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The eigenvalue problem for the Hamiltonian of SU(2) lattice gauge theory is formulated in the
loop representation, which is based on the fact that the physical Hilbert space can be spanned by
states which are labeled by loops. Since the inner product between loop states can be calculated
analytically, the eigenvalue problem is expressed in terms of vector components and matrix ele-
ments with respect to the loop basis. A small-scale numerical computation in 2+1 dimensions
yields results which agree with results obtained from other methods.

I. INTRODUCTION

Loops have been recognized as playing an important
role in gauge theories. First of all, the field tensor of the
gauge field is directly related to parallel transport around
a closed curve. This basic observation is encouragement
enough for an attempt to formulate gauge theory in terms
of quantities associated with loops, the ultimate goal be-
ing a nonperturbative approach to Yang-Mills theory.
Mandelstam' made a first step in this direction even
though he used open lines instead of closed loops. To
varying extent and success a space of loops figured in the
work of Kogut and Susskind, Polyakov, Makeenko and
Migdal, 't Hooft, Gambini, Leal, and Trias, ' Furman-
ski and Kolawa, Rovelli and Smolin, and others.

Because of their origin, loops correspond to the gauge-
invariant objects of the theory. In fact, one can show
that the physical Hilbert space of gauge-invariant states
can be spanned by states which are labeled by loops [see
Giles' for the SU(X) case]. The above-mentioned works
differ mainly in how they propose to systematically uti-
lize these observations.

Let me mention that the property of loop states to au-
tomatically solve the constraints of the theory has appli-
cations in quantum gravity. Here the diffeomorphism in-
variance of the loop states can be realized by labeling
states by knot classes of loops, which are just the
equivalence classes of loops under diffeomorphisms. The
most important example arises in full (3+1)-dimensional
quantum gravity. The formulation of general relativity in.

terms of the Ashtekar connection admits a transition to a
loop representation, and a large space of solutions to all
the constraints of quantum gravity can be obtained. "

In Refs. 7 and 9 a loop representation for Hamiltonian
lattice gauge theory is constructed, complete with an
inner product, operators, and dynamics. One can analyze
this approach on two levels, asking whether loops are
physically fundamental and whether one has found a use-
ful mathematical formalism. I want to address these
questions in SU(2) Hamiltonian lattice gauge theory in
the loop representation of Rovelli and Smolin. To this
end I develop a straightforward formulation of the eigen-
value problem for the Hamiltonian, which is well suited
for a numerical solution.

That this can be done supports the claim that the
method of loops is useful. Furthermore, the results ob-
tained suggest that the method of loops should be further
investigated as a new method for computations in Harnil-
tonian lattice gauge theory. Even though Hamiltonian
lattice gauge theory possesses inherent computational ad-
vantages over Lagrangian formulations —the lattice is
only three dimensional and the gauge degrees of freedom
can be eliminated —so far the Hamiltonian methods are
inferior for technical reasons. However, the successes of
lattice computations for QCD (e.g. , fermion masses) as
well as current limitations imposed by computing power
make any improvement of the Hamiltonian approach at-
tractive.

In response to the question whether loops are physical-
ly fundamental, loops are found to be "physical" in the
sense that physical statements become statements about
geometric properties of loops. For example, the action of
the Hamiltonian operator on a loop state changes the
loop according to simple geometric rules. Also, from
strong coupling down to some finite value of the coupling
constant, the physical Hilbert space can be spanned by
states corresponding to short loops. This last fact is also
important for a technical reason, since it suggests a sim-
ple way to truncate the infinite loop basis to obtain a
finite problem.

Apart from the loop representation, the key observa-
tions underlying my approach to the eigenvalue problem
for the Hamiltonian operator is that one can perform the
integration in the inner product analytically (e.g., see
Creutz' ). A new element of the proposed method is the
explicit use of the inner product.

The method can be described as follows. Consider
SU(2) Hamiltonian lattice gauge theory on a finite lattice
with periodic boundary conditions. (l) From the infinite
set of loop states select the finite number of loop states
corresponding to loops up to a certain length. These
loops will in general not be linearly independent, which
creates problems for many applications of the loop repre-
sentation. (2) Use the inner product to find a loop basis
of linearly independent loop states (which could be done,
for example, by the Gram-Schmidt procedure). (3) For-
mulate the eigenvalue problem for the Hamiltonian
H~g) =e~g) in terms of vector components and matrix
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elements with respect to the loop basis. This is efticient
since the matrices involved are sparse. (4) Feed the re-
sulting matrix eigenvalue problem to some program-
library routine for large sparse eigensystems.

As a small-scale numerical computation on a Vax 8810
I could handle a 4X4 lattice with loops up to length 12.
Of immediate physical interest are the ground state, its
energy, and the mass gap (or glueball mass) of the model
for different values of the coupling constant. These quan-
tities are obtained, and they agree with the results of
standard variational methods. The components of the
ground state indicate for which range of coupling the an-
satz of short loops is valid, and which particular type of
loop is important. What is unusual is that, in addition,
some thirty of the lowest-energy states can be obtained;
i.e., one can discuss the "glueball" (the first excited state)
and the lowest part of the energy spectrum.

The organization of this paper is as follows. In Sec. II,
Hamiltonian lattice gauge theory is reviewed. In Sec. III,
I introduce the loop representation and discuss the linear
dependencies among loop states. In Sec. IV, the inner
product between loop states is presented. In Sec. V, I
compute the action of the Harniltonian operator on loop
states. In Sec. VI, the ansatz of short loops is made and
the eigenvalue problem is formulated. In Sec. VII, I
briefly discuss the program to clarify its strong and weak
points. In Sec. VIII, the numerical results are presented
and discussed. I conclude with a summary and an
outlook in Sec. IX. Readers not interested in the details
of the method can skip Secs. IV, V, and VII.

II. HAMILTONIAN LATTICE GAUGE THEORY

In this section the theory is defined in the standard rep-
resentation giving as much detail as is needed for the
transition to the loop representation. See Refs. 2 and 13
for a complete treatment.

In Harniltonian lattice gauge theory time is continuous
while space is represented by a cubical lattice of "sites"
(Fig. 1). The scale of the lattice is defined by the lattice
spacing a. In what follows the lattice is a 2- or 3-
dimensional box of S XS or S XS XS sites with periodic
boundary conditions. A "link" l is a pair of neighboring
sites s, s2 and is thought of as the line connecting them.
By choosing an orientation for each link l which I call
positive (l )0), one obtains oriented links l and their
inverses denoted as l

The classical configuration space is the Cartesian prod-
uct 6 X . . X G of a Lie group G, one copy for each pos-
itively oriented link of the lattice. Here I consider
G =SU(2). A configuration U is determined by a choice
of a 2 X 2 SU(2) matrix U( l) „ for each link l )0:

U=—(U(l, )„', . . . , U(l ), ) .

