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We consider a large class of Dirac oscillator-type couplings that exhibit a three-dimensional hid-
den supersymmetry. A subclass of exactly soluble cases is determined by using the Infeld and Hull
procedure. We find that the corresponding spectra possess a high degree of unphysical degeneracy,
similar to the Dirac oscillator case. This difficulty is overcome by proposing a further generaliza-
tion of this coupling, which breaks supersymmetry but retains exact solubility. We also discuss the
covariance properties of the new coupling together with its Poincaré-invariant extension to the

many-particle case.

The revival by Moshinsky and Szczepaniak' of a non-
minimal coupling scheme for the one-particle Dirac equa-
tion, linear both in momenta and coordinates (referred to
as the Dirac oscillator®?3), has sparked a number of inves-
tigations concerned with its covariance and CPT proper-
ties,* hidden supersymmetric character,>® and the stabili-
ty of the corresponding Dirac sea,® as well as with its
generalization to two- and n-particle systems.”

The exact solubility of the Dirac oscillator, together
with the appropriate mathematical behavior of its eigen-
states (the many-particle states have definite mass and to-
tal angular momentum and are characterized by an irre-
ducible representation of the Poincaré group®®) suggest it
may be used as a first approximation to describe the
confinement potential for quarks in QCD.* On the
mathematical side, such eigenfunctions could provide a
convenient analytic basis to deal with more realistic in-
teractions in a similar manner to the way nonrelativistic
harmonic-oscillator eigenfunctions are used in nuclear
physics.!® However, in Refs. 7 and 8 the mass spectra of
hadrons composed of nonstrange quarks interacting
through Dirac oscillator potentials have been calculated,
yielding the quite unpleasant result that the ground state
of both mesons and baryons is infinitely degenerate, an
undesirable feature already present in the single-particle
case. A possible way of breaking such degeneracy was
proposed some time ago by Cho.? Nevertheless, the ques-
tion still arises if one can modify the Dirac oscillator
Hamiltonian appropriately, in order to remove these un-
physical features, retaining the simplicity of its solutions
and the possibility of constructing a covariant generaliza-
tion to relativistic many-particle systems. The purpose of
this work is to report on two different exactly soluble
generalizations of the Dirac oscillator coupling, including
one that removes the infinite degeneracies which can be
extended to a relativistic many-body Hamiltonian.

Let us consider the nonminimal substitution

p—p—iBG (1)

in the free Dirac equation, where G is an arbitrary real
vector operator and B=y°. Note that the Dirac oscilla-
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tor corresponds to G=r. Using the standard representa-
tion of the Dirac matrices'! the Hamiltonian is given by
(A=c=mw=1)

E=Hy=|_ "o _._ 2)

m U‘AT]

where A=p—iG. In order to decouple the large and
small components, 1; and ¥, of the Dirac spinor i, we
calculate H3 and rewrite the eigenvalue equation as

[ Ui | (o-AN)o- A) 0 Y,
(EZ=mD) g, | = 0 (o-A)o- A" | |0,
H. 0|y
=|lo H_ b (3)

In the above equation, H, and H _ are supersymmetric
partners for any choice of G, since we can define, follow-
ing Refs. (3) and (6), the Hermitian supercharges

0 —o-A'
o-A 0

0 oA

0,= oA 0 , Q=i , 4)

which together with the operator (H3 —m?) satisfy an
S(2) superalgebra

{0, 05} =28,4Hy—m?), (5a)
[Qus(HF—m?*)]=0, (5b)
a,f=1,2 .

