar wave
behavior and calculate stress-energy tensors and scalars.

We limit our discussion of geodesics in region II to
those that originate at the wave front and move toward
the quasiregular singularity. Geodesics in region III are
similar. Solutions of the geodesic equations in region II
are

where vo & —e~/4a. That is, only the small subset of
geodesics with constant values of x and y that start from
the wave front sufficiently early will reach u =m/2a in re-
gion II.

To study the stability of these quasiregular singularities
we will consider the behavior of a minimally coupled sca-
lar field. Consider region II (one of the two regions
bounded by a quasiregular singularity). The field equa-
tion for scalar waves is

gAK(P +g 1/2(gi/2gkK) @ 0

It is straightforward to solve (4) in region II. For simpli-
city, consider x,y-independent waves. A general solution
is then

4&(u, v)=g(u)+sec(au) f(v) .
x =xo+(xo/a)tan(au),

y =yo+(yo/a)tan(au ),
v =vo+ [(xo +yo )/2a]tan(au )+—,'eu,

(2)

The stress-energy tensor is T„
=(I/4~)(FV. F: 4igv.F.OF P) I—f we consider waves
moving in the u direction toward the singularity, then
g(u) =0 and @=sec(au)f(v). In that case

T„-=(I/4m)di ga(a sec (au)tan (au)f (v), sec (au)[f'(v)], a tan(au) f(v)f'(v), a tan(au) f(v)f'(v)) .

Notice each component diverges as au —+~/2; thai is,
each component diverges as the singularity is ap-
proached.

Next consider the stress-energy tensor in a PPON
frame:

+(ab) E(a)E(b}+pv

For consistency we will consider only orth onor mal
frames carried by geodesic observers with no x or y
motion. Such frame vectors are given in the Appendix.
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Then the nonzero components of T(,b) are

T~~~ =
T~33~ =a sec (au )tan (au )f (v )

sec (au)[f'(v)]+

T~o3~=T~3o~=a sec (au)tan (au)f (v)

sec (au)[f'(v)]
4

T~»~=T~22~=a sec (au)tan (au)f(v)f'(v) .

These also diverge badly as au ~sr/2 By .our conjecture
this indicates that the quasiregular singularity will be
converted to a curvature singularity if a complete back-
reaction calculation is carried out.

Finally consider a scalar in the stress-energy tensor
T„T". It takes the form

QT T"'= sec (au )tan (au )f (v)[f'(v )]4~'

which also diverges as the singularity is approached. By
our conjecture this indicates that the curvature singulari-
ty formed will be a scalar curvature singularity.

Both T„T"' and Tt,b~ diverge as autorr/2 for x,y-
independent scalar waves. The Bell-Szekeres spacetime
plus such fields therefore "mimics" the behavior of a
spacetime which reacts to the presence of the fields by
converting the quasiregular singularity into a scalar cur-
vature singularity. Although no back-reaction calcula-
tion has been carried out, we expect these fields will con-
vert the quasiregular singularities at au =n. /2 in region
II and at av=m. /2 in region III into scalar curvature
singularities. There is no proof that this conversion takes
place. However, in the few cases where a back-reaction
calculation on a quasisingular spacetime has been made,
the mimicking of scalar curvature, nonscalar curvature,
and quasiregular singularities by the behavior of test
fields is a completely reliable guide.

Thus, as in Khan-Penrose spacetime the mimicking
conjecture predicts that the quasiregular singularities of
Bell-Szekeres spacetime are unstable. In each case it is
predicted that the quasiregular singularities will be con-
verted to scalar curvature singularities if generic waves
are added. In the Khan-Penrose case we were able to
demonstrate' the validity of the conjecture by compar-
ing with an exact solution discovered by Chandrasekhar
and Xanthopoulos. ' Here no check of the conjecture is
possible because as yet there are no known exact solu-
tions with which to compare.

Chandrasekhar and Xanthopoulos have carried out a
linear perturbation analysis of the Bell-Szekeres space-

time. ' They find in region II that u-dependent perturba-
tions of the metric exhibit strong divergences at the
quasiregular singularities. Although their analysis is
linear, and therefore not a full back-reaction calculation,
their results are clearly consistent with the mimicking
conjecture.
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APPENDIX: PARALLEL-PROPAGATED
ORTHONORMAL FRAME VECTORS

Using the geodesic equations, it is straightforward to
derive frame vectors in region II which satisfy the paral-
lel propagation condition E~~, ~. +~0~ =0, and the ortho-
gonality condition E(,)„E~&)=g(,b). The frame vectors
are

E(o) =

1

xp +gp1+
cos (au )

xo/cos (au )

yo/cos (au )

0
xo/cos(au )EP

I /cos(au )
0

0
yo/cos(au )

I /cos(au )

E(3) =

1

1 ~o +Jo —1
cos (au)

xo/cos (au )

yo/cos (au )

1
1

2
E(p) 0

0
E(1)=

0
0

sec(au )
0

0
EP 0

(2)

sec(au )

1
l

2EP

0

The x,y-independent geodesics which carry these frames
all hit the quasiregular singularity.

In the special case of no x or y motion, the frame vectors
are simply
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