With each negatively oriented link l ' (0 one associates

link lattice spacing

plagnette U(l)„ , p (i)

FIQ. 1. A 4 X 4 Iattsce.

cal commutation relations for l )0 and l') 0 are

[ U(l) „,U(l')c ]=0,
I p (l» U(l') ~ ']= ,' U(l) ~ ~—con

[p (l),p„(l')]=iE „kPk(l)5n

(3)

f [dU]l U&( Ul =I, completeness,

( U
l

U'
&
=+ 6( U(l ), U'( l) ), normalization .

l&0

The measure is [dU]=—ii»odU(l), where dU(l) is the
Haar measure on the compact group SU(2), and the 5
function is defined with respect to dU(l). Then

lg&= f [dU]IU&g(U), whe~e g(U)—:(Ulg&, (8)

and the inner product defining square integrability is

(ply&= f [dU]y*(U)q(U) .

On this Hilbert space the operators 0(l) and p(l), I )0,
act according to

U( l )„g(U) = U( l ) „ li'( U), (10)

P (l)q( U) =
—,
' U(l) „o q( U)

C}' aU(l), '

where 6II. is 1 if 1 =l' and 0 otherwise, and o. are the
Pauli matrices satisfying [o. , o „]=2i e „kok.

In the U representation of this algebra, U becomes a
multiplication operator and p becomes a certain deriva-
tive operator. The Hilbert space is the direct product of
spaces of square-integrable functions over the gauge
group SU(2). A state

l g & in this space is specified by a
wave function g(U) depending on a configuration U as
given in (1). To be explicit I choose a (non-normalizable)
basis of states

l
U & such that

U(l )A U (1)A (2) =—,'trU(l)o. f( U) .
In quantum theory the configuration operators are 2X2
SU(2)-matrix-valued operators U(l) z, i.e., three for each
positively oriented link l. The momentum operators on
each link l are denoted as P ( l ), m = 1,2, 3. The canoni-

Note that the
l
U &'s are the eigenstates of U:

U( l) ~ l U &
= U(l) „ l U &. Finally, I extend the above to

negative links l ' (0 by defining
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U((
—1) B—U

—1(I) B

which implies for the momentum operator

(12) trU, . . . ), where y;, i = 1, . . . , oo, denotes all the pos-

sible loops on the lattice. The importance of loops is due
to the fact that wave functions of the form

P (l ') = —
—,'tro U(l) (13)

Note the difterence between this expression and expres-
sion (11)forP (l).

Now I can give the constraints and the Hamiltonian to
specify the physical system. The physical states have to
be invariant under the local SU(2) rotation which is gen-
erated by the Gauss-law constraint of the theory at each
site s:

(s)=yP (I), (s)1tj(U)=0,
1(s)

(14)

where I (s) runs over all oriented links emanating from s.
The dynamics of SU(2) Hamiltonian lattice gauge

theory in 3+1 dimensions is defined by the Hamiltonian
operator (Kogut and Susskind )

2
H= g P (l)P (l)+ g (2 —trU~),

2a (,p ag

where g is the coupling constant and l runs over all posi-
tive links in the lattice. gz denotes the sum over all gen-
eric "plaquettes" of the lattice, a plaquette being four
positive links l &, l2, l3, l4 forming a square. U stands for
U(l& ) U(l2)U(l3 ' )U(l4 '

) assuming that the orientation
of the links l„l2, l3 ', l4 ' defines a consistent overall
orientation for the plaquette. At this point let me men-
tion that in the literature there are versions of H which
differ from (15) in coefficients and type of summation-
the latter is often not even specified. For the purpose of
quantitative comparison one has to be careful about
which H is used.

III. THE LOOP REPRESENTATION

The loop representation is motivated by the direct rela-
tionship between loops and the physical (gauge-invariant)
states of gauge theory. Therefore let me start below by
presenting this relationship. The attempt to systematical-
ly label states by loops leads to the definition of the loop
representation as given previously by Gambini, Leal, and
Trias and Rovelli and Smolin, the latter of which I want
to follow. Finally, I will discuss the identities between
loop states, which have to be incorporated when one
wants to construct a loop basis.

In lattice gauge theory the fundamental object is the
trace

trU(l, ) U(l2) U(l„) (16)

of matrices U(l; ) which represent elements of the gauge
group (Wilson' ). This term is gauge invariant if and
only if the links I i, l2, . . . , l„ form an oriented closed line
in the lattice, i.e., a loop.

Let y be the loop formed by l &, l2, . . . , l„:
y = [I

& lz . . l„]. Define Uz —=—U(1& ) U(lz ) . U(l„) if
y = [l

& lz . I„]. In general, a gauge-invariant state 1t ( U)
could depend on trU for any loop y, P(U)=f(trUr,

Vl

From here on the term loop refers to multiloops.
Now I can define the loop representation as follows.

Loop states, or just loops, are special vectors y) in the
Hilbert space of states, which can be labeled by loops.
Their components in the U representation are defined to
be h(y, U):

~y&= J[dU]IU&&Uly&, (19)

& U~y) =h(y, U)=trU trU . trU
n

(20)

where a; are single loops and y=e&U ' ' Ucx . The
span of I ~y); y any loop} is the physical Hilbert space.
This constitutes a major advantage of the loop
representation —I do not have to deal with the gauge de-
grees of freedom.

Note that h(y, U) is real for SU(2). Therefore the
inner product between loop states is symmetric. In terms
of h it becomes

&al13&=&I3la&= J[dU]h aug, U (21)

For completeness I include the zero-length loop yp
defined by h(yo, U)=trI=2. [Clearly, h(yo, U)=const
is a "cyclic" loop of lattice gauge theory. That is, by ap-
plying the Wilson operator W(y)=trU on a constant,
one can generate a basis for the Hilbert space of physical
states. 8 plays the role of the creation operator on the
space of loops. In this paper no use is made of this fact. ]

The next logical step is to determine how the operators
U and p act on loop states ~y ). From (10) and (11) it fol-
lows that even though U and p act naturally on h (y, U),
this does not translate into a natural action on loops via
the transformation (19). Indeed, there is no good way to
represent U and p in the loop representation. On the oth-
er hand, the Hamiltonian operator H of (15) maps loops
to a finite linear combination of loops in a simple
geometric fashion. Hence the loop representation is cer-
tainly a promising approach for issues involving H or
other suitably defined operators.

