
PHYSICAL REVIEW D VOLUME 43, NUMBER 2

BRIEF REPORTS
15 JANUARY 1991

Brief Reports are accounts of completed research which do not warrant regular articles or the priority handling giuen to Rapid
Communications; howeuer, the same standards of scienttjtc quality apply. (Addenda are included in Brief Reports. ) A Brief Report may
be no longer than four printed pages and must be accompanied by an abstract

Energy spectrum of a uniformly accelerated detector at finite temperature

H. T. Lee and O. J. Kwon
Department of Physics, Korea Aduanced Institute of Science and Technology, P.O Box 1. 50, Chongyangri, Seoul 130 65-0, Korea

(Received 6 August 1990)

The energy spectrum of the zero-point field of a massless scalar field in the presence of both uni-
form acceleration and temperature is obtained by the use of the Wightman function. It has an intri-
cate form. However, in two limiting cases, (a) the temperature is approaching zero and (b) the ac-
celeration is approaching zero, it has physically appropriate forms.

In the last decade there has been considerable investi-
gation of quantum phenomena in curved space-times or
in uniformly accelerated frames. In particular, a uni-
formly accelerated particle detector has attracted much
attention in connection with Hawking s black-hole radia-
tion efFect. ' As is well known, Unruh has shown that, in
the case of a free, massive scalar field, the thermal bath of
Rindler quanta in the Minkowski vacuum excited a mod-
el particle detector at rest in Rindler space-time. A uni-
formly accelerating observer in the Minkowski vacuum
would see a thermal radiation; i.e., the response function
of a uniformly accelerated particle detector is identical
with that of the same detector at rest in a thermal bath at
temperature T, =a%/2~ckB, where a is the proper ac-
celeration of the detector and kB is Boltzmann's con-
stant. 4'

Recently, it has been demonstrated that the gravita-
tional mass and the inertial mass are different at finite
temperature. In the nonrelativistic and weak-field limit,

the acceleration induced by the Newtonian potential is
different for particles of different mass. Even in the rela-
tivistic case, the thermal corrections to the gravitational
acceleration in the weak-field limit are not a function of
the kinetic energy of the test body, and a constant shift of
the ratio of gravitational to inertial mass is produced, de-
pending only on temperature T and the rest mass of the
particle at T =0.

In this paper we follow the zero-point field method
and extend this to a more realistic problem: the response
function of a particle detector in the presence of both
constant acceleration a and temperature T. We restrict
our attention to massless scalar fields in four-dimensional
space-time. From now on we will take units with
A=c =kB =1.

At finite temperature the thermal Wightman function
evaluated at two points x (r+ —,'o ) and x'(r —

—,'o ) on the
particle detector's world line (r is the proper time) is
given by the form

D& (x,x') = &(0~$(x (r+ —,'o ))P(x'(r+ ,'cr ))~0)—(3,

[~x—x'~ —(t +inP t'+ i )e]—
4~

ik (x—x') —iso(xo —x o ) —ik. (x—x')+i co(xo —x o )(1+ft, )e ' ' +fke4' 2COk

where P(x) is a massless scalar field, ~0)& is the thermal vacuum in Minkowski space-time, and

1 1

k
1 B

The world line of uniformly accelerated detector can be represented as

1 =1t =—sinha~, x =—cosha~, y =z =0,
a a (3)

where a is the magnitude of the proper acceleration in the frame of the detector. The thermal Wightman functions for
a uniformly accelerated detector are obtained by inserting Eq. (3) into (l):
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Dii (r+ ,'c—r,r —,'o—)=
—a 2

16ir sinh —(cr+-ie)
2

a 1

i 16' /3sinhar „=X
n&0

a . ia+ sinh —(cr +ie)+ e "n
2 2

a . ia+sinh —(o+ie)+ e "n
2 2

(4)

The particle density f&(co, r) and the energy density per mode (de/den)& are given as

fii(co, ~) = [D i3 (co, r) D ii (co—, r) ],
(2ir) co

2

[D ii (co, r)+D p (cu, r)],
d CO p 7T

where D & are the Fourier transforms of the thermal Wightman functions and are defined as

D &
= I do e' Di3 (r+ ,'o, r ,'—o), ——

(6)

where co is the frequency measured by a detector with proper time ~. The Fourier transforms of the thermal Wightman
functions for a uniformly accelerated detector are given by

Dp (co,r)= I ds e' a 1 1 1

8n sinh (s+ie) i8ir P isn has„n +sihn(s+ie)+ib&
n&0

1

+ sinh(s+ie)+ib~

(8)

where W =2'/a, s =(al2)cr, bi =(aP/2)e "n, and b2=(af3/2)e "n. We can perform integration (8) and obtain,
after some calculations,

e
—m. W2m'/a 1

oo

Dp+(co,r)=, + . , ~ g —[f(bi)—f(bi)],
2ir e2 "r' —1 4ir sinhar 1 —e

where

exp[ 2irW+iW
—l—n(b, —Qb; 1) ,'mi]I—+—b—;

. 1, b, )—1 for i =1,2,
f(b;)= '

e
—W arcsin( b,. )

0&b, &1

Similarly, we obtain

D & (co, r) =D
& (co, r)

2m

Hence, the particle number density (5) at a finite temperature is given by

1 —+ — 1
fbi(co, ~)= [D (f (co, r) Dp (co,~)]= =fo—(co, r),

(2ir) co (2~)
(12)

where fo(co, r) is the particle number density at zero temperature. This implies that there are no newly created parti-
cles. Using Eqs. (6), (9), and (11),we obtain the energy density of a uniformly accelerated detector:

3 —2vrm/a
1 1

de 2~ 2 e ~" ' —1 2copsinhaw 1 —e ~~~' n
—+ + . g —[f(bi) —f (b2)]

. P n =1
(13)

The first term in (13) is the energy of the zero-point field when both acceleration and temperature are zero; the second
term is exactly what one would observe in a thermal bath with temperature T, =a /2~, and the third term has an intri-
cate form, which contains the effect due to both acceleration and finite temperature T in the Minkowski space-time.
Therefore, the energy density does not seem thermal.

We consider two limiting cases: (a) the acceleration a is approaching zero; (b) the temperature T is approaching zero.
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Q+ I4r P f' '(Pro)co +[ P —f' '(Pro) 12—r Pf'"(Pro)]co
24co

In the case of small acceleration (a ~0), the energy density becomes

de co 1 1

.P
d co ~2 2

+6P f' '(Pro)ro 6Pf—' 'I+O(a ) (14)

where f '"'(x) is defined as
'n

f(n)( ) ( 1)n d
dx e 1

(15)

In the other limiting case, P~ ec ( T~0),
r

de co 1 1

~2 2 e 2+co/a
p

m sinh(a +i 2ro)r exp( i 2ro/a —lna pn —
2

mi )
arccosh —ro

a sinha~ n
(16)

Equations (14) and (16) give expected results. The second term in (14) is a thermal distribution for a boson system at
temperature T( =1/p), in Minkowski space-time. The third term in (14) shows that small acceleration a of the detector
affects the energy density through an a term. Note that the contribution of the proper acceleration a on the energy is
not a Planckian form. The second term in (16) is a Planckian distribution at temperature T„due to uniform accelera-
tion. The third term includes all the effects of small temperature.
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