Such supersymmetric partners were previously con-
sidered also in Ref. 12 as the result of taking the square
root of three-dimensional Hamiltonians. We remark that
the supersymmetric character of the radial equation of
the Dirac oscillator® is a manifestation of the full three-
dimensional intrinsic supersymmetry of this coupling.
The whole family of systems defined by the substitution
(1) possesses at least an S(2) superalgebra as a dynamical
supersymmetry, which however does not guarantee exact
solubility. In order to address this question we restrict
our attention to the spherically symmetric case by choos-

544 ©1991 The American Physical Society



43

SOLUBLE EXTENSIONS OF THE

ing G=G(r)t. It is enough to consider H  , since super-
symmetry directly relates its solutions to those of H_.
Using the standard decomposition

¥, =|NU1/2)jm)
=3 (u1/20]jm ) uy(r)/r]Y,(Q)X, ,

wo

the factorized form of H , translates into the radial Ham-
iltonian

4
dr

d

Gin—X+

G(r)—i— r dr

H, =
+ r

, (6)

which acts upon the wave functions uy,(r) with eigenval-
ues €=(E*—m?). Here k=(—1)"'712(j+1) are the
eigenvalues of (og-L+1). The form of the Hamiltonian
(6) suggests the Infeld and Hull procedure to determine

c —
€Nt = {

Unfortunately, we can show from Eq. (8) that the infinite
spectrum degeneracies of the Dirac oscillator are not re-
moved by the additional coupling. A similar problem
arises for the Coulomb case (7b).

From these considerations, it is reasonable to surmise
that the underlying supersymmetry is responsible for the
high degeneracy exhibited by these systems. We are thus
lead to consider supersymmetry-breaking interactions,
imposing however the condition that the resulting Hamil-
tonian remains exactly soluble, in addition to retaining its
covariance properties. These conditions turn out to be
very restrictive. Nevertheless, we have succeeded in
finding such an interaction. Going back for simplicity to
the original Dirac oscillator, we propose a generalization
of (2) given by

21BUN+j+1+al—j+H)+2Ba+)), =)+
2BUN+j—al—j+ ) +2Ba—j—1), I=j—

_ Mo-L+1)+m o-(ptir)
Hp=| 4.p—ir) Mo-L+1)—m|’ ©)
where A is an arbitrary real parameter. The

supersymmetry-breaking spin-orbit operator (o-L+1)
has the remarkable property
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all possible functions G(r) that provide exact solutions.'?

We find that only type-C and type-F factorizations are
admissible, leading to the following choices for G(r):

Gc(r)=%+[3r ) (7a)

Grr)=2-+p", (7b)
with a,a’,B,8' being free parameters. The type-C case
corresponds to a harmonic oscillator plus an additional
centrifugal barrier, while the type-F case reduces to
the Coulomb problem with an effective charge
e?=2p'(k—a') also with a modification to the centrifugal
potential. Both Hamiltonians can be solved directly by
comparison with well-known results.!* Here we write
down the energy eigenvalues for the confining potential
(7a), which could represent a good candidate for an im-
proved version of the Dirac oscillator

(8a)
(8b)

1
2 0
1
2

{o-m(0c-L+1)}=0, (10)

valid for any vector operator 7 which satisfies the condi-
tion m-L=0. This property leads to a block-diagonal
structure for H 2, in spite of the fact that supersymmetry
is broken.® In this case the corresponding 2X2 block-
diagonal Hamiltonians are

H, =p2+r*+[2MA+2m)—4]L-S

+ A2+ AA+2m)—3 (11a)

H_=p*+r’+[2MA—2m)+4]L-S

+AL2+MA—2m)+3 , (11b)
following the notation of Eq. (3).

These Hamiltonians include a A-dependent spin-orbit
coupling, together with an interaction term proportional
to L2, which constitute the main modifications with
respect to the original Dirac oscillator (A=0). The kets
IN(I1/2)jm ) are still eigenvectors of H, and H_ with
new eigenvalues

L RWNEDFIFGEDNG D —2Am], I=j+7,

Eny= ) N . (12a)
[2(N=)+1]+G+DAG+ D +2am], 1=j—1,
[2(N—=j)+3]+G+DAG+D)+2am], I=j+1,

ENi=

NI (AN A4 +5]+ G+ DA+ D) —2am)], I=j—1 . (12b)
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From expressions (12) we readily verify that the degen-
eracy of the system is completely removed by the A-
dependent contributions to the energy, except for partic-
ular choices of this parameter. Observe that the full
eigenspinor ¥ of the Hamiltonian (9) can be directly ob-
tained from a linearly coupled system.