Before I calculate the action of H in the next section, I
have to point out that the loop states as defined above are
not linearly independent, and for practical purposes one

g(U)=h(y, U)—:trU

span the space of physical states. '

Actually, it turns out to be more natural to work with
"multiple loops. " Let me call a multiloop any unordered
collection of single loops (possibly containing a single
loop several times) and write for example y =a UI3,
where "U" indicates a collection of loops in the sense of
one discontinuous parametrization and does not mean a
union of sets of links, i.e., aUa&a. For such a mul-

tiloop the definition of the loop wave function h is

h auP, U =h(a, U)h(P, U)=trU trU& . (18)
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usually needs a basis. Notice that since ~y ) is defined in
terms of traces, there exist several relations between loop
states, which I describe below as rules (i)—(v). Rules
(i) —(iv) will be treated as equivalence relations between
loops defining what I want to consider as geometrically
equivalent loops. Rule (v), however, introduces a non-
trivial linear dependency between loops. Since the loop
states are completely labeled by loops, one can represent
each state by a picture of the loop. For example, ~y ) =
if y is a plaquette, where the position of the loop in the
lattice has to be clear from the context. Figure 2 gives
some examples involving the following rules.

For any oriented lines u, v, and w, which are connected
with consistent orientation when written as uv, and form
loops when enclosed as [uv], one finds (equivalences
denoted by =)

[u] U [w]=[w] U) [u]
(i) [„] [ ] [„]U [ ] [ ] U [ ]

multiloops, (22)

(ii) [uww '] = [u] spikes,

and in two dimensions

~BD gB gD gD gB~AC~ A C A C

which imply

tr A trB = tr AB+tr AB

(2&)

(29)

For A = U(„) and B = U( )
one has (v). Basically, when-

ever a loop intersects itself, there is a triplet of linearly
dependent loops which corresponds to the three possible
ways to route a loop through its intersection [see Figs.
2(b) —2(d)]. Equation (29) can also produce relations be-
tween loops and "nonloops" if AB corresponds to a
closed line but A does not. Obviously, it is not trivial to
And a complete set of identities between loops, but it can
be done [see Ref. 10 for SU(N)]. These identities are
called Mandelstam identities, and in the case of SU(2)
they reduce to rules (iii) and (v).

Already in the case of SU(3) there exist relations which
have a completely di6'erent structure. The analogous
equations for the inverse and epsilon imply

(iii) [uw] = [ivu] origin,

(iv) [ui] = [w '] orientation,

(v) [u ] U [iU]=[uw]+[uui '] spinor identity,

(24)

(26)

trAB '=
—,'(trA trB trB —trA trBB

—2trAB trB+2trABB), (30)

where in (v) u and io are closed lines. (i) follows from the
definition of h(y, U) for multiloops, expressing the fact
that a loop is an unordered collection of single loops, and
shows how equivalences between single loops generalize.
(ii) follows from U(l) U (I)=I, indicating that back-
tracking does not lead to new loops; i.e., "spikes" can be
removed [see Fig. 2(a)]. (iii) follows from the cyclic prop-
erty of the trace; loops do not have a preferred origin.
(iv) follows from tr U=tr U '. In the case of SU(2), loops
are not distinguished by orientation. For general SU(N)
one has trU '=trU =(trU)* so the orientation of loops
matters, although this alone is not too great a change.

What really captures the signature of SU(2) is the spi-
nor identity (v). For 2X2 SU(2) matrices A and B, the
formula for the inverse matrix (det A = 1) is

so, in a sense, one loop (B ') can be worth two loops
(B). Although this goes against one s intuition, it is not
an obstacle for computations.

The issue is to find a basis of loop states. A possibility
considered in the literature is to impose rules (i)—(v) in-
cluding the Mandelstam identities as equivalence rela-
tions on the space of loops. For example, rule (ii) leads to
an obvious reduction inside equivalence classes of loops.
(v) is an invitation to eliminate all single loops with two
identical links I, e.g. , [ulwl]=[ul]U[wl] —[uiU '] as in

Fig. 2(d), although this does not exhaust the whole con-
tent of (v). It is remarkable that a reduction scheme of
this sort could be carried out systematically. As another
example let me give a formula for tr U". U&' corresponds
to going n times around the same loop y. Equation (29)
gives

g —1 8 ~BDg C
&AC~ D (27) tr U"=tr U tr U" ' —tr U' (31)

After repeated application of (29), one obtains trU" as a
polynomial of tr U (with not so simple coefficients). Equa-
tion (31) defines a doubly recursive sequence
x„=cx,

&

—x„2 which can be summed using tech-
niques similar to those that apply to the Fibonacci series:

trU"= [[trU+V (trU)2 —4]"I

+[trU —V(trU)2 —4]"I . (32)

FICx. 2. Examples for SU(2) loop identities. (a) Rule (ii);
(b) —(d) rule (v) or spinor identity. When loops cross, they are
meant to cross and not to just touch. The dot denotes the zero-
length loop.

In this paper I propose what I think is a more straight-
forward method to construct a loop basis using the inner
product. Applying a standard algorithm (Crout's algo-
rithm) the inner product can handle the identities in a
uniform way. In the next section I will discuss how one
can compute the inner product (21) between loop states.
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ZV. THE INNER PRODUCT

In Sec. II the choice for the inner product was the
Haar measure on the group SU(2). The Haar measure is
natural in the sense that given a compact Lie group G,
there is a unique measure d U such that

dU1=1,

Ei)

c)

(I

(I ) =f~ =o

i) =f
n3

J dUf(U)= J dUf(V, UV, ) t/V„V, CG,f:G~C .

(34)

(n, io.,)—
1 1

2

1
2
1

2

1/

Equation (33) expresses normalization and (34) the left
and right invariance of the measure. From (33) and (34)
it follows that

FIG. 3. Examples for the inner product between loop states.
The loops under the integrals symbolize whether or not links
are doubled.

f dU f(U)= fdUf(U '), (3S)

so the overall orientation of a loop y will not change the
integral fdUh(y, U).

For 6 =SU(N) and the fundamental representation of
UE G by N XX matrices Uz, Creutz' was able to use
the invariance of the measure to perform the integration
of products explicitly. Here I need the result for SU(2),
which can be extracted from the graphical notation used

in Ref. 12. When n is odd, symmetry arguments imply
that the integral has to vanish:

When n is even,

f "U UA UA ' UA
B B B 1 B B B Brr(1) ~(2) . . m(n —1) ~(n)

"z ". (n/'2+1)! ~(i) "~i2) ~(. -i) ~i. )

where rr runs over all permutations of the indices (1,2, . . . , n ) which do not lead to identical terms under the sum.
B1B2 B2B1Note that e~ ~ e~ ~ =a~ ~ e~ ~ and e~ „e =@~ ~ e; therefore, there are

I 2 3 4 3 4 1 2 1 2 2 1

nt =(n —1)(n —3) SX3X12»(. i2)!
(38)

terms to sum over.
The inner product between two loop states ~a) =~a, U . Ua ) and ~/3) =

~/3, U Up ) can be written
schematically as

(a~p) = f ff dU(l)trU . trU trUp trUp

=(5's) f dU(l, )U . . U ' f dU(l )U U
P

(39)

In the second equality I have used (33) for links not in
a Up and collected U's on the same link l or l '. (5's)

1 2denotes the product 6~ 6~ . inducing the prod-
1 2

ucts and traces between the matrices U(l;)~ ' whose in-
I

dices I have suppressed. Substituting for the inverse of U

U. —1 B ~ BDU C
&ZC& D (40)

we see that (a~/3) is equal to a product of 5's, e's, and in-
tegrals over products of U's as dealt with in (36) and (37).
There are as many U's in a particular integral as there are
occurrences of l and I ' in a U p. Hence, (36) implies the
main feature of the inner product:

(a~P)WO only if a UP contains any (unoriented) link l

an even number of times;

i.e., for nonzero result the combination of two loops must
result in doubled links (see Fig. 3 for examples). This, of
course, does not require equal support for a and p, e.g.,
a=/3Uy results in (a~p)%0 when y has doubled links.

If the inner product is not trivially zero, one can apply
(37) for the integration of products of components U„
The final statement is that one can evaluate (a~P) by
performing a sum over products of contracted 6's and e's,
which —as discussed later —can be left to an algebraic
manipulation program.

Having found a possibility to compute the inner prod-
uct, let me now formally construct a loop basis. After re-
striction to a finite basis this construction can be carried
out explicitly. Enumerate all loops as cz,-, i = 1,2, . . . , ~.
The condition for linear independence is

g c, ~a, ) =0 c, =0't/i (41)
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Defining the "metric" on loops by G;, := (a; Ia~ &, (41) is
equivalent to the requirement that the rows of 6; be
linearly independent, or that 6; be nondegener ate.
Given a finite set [ Ia; & }, I obtain a loop basis

[ I a; & } C: [ I a; & } by eliminating loops a, which give rise
to degeneracies in G; (Crout's algorithm; see Sec. VII).
6,":= (a, Ia & is a positive-definite symmetric matrix, but
it is not diagonal since linearly independent loops need
not be orthogonal [see example (d) in Fig. 3]. One could
orthogonalize the basis using linear combinations of loop
states as basis states, but one would then lose the direct
relation "loop +-+ basis state" which I want to retain.

(19),HIr &= f [dU]IU&Hh(r, U)
First, let me consider the potential term in the Hamil-

tonian which acts as a multiplication operator. When
acting on a loop wave function h(r, U), the potential
term augments y by the plaquette . More precisely,

Hph(r, U)—:g (2 —trU~)trU

2h(r, U) —h Ur, U

Therefore

V. THE ACTION OF THE
HAMILTONIAN ON LOOP STATES

As remarked before, the loop representation is well
adapted to the Hamiltonian formulation since the Hamil-
tonian operator H =(g l2a )Hz+(2lag )Hz maps loop
states to a simple linear combination of loop states. In
this section I will calculate H Ir & by finding the action of
H in the U representation and then using the transform

I

(43)

The kinetic term acts by applying the derivative opera-
tor p twice. To write down the result of the product rule,
I abbreviate the loop wave function h(r, U)
=trU . trU as (5's)U U, where r is a mul-

tiloop and (5's) is the product 5&5C . which induces
the multiplications and traces between the U's. Then

n n

Hxh(r U)= g g g (5's)U . [P (l)U(l )] . [P (l)U(lk)] . U .
l&0 j=l k=1

From the definition (11)of p it follows that

—,
' U(l) o if l'=l,

p (l) U(1')„=' —
—,'0 ~ U(l)c if 1'=1

0 otherwise.

(44)

(45)

Hence the only nonzero terms in (44) occur when I is equal to Ik up to orientation. In particular, this will be the case
when j =k. There are six different pairings of links, and the summation reduces to

XXX= X + X (46)
1&0j=1 k=1 j=k, l. &0 j=k l

—
&0j j & k, l. =1k &0 j&k, l. '=lk '&0 j&k, l. '=I& &0 j&k, l. =lA. '&0

Now, p inserts into the product of U's a Pauli matrix
o. to the left or right of the matrix U to which it is ap-
plied. To perform the implicit summation in the index m
remember that

~~B=3&~B C C

~ ~ c =&~&c+&~c&B D D B DB (48)

It is this last equation which, when inserted between
products of U's, leads to a reordering of the U's and
therefore to a change of the associated loops. 5&5c has
its index structure "crossed, " while the second term in-
verts any SU(2) matrix according to (40). It is not obvi-
ous that the resulting contractions correspond to loops
and not just to arbitrary arrangements of links. One can
distinguish between ten cases according to whether the
p (l)'s act in the same or different single loops and how
the links I. and Ik are oriented. Notice, however, that
since P ( 1)P ( l ) =P ( 1

'
)P ( I ' ), only the relative

orientation of I with respect to lk can mater.
Let U = U(l), p =p (I), and 2 and B be any SU(2)

I

matrices. Then the generic term for the two p's hitting
the same U is, with (47),

trAp p U=trAp p U '= —'trAU . (49)

Since the result does not depend on the relative orienta-
tion of the link in p and U, the first two sums in (46) com-
bine to form a sum which contains each link in the loop
exactly once:

j, l. &0 j l
—1&0

U P P U(3). U

=lllrllh(r»
where IIrII:—(length of r) denotes the number of links of
y. The kinetic part of the Hamiltonian therefore con-
tains a diagonal piece.

It will sufBce to give an example for the other terms
that can appear. Suppose that the p's act in different sin-
gle loops on two links I =Ik '. One finds
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trA (P U)trB(P U ') = ——' trA Ucr trBcr U

=—' tr 2 UB ' U —tr AB . (5l)

To begin with, tr 2 U trBU corresponds to a loop, and one
should convince oneself that the links and lines connect
in such a way that trA UB 'U and tr AB also represent
loops.

To describe the action of the Hamiltonian in general I
can define a map f which, given a loop y and two of its
links l and l& with jWk, produces a linear combination
of two loops f(j,k, y'). Let @=aUy where a is the sin-
gle or double loop containing / and lz [rule (i)]. Then
f(j,k, y ) =f(j,k, a) U y. If a is single, then

nipulation of loops, how the action of Hz commutes with
the spinor identity (v). This is a nontrivial check since
the length lly ll

of y changes under (v).
The conclusion of this section is that as claimed M

maps loops to loops, and explicit rules for this action are
available.