We now introduce the covariant Dirac operator which
induces Hamiltonian (9), together with its generalization
to the multiparticle case. A suggestive way of rewriting
9)is

ﬁpza-(p—iﬁr+AySJ)~%+5m (13)

which emphasizes the fact that new nonminimal interac-
tions can be introduced through additional vectors in the
system, such as ysJ, where J=L+S. The above Hamil-
tonian is obtained, in the standard manner, from the co-
variant Dirac operator

VP — X, (v u )+ (A /2)(y s€,0pou TP —u ) ) [ +m
(14)

where €p,3=+1 and J*'=xtp —x"pt+(i/4)[v*,y"]
are the generators of Lorentz transformations. We are
using the metric tensor gWZdiag( —1,1,1,1). We have
also introduced the timelike vector u,=(1,0) in the
frame p,=(—E,p) where the calculation is performed.*
Here X‘azxa+ua(xﬁuﬂ) and it can be verified that the
term proportional to y,X * in (14) reduces to the Pauli in-
teraction o, F*” with the electromagnetic tensor con-
sidered in Refs. 4 and 5.

Our next step is to generalize the Dirac operator (14)
to the case of n =2 identical particles. We observe that
in this situation we have a natural realization for the vec-
tor u, given by u,=—P,/(—PPPg)'/%  where
P,= >"_,p, is the momentum of the center of mass.
Following Refs. (15) and (9), the n-particle free Dirac
equation is written as

n
S Lv#n~'P,+p,)+m]yp=0, (15)

s=1

where p,,=p,,—n AIPH is the relative momentum of the
particle s with respect to the center of mass and the sca-
lar matrix I'| is defined by

Lo=(yuy)'T, T= I (y{ug) . (16)

s=1

Here y4 is the direct product of (n—1) 4X4 unit ma-
trices and one y* matrix in position s. As shown in Ref.
9, the covariant operator leading to the n-particle Dirac

oscillator Hamiltonian is obtained from (15) by making
the substitution

Pas—Pas %o, (17)

where x,, is the relative coordinate of particle s with
respect to the center of mass. The corresponding exten-
sion for the Hamiltonian (13) is achieved through the re-
placement
’ v _}L vrytpo __

pas——’pas lanF+ 2 (YSSeanou JS ua) (18)
in the free Dirac operator (15), where J*'=x/p/”
—x."p+ (i /4)[y*,¥7]. One may doubt whether to re-
place y5 in (14) by ¥, as done in Eq. (18), or to consider
vs—I's= [17=,¥s, in analogy with the pure Dirac oscil-
lator term. The last possibility can be rejected since the
Lorentz transformation I's— (detA)"I’s would imply that
the corresponding term behaves as a vector for odd
values of n only. The multiparticle Dirac operator con-
structed according to (18) commutes with the generators
of the Poincaré group P,, J¥'= FI_,J* because by
construction this operator is a Lorentz scalar and is
translationally invariant due to the use of relative coordi-
nates. Thus, the many-particle states will indeed be
characterized by irreducible representations of the Poin-
caré group and could be used as an appropriate basis for
relativistic systems. Finally in the center-of-mass system
P%=M, p=0, the mass operator is

M= [a,-(p,—ix'T)+AZ,-Li+1)+mB,], (19

s=1

where 2 is the spin operator of particle s.

We have proposed an n-particle Poincaré-invariant in-
teraction that is a supersymmetry-breaking generaliza-
tion of the Dirac oscillator coupling, which also leads to
confining potentials of the linear type. The one-particle
case is exactly soluble and the resulting spectrum is non-
degenerate. These features are essential for a realistic ap-
plication of the n-particle solutions to the spectroscopy of
mesons’ (n =2) and baryons® (n=3) and could lead to a
fully relativistic basis for nuclear excitations involving
subnucleonic degrees of freedom, a subject of consider-
able current interest.'® After the completion of this work
we became aware of Ref. 17 where an alternative way of
breaking the infinite degeneracy is proposed.
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