VI. THE KIGENPROBLKM FOR THK HAMILTONIAN

Of immediate physical interest are the lowest eigenval-
ues and corresponding eigenvectors of the Hamiltonian
operator H; that is, I am looking for solutions !i/ & and e
of

(55)

f
[ulwl]~[ul] U [wl]+ [uw '] if / =/, =l„,

f
[ulwl ']~—[u] U [w] —[ulw 'l '] if l =l, =l& ' .

(52)

I)+ —,
I

!+21

I+ —,!

If o. is double and l and l& fall in different single loops,
then

f
[ul] U [wl]~[ulwl] —[uw '] if l =l =l„,

(53)

[ul] U [wl ']~[ulw '/] —[uw] if /=1 =li, ' .

The last two cases are not really independent since
a UP=a U/3 '. As before, the result only depends on
the relative orientation of l and l&, and one can reduce
the last four sums in (46) to a single summation over all
pairs of links which are equal up to orientation,

Collecting everything one obtains

lf(j,k, y ) & . (54)
j & k, J

1 .
I!

=
/ 1/,. I

Figure 4 shows, as an explicit example involving the ma-

i/o(U)=exp A,g trU~ (56)

where A, =A.(g) can be determined, for example, by
minimizing ($0!H!$0&/(i/oli/jo& by varying A. . This vari-
ational method can be applied analytically to yield results
in 2+1 dimensions, ' and numerical implementations ex-
ist which are applicable to both 2+1 and 3+1 dimen-
sions. ' Most variational methods that are used to solve
(55) take fo (or a refined version) as a starting point. It is
crucial that i/0(U) also turns out to be a reasonable an-
satz for the ground state in the physically interesting
scaling region of the theory where roughly g = 1.

To see the significance of (56) in the loop representa-
tion expand the exponential:

where e is close to the ground-state energy. There are
several ways to approach this problem. The simple
method of my choice is to approximate the Hilbert space
of states by a finite-dimensional subspace spanned by loop
states associated with short loops. After showing that
this subspace contains a reasonable ansatz for the low-
energy states of the model, I can proceed and use the
inner product to formulate the eigenproblem in terms of
vector components and matrix elements with respect to
the finite loop basis. Equation (55) then becomes an
equation of finite size vectors and matrices, and there are
standard numerical techniques to solve a matrix eigen-
problem.

Why are the short loops a reasonable ansatz for the
ground state? Consider the strong-coupling limit
(g ~ oo ) of Hamiltonian lattice gauge theory. In this lim-
it the asymptotic ground-state wave function for a finite
lattice is known to be

2! j
k2

i/o(U)=1+A, g trU~ + g g trU~ trU~ +
1 l 2

(57)
H~ = H~ —H g

FIG. 4. An example for the action of the kinetic part of the
Hamiltonian. Only if a loop has a doubled link are there more
than the diagonal terms. The spinor identity from Fig. 2(d) is
used.

Note that the nth term in this Taylor series consists of a
sum over loop wave functions corresponding to loops of
length 4n. As defined, the series always converges since
the lattice is finite —there is a finite number M of pla-
quettes and 0 ~ tr U ~ 2 for U an SU(2) matrix. In
designing a length related cutoff, however, I have to in-
clude loops up to a sufficiently large length 4n so that
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gn gn
gtrU~ "& (2M)" «I .n! n! (58)

In actual variational calculations for SU(2) in 2+1 di-
mensions one has 0 & A. & 1 and g ~ ao (see Ref. 16).
Therefore, the smaller g, the larger the maximal length of
loops should be.

The above should be motivation enough for the follow-
ing ansatz. The loop basis is reduced to the finite basis
consisting of all basis loops up to a certain length L
The fact that the loop representation admits this simple
approximation of the Hilbert space of states by short
loops can be considered one additional important feature
of the loop representation.

Remember that the length of a loop, defined as the
number of its links, is no invariant under the loop identi-
ties (ii) and (v). When choosing a basis I will pick loops
which are of minimal length, i.e., those which cannot be
replaced by shorter loops. In what follows, I will consid-
er a finite lattice with periodic boundary conditions; i.e.,
the lattice forms a torus. In general there will be "topo-
logical" loops which wrap around the lattice, but since I
do not want to deal with topological effects, let me ex-
clude topological loops even though they do not classify
as long loops in the size of lattice I am going to study.

In effect, this approach will be equivalent to a varia-
tional ansatz with as many free parameters as there are
loops in the basis, which is certainly an improvement
over lto as in (56). In addition, I expect to find good ap-
proximations to excited states close to the ground state.
In any case, after computation of any eigenvalues, I will
have to check whether the components of the eigenvec-
tors are largest on the short loops in order to justify the
initial assumption. How this simple ansatz of including
all short loops can be improved will be discussed later
when there are specific eigenvectors at hand.

Now the stage is set for the formulation of the eigen-
value problem (55) in terms of vector components and
matrix elements with respect to a finite loop basis
[ ~a&, i =1, . . . , %J. The use of a nonorthogonal basis as
discussed in Sec. V does not lead to a standard eigenvalue
problem. Instead, by substituting

~ f &
=g~, +~a, &

—= i''~aj & into (55) and taking the inner product with ~a; &

one obtains

(59)

Denoting the matrix elements &a, ~H~a & of H by H;,
one has

H,,g=eG, ,+ . (60)

Hence, what I want to solve is a generalized eigenprob-
lem with two symmetric real matrices, one of which is
positive definite (G; ). Under these conditions the gen-
eral eigenproblem is not substantially harder to solve nu-
merically than the standard one since there is a direct re-
lation between the two. Notice, however, that a naive at-
tempt like inverting G," and solving H' +=ef' fails since
H'~ =(G ')'"Hi,

~
is in general not a symmetric matrix,

and the asymmetric eigenvalue problem is numerically
quite unstable.

This concludes the theoretical formulation of the
eigenproblem for the Hamiltonian. Of course, this par-
ticular application of the loop representation and the ex-
plicit use of the inner product were designed to produce a
setup which was well suited for numerical computations.
To what extent this was achieved is the topic of the
remaining sections.

VII. COMPUTATIONS

A. Find all loops

Clearly, this is a combinatorical problem. The
difhculty is that one has to expect the number of loops to
grow exponentially with length. In what ways can I
select links in a lattice such that they form closed lines?
To begin with, let me construct all single loops emanating
from a given point (in three dimensions for generality).
Denote by 1,2,3 a step in the positive x,y, z direction and
by —1, —2, —3 a step in the opposite direction. A loop
with a given origin can be represented as an (ordered) list
of directions such as (1,2, —1, —2) for a plaquette in the
x-y plane. Let n, be the number of steps in direction
i =+1,+2, +3. Then the condition for a closed loop of
length J is

gn;=L and n;=n; for i=1,2, 3. (61)

So far I have said very little about the computational
feasibility of the approach to the eigenvalue problem as
presented in the preceding sections. As usual, if one
finally wants to compute numbers with a computer, the
setup of a problem is influenced by the hardware and
software available. In this case the overall volume of
computations is determined by the number of basis loops,
which should be as large as possible for a good approxi-
mation of the Hilbert space. The specific model con-
sidered below is SU(2) Hamiltonian lattice gauge theory
on a periodic 4X4 spatial lattice in a loop basis of loops
up to length 12. In a sense this is the smallest nontrivial
scenario if one wants to include loops consisting of more
than two plaquettes which should not be crowded into
too small a lattice. As explained later, the method does
not depend significantly on the number of dimensions.
Furthermore, for a =1, Eq. (15) gives the Hamiltonian
for both 2+ 1 and 3+ 1 dimensions. It turns out that on
a 4X4 lattice there are 8660 linearly independent loops
up to length 12, and this translates into a general eigen-
value problem of sparse 8660 X 8660 matrices (sparse
meaning that most entires are zero). A problem of this
size can be comfortably managed on a Vax 8810 (allocat-
ed fast memory 8 MB, 10 MB on hard disk).

I will briefly discuss the important parts of the pro-
gram to highlight its merits and weaknesses. But first I
present an overview of. what has to be done and in what
order: (1) Find all loops up to a given length, (2) select a
basis via the inner product, (3) compute G;~, (4) compute
(Hz)," and (Hz), , and finally (5), for a = 1 and different
values of g feed G, and H, =(g l2)(H~ ),,+ ( I /2g )(Hp ); to a program-library subroutine for
sparse eigenproblems.
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(Remember that in Sec. VI I have excluded "topological"
loops for which n; =n;+const. ) Therefore finding all
loops of length I. is equivalent to finding all different per-
mutations of generic lists:

(1, . . . , 1, —1, . . . ,
—1,2, . . . , —2, 3, . . . , —3) . (62)

At this point one can easily incorporate rules (ii), (iii), and
(iv); i.e., pick one representative for each equivalence
class. Rule (ii) can be taken to forbid a step in direction i
followed by one in direction —i, and so on. Only rule (v)
will be left for the inner product to handle. Actually, it is
not hard to find formulas for the number of loops n (L),
but the summation over generic lists cannot be carried
out explicitly. In Fig. 5(a) some values for n (L) are tabu-
lated.

Having found all single loops through a given point, I
now have to specify general multiloops at all possible po-
sitions in the lattice. One can enumerate the links of the
lattice arbitrarily by +1,+2, . . . , +M and represent a
single loop by a list of links: Starting from each point of
the lattice I transcribe a list of directions representing a
single loop into a list of numbers encoding particular
links which form that single loop. A multiloop is formed
as a selection of several single loops. In the end a general

loop is represented by a list of lists of numbers. I have
given all these details to make the following point. Once
all the loops of a particular model are encoded in lists of
numbers, the program is independent of the geometric as-
pect of the loops. For example, there is no difference in
the treatment of a set of lists of numbers representing
loops in three dimensions or two dimensions. The num-
ber of dimensions is hidden in the statistics of the loops.

B. Inner product

As elaborated on in Sec. IV, the task of integration can
be solved algebraically. It might be that there is an even
simpler, faster numerical alternative —a possibility I have
not explored. Instead all inner products are handled by a
specialized routine for algebraic manipulations. I should
mention that the number of terms which have to be eval-
uated can become quite large. The integration over six
identical plaquettes (as an example for the inner product
of a length 12 loop with itself) requires the contraction of
50000 terms. Luckily, most nonzero inner products will
involve lower multiplicity of links and therefore far fewer
terms. And by far the most inner products between ran-
dom loops will be trivially zero.

C. Metric G;~

length L number
2+ 1

4 1

6 2

8 14
10 76
12 505
14 3,386
16 23,823

of loops n
3+1

3
22

288
4,428

72,963
1,276,218

First, the degenerate metric G; =(a, la ) with a, as
found in Sec. VIIA is computed. As expected, 6; is "al-
most" diagonal. The next step is to find a loop basis
l l a, ) l and the nondegenerate metric G,J

= ( a, l tz, ) .

' ~

loop
0

6
8

4+4
10

4+6
12

4+8
6+6

4+4+4
total

occurences
1

16
32

148
120
710
512

3,745
2,477

479
420

8,660

II ICII $4% II

Hl ~ Nl I

) j'™;-'-':--''-", -,":-"
~ ~

I

Il l
ISllllllllll&l lllllf lit lifllflltlAlllllit

FIG. 5. (a) Number of single loops n of length L through a
given point in 2+1 and 3+ l dimensions. Loops are not dis-
tinguished by their origin or orientation, and are not allowed to
have spikes [rules (iii), {iv), and {ii), respectively]. (b) Basis loops
on a periodic 4X4 lattice. Type "4+4"denotes a loop consist-
ing of two length 4 single loops, etc.

FIG. 6. The 8660&&8660 metric G;, =(a;la, ). Each nonzero
entry is represented by a dot, but each dot covers roughly
20X20 entires. The rows and columns are ordered by length
and type as in Fig. 5(b). Since the inner product is nondegen-
erate there are only nonvanishing diagonal entires. The banding
corresponds directly to the loop types and shows how two loops
can combine to a loop with doubled links resulting in a nonzero
inner product.
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Later the Cholesky decomposition of G; - will be needed:

T
Gig L, ,kL k~

where L is a lower triangular matrix . (63)

Crout's algorithm can be used to find the Cholesky
decomposition of a nondegenerate symmetric matrix. I
modified the version of Crout's algorithm given in Ref. 17
so that when it is applied to G; - it eliminates degeneracies
in G," by deleting loops from Ia; ], thereby constructing
I a, I, G,", and its decomposition at the same time. By far
the most time consuming part of the program (several
hours) is the computation of G,", since even a trivial
check for doubled links consumes a lot of time when per-
formed =10 times. For the 8660 loops up to length 12
on a 4 X4 lattice only =40000 of the 8660 =75 000000
entries of G," are nonzero; i.e., G, is sparse. See Fig. 5(b)
for a table of the loops which form the basis. Figure 6
shows a graphical representation of G, .

E. Solve eigenvalue problem

The general eigenvalue problem Hg=eGQ is solved by
decomposing G into its Cholesky factors as in (63) and
solving

(64)

which represents a standard symmetric eigensystem
Ax =ex. Since solving an eigensystem is fairly compli-
cated, usually the best thing to do is to use "canned"
eigenroutines as found in several FORTRAN libraries. But
even the best algorithms available for symmetric n Xn
matrices (e.g. , the QR factorization method) carry an
operation count of order n, which forbids n ) 1000. Ex-
ploiting sparsity is hardly possible since these methods
are based on transformations of the sparse matrix
which result in "fill-ins" that quickly destroy sparsity. A
solution to this problem are the Lanczos algorithms if
only a few extreme eigenvalues and eigenvectors are
needed (see Ref. 18). These algorithms are sophisticated
iteration methods involving the sparse matrix 2 only for
multiplication of a vector as in Ax. The inherent numeri-
cal instability of Lanczos algorithms is that they require
the eigenvectors which are computed to be mutually or-
thogonal. In practice, one often loses the orthogonality
of the eigenvectors which in turn limits the number of
eigenpairs that can be computed. I used the eigenrou-
tines of Scott (1982, Ref. 19). The time required to find
the five lowest eigen values and eigen vectors of the

D. (Hp), J and (H„);J

These computations are straightforward in the sense
that Sec. V gives the explicit rules to find the loops
Hp a, ) and Hz ~a, ). Of course, these loops will in gen-
eral not be in the basis I ~a, ) I, and I have to compute the
matrix elements with the inner product. (H~)," is in
structure very similar to G, , while the extra plaquette in

(H~),J leads to =420000 nonzero entries. Obviously,
some sort of e%cient storage scheme for large sparse ma-
trices has to be used.

8660 X 8660 eigensystem Hf= FGQ amounts to 7 min.
As explained above, once one has arrived at an eigen-

value problem involving a large sparse matrix, the Lanc-
zos algorithms are the method of choice. The fact that
these large eigenvalue problems can actually be solved
was utilized in the context of a Hamiltonian formulation
of lattice models first in Ref. 20.

Let me summarize. The computer program to set up
the eigenvalue problem is mostly algebraic and self-made.
The canned Lanczos eigenroutines implement numerical
algorithms which run suKciently fast, but because of nu-
merical instabilities are still subject to ongoing develop-
ment. The limitations of the program arise in the size al-
lowed for the matrices and the time required to compute
them. Figure 5(a) indicates how rapidly the number of
loops (and therefore the size of the problem) increases for
longer loops. But as the next section will show, the nu-
merical results suggest ways to drastically reduce the
number of basis loops needed for a good approximation
of the Hilbert space.

VIII. RESULTS

In what follows the model is SU(2) Hamiltonian lattice
gauge theory on a periodic 4X4 lattice. By using a finite
loop basis consisting of all loops up to length 12, I was
able to compute some of the low-lying eigenvalues and
eigenvectors of the Harniltonian. That is, I partially
solved the generalized eigenproblem (60) for 8660X 8660
matrices H, and G, .

When discussing the results I want to make a clear dis-
tinction between the lattice-gauge-theory model, which is
a statistical model in its own right, and statements about
the continuum theory, which are obtained using a highly
nontrivial limiting procedure. For the finite statistical
model I can present definite results which agree with the
literature. To make statements about the physics of the
continuum, say, about the mass gap, one would like to
detect in the computed data what is called scaling toward
the continuum limit. This scaling behavior I do not find,
but I will explain below why one cannot expect to find
scaling given the present status of the program. In this
context of a Hamiltonian formulation scaling was found
so far only in certain nonlinear o models, although the
work of Gambini, Leal, and Trias looks promising.

Let me quickly review the features of Hamiltonian lat-
tice gauge theory which are relevant for the following
discussion. Remember that in general one has a whole
family of Hamiltonians H; =—H,"(a,g) (considering the
number of lattice sites fixed). Typically one computes the
mass gap M(a, g) for several values of the coupling con-
stant g at fixed lattice spacing a =1. There are two in-
teresting limiting situations. First, there is the strong-
coupling regime where g~ ~ while a =const. This is
where my assumptions leading to the truncation of the
loop basis originate. Second, there is the weak-coupling
region where g~0. Now I have to distinguish between
two cases. If a is kept constant and a&0, I obtain valid
results for the statistical model. On the other hand,
a ~0 is associated with the continuum limit of the
theory, about which I want to make a few remarks.
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In 3+1 dimensions, g is dimensionless, and a is the
only quantity having the dimension of length (c =6=1).
Hence

M(a, g) = f—(g)
1

a

for some dimensionless function f. One consistent way
to give physical content to the lattice theory is to require
that M be physical and therefore be independent of a and
g. Equation (65) implies for M =const and a~0 that
f(g) ~0. That is, as a ~0 one has to take the (bare) cou-
pling constant g to a critical value of f. For SU(N) lat-
tice gauge theories, g„;„„~=0.This is where perturba-
tion theory becomes valid, and renormalization-group ar-
guments determine the exact form of f. Scaling towards
the continuum limit is observed when one can fit f(g) to
the data computed for M=(1/a )f(g).

The problem is that in order to make the theory well
defined, one uses a finite lattice, and therefore the lattice
spacing must have some finite value which renders the
lattice large enough to contain the physics one is looking
for. When looking for scaling one can only hope that it is
possible to detect scaling for small but still finite values of
a.

Let me now discuss the computational data I obtained
for the statistical model. Figure 7 shows for a = 1 the en-
ergy eo(g ) of the ground state, the energy e, (g ) of the
first excited state, and their difference which is the mass
gap M(g ). Figure 8 shows a rescaled curve of M. The

numerical errors in the eigenvalues are less than 10
What does one expect for strong and weak coupling, and
what in the transition region. The Hamiltonian H;. is a
linear combination of matrices:

g 2
H~i~+2 g

Assuming that Hz and Hz are nondegenerate and non-
singular, the coefficients g and 1/g determine that for
g~ ~ the Hamiltonian is purely kinetic and has eigen-
values proportional to g, while for g ~0 the Hamiltoni-
an consists of the potential term and has eigenvalues pro-
portional to 1/g . Therefore, in Fig. 8, M(g ) is a hyper-
bola for small g and a straight line for large g. The tran-
sition from strong to weak coupling occurs at around
g =2, and I expect to find a change in the structure of
the ground state at this point.

The computed form of M(g ) is of the generic type one
would find for a large class of symmetric matrices Hz
and Hz. The characteristic signature of the model, i.e.,
scaling, should show in the region around g =2, but I
could not detect any deviation from the generic depen-
dence M —g + 1/g . There is, however, an intuitive
reason why one does not expect to find physics under
these circumstances. Mass is measured in inverse lattice
spacings, and in this case M~3. 7. The physical length
scale under consideration is 1/M (0.3, which is much
smaller than a =1. The conclusion is that in order to see
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FIG. 7. The mass gap as the difference of the energies of the
first excited state and the ground state.

FIG. 8. The mass gap or glueball mass vs the square of the
coupling constant.
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FIG. 9. The energy spectrum for three values of the coupling
constant.

scaling, one requires 0.25(M &1 so that the physical
quantity neither falls through the cracks of the lattice nor
is too large for the finite 4X4 lattice. It is likely that the
inclusion of longer loops on larger lattices will lead to

smaller values of M.
First I want to compare my results with a standard

variational method for SV(2) Hamiltonian lattice gauge
theory. In 2+ I dimensions with the ansatz (56) for the
ground state, Arisu, Kato, and Fujiwaru' have per-
formed the minimization of the ground-state energy
analytically. Based on Ref. 15 is the numerical work of
Coldwell, Huang, and Katoot. ' In both cases I find very
good quantitative agreement in M for strong coupling.
For example at g =2.5, Refs. 15 and 16 show M=3.95
awhile I find M=4. 01, and this agreement holds also for
larger g . For weak coupling the results still coincide
qualitatively in that M diverges as g ~0, but the actual
degree of divergence is different. This is expected since
the variational method and the loop method no longer
coincide in their approximation of the ground state.

The only other loop-based method for computations by
Gambini, Leal, and Trias gives similar results for the
ground-state energy and the mass gap for strong and
weak coupling, but their data seem to contain at least the
hint that scaling occurs.

One advantage of formulating the eigenvalue problem
in terms of finite matrices is that several of the lowest ei-
gen values are obtained easily —as opposed to other
methods which are hard pressed to produce more than
the two lowest eigenpairs. To my knowledge this was not
achieved before for SV(2) Hamiltonian lattice gauge
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FIG. 10. The ground state. The bars measure the combined contribution of all loops of a given type to the norm of the ground
state, which is 1.
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theory. Figure 9 shows the energy spectrum consisting of
eigenvalues from eo up to e34 beyond which numerical in-
stabilities were encountered. The diagram shows a non-
degenerate ground state which is clearly separated by the
mass gap from higher energies. These occur in groups of
16, which probably corresponds to the 16 sites in the lat-
tice. The numerical accuracy of the Lanczos algorithm
suggests that at low energies there are not more than
twofold degeneracies; i.e., these states are invariant under
all or half of the 16 translations. The stronger the cou-
pling is, the closer together are the energy levels in a
group of 16. For g =1.5, only the first and the begin-
ning of the second group of 16 were obtainable. For
g =2.0 and g =3.0, the first, second, and part of the
third group are shown. Even though the difference be-
tween e33 and @34 is barely shown in the diagram, the gap
is numerically distinct, and one can assume that the next
higher levels all crowd together on the highest level
shown.

Together with the eigenvalues the corresponding eigen-
vectors are computed. Apart from the restriction to
short loops, I have an unbiased ansatz and can now ana-
lyze which loops are important for the ground state and
the first excited state. Notice that since the loop states
are not orthogonal. I cannot compare just the com-
ponents. Instead, as a measure for the contribution to
the squared norm ( g ~ g ) =g,"k, G k PP" from the ith

component, I consider g'g".
& G,"P (no sum over i) .Fig-

ures 10 and 11 show for the ground state and the first ex-
cited state the sum of the contributions from all loops of
a certain type for different values of the coupling con-
stant. The length of the bars indicates on which loops a
state is peaked.

The first general observation is that for g )2 the
ground state is concentrated on the short loops, while for
g (2 the components of the ground state are pushed to
longer loops. As an example, consider how the contribu-
tion of the zero-length loop changes with g . From dom-
inating the ground state for g =5.5, its contribution de-
creases until it is zero for g =0.5. On the other hand,
the contribution of all 16 plaquettes is small for strong
coupling, increases to reach a maximum at around
g =2.5, and then falls to zero at weak coupling. If this
feature persisted for models including longer loops —i.e.,
that a state is peaked on loops of a certain length and is
not spread out over loops of up to infinite length —then
the idea to truncate the loop basis would work even for
weak coupling.

Second, multiloops are more important than single
loops. Even though single loops of length 12 constitute
more than —', of all loops [Fig. 5(b)] their collective contri-
bution never grows over 0.01. Obviously one could fine-
tune the ansatz of short loops by including only certain
short loops, thereby making the inclusion of loops up to a
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FIG. 11. The first excited state.
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larger maximal length feasible.
The above results fit nicely with the original idea

behind the Lanczos algorithms. ' Given a Hilbert space
and a Hamiltonian operator thereon whose eigenvalues
are to be computed, a first step to simplify the problem is
to construct a special basis for the Hilbert space. Basical-
ly, each state is approximated by a linear combination of
states ~P„), n =1,. ..N, which are obtained from some
starting vector ~go) by repeated action of the Hamiltoni-
an, tP„)=8 "~Po). Let ~Po) be the zeroth-length loop.
The potential term of H adds one plaquette, while the ki-
netic term can join two single loops if they have a corn-
mon link. Hence single loops of a certain length always
belong to a higher order of approximation than mul-
tiloops of the same length.

All the statements about the components of the ground
state are true in a similar way for the first excited state or
"glueball. " The main difference is that, for strong cou-
pling, its largest components are distributed among the
plaquettes, which are orthogonal to the zero-length loop.

IX. CONCLUSION

The purpose of this work was to test the viability of the
method of loops in a simple example of gauge theory.
The results are encouraging, and perhaps one can also
say that they help to build confidence in loop-based
methods for quantum gravity.

The particular approach, which I chose for its simplici-
ty, was to formulate the eigenvalue problem for the Ham-
iltonian of lattice gauge theory in terms of vector com-
ponents and matrix elements with respect to the loop
basis. This was made possible by the following observa-
tions. The physical Hilbert space can be approximated
by a finite basis of short loops, and the Hamiltonian maps

a loop to a simple, finite linear combination of loops. Ex-
plicit use was made of the fact that the inner product be-
tween loop states can be computed analytically. This
greatly simplified the task of finding a basis of linearly in-
dependent loop states, and enabled me to write down the
matrix eigenvalue problem. The nice feature of this for-
mulation is that it constitutes not only a method that
"works in principle, " but one which seems to be an
efticient new approach to Hamiltonian lattice gauge
theory. The values obtained for the ground-state energy
and the mass gap agree with the literature. In addition,
some of the low-lying eigenvalues and eigenvectors could
be obtained.

The obvious extensions are to use larger lattices and
longer loops to find scaling. The only problem involved
in a transition to 3+1 dimensions lies in the larger num-
ber of loops, but new technical issues do not arise —in
contrast with the case of standard variational methods.
Speaking of variational methods, the availability of the
inner product for general computations should enable
one to make quite a sophisticated ansatz for the ground
state.

The next big question is how one can incorporate fer-
mions into any computational method based on loops.
As of now, I cannot offer any analysis of the complexity
of the problems involved. Notice, however, that fermions
on the lattice are already built into the loop representa-
tion of Rovelli and Smolin.
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