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In the four-dimensional effective field theory of the heterotic superstring compactified on a
Calabi-Yau manifold, we find a new class of spacetime string instantons in the gravity sector that in-
volves graviton, dilaton, and Kalb-Ramond (axion) fields. The instantons satisfy generalized (anti-
)self-duality equations, and saturate a Bogomolnyi bound provided by the underlying supersym-
metry. The instantons lead to several intriguing nonperturbative phenomena to low-energy string
theory. A mass gap is generated to the Kalb-Ramond gauge fields, and results in the confinement of
superstrings into Kalb-Ramond domain walls below the compactification scale. More interestingly,
they provide a new example of the nonperturbative breakdown of the superpotential nonrenormali-
zation theorem. Together with the world-sheet string instantons, this implies that all would-be
Peccei-Quinn symmetries that arise in four-dimensional string theories are completely broken
around the string compactification scale. Being self-dual, the instantons provide precisely two grav-
itino zero modes, thus might induce dynamical supersymmetry breaking. We also point out an un-
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derlying analogy with the invisible-axionic domain walls bounded by axionic strings.

I. INTRODUCTION: GRAVITY SECTOR OF
D =4, N =1 SUPERSYMMETRIC STRINGS

The Kalb-Ramond gauge field! is naturally linked with
various kinds of strings. First compactified four-
dimensional fundamental (super)string theories give rise
to a Kalb-Ramond gauge field that may be interpreted as
a spacetime torsion.’? Another type of string is the
Abrikosov-Nielsen-Olesen vortex.> They are topological
defects in an Abelian Higgs model in which the U(1)
gauge symmetry is spontaneously broken. The magnetic
field is confined inside the vortex tubes [the interaction of
these flux tubes is described by their intersections; the in-
tersection point is nothing but an instanton configuration
of the spontaneously broken U(1) gauge field, and proper-
ly interpreted as joining and splitting processes of the flux
tubes] whose diameters are of order of the vector-boson
Compton wavelength. The massive U(1) gauge field in
the Higgs phase can be described in terms of a massive
Kalb-Ramond field that couples to the world sheet of
vortex tubes.* They neatly summarize the short-range in-
teractions between vortex flux tubes. On the other hand,
if a global U(1) symmetry is broken, global strings’ form
at which point the order parameter vanishes. Unlike the
above gauge vortex tubes, the massless Goldstone bosons
mediate a long-range interaction among the global
strings. In four-dimensional spacetime, the U(1) Gold-
stone boson can be equally represented by a compact U(1)
Kalb-Ramond gauge field. In QCD, the confinement
phase should show a physical spectrum consisting of
glueballs (closed color-electric flux tubes) and mesonic or
baryonic strings. The Kalb-Ramond gauge field arises
out of their collective excitations and is presumably re-
sponsible for the color-confinement phenomena. '

All these are not coincidences at all. Much like pho-
tons couple to the world line of an electrically charged
particle, the Kalb-Ramond field couples to the world
sheet of an oriented string. Depending on the origin of
strings as exemplified above, the Kalb-Ramond field be-
comes either massless or massive. The underlying phys-
ics is all intertwined with one another in an intriguing
way.

In this paper, we investigate nonperturbative dynamics
of the U(1) Kalb-Ramond field coupled to four-
dimensional N =1 supersymmetric heterotic strings. In
string theory, the Kalb-Ramond gauge field is naturally
paired with gravity and the dilaton field as massless
modes. Thus, any nontrivial dynamics of the Kalb-
Ramond field should be considered together with non-
trivial dilaton and graviton fields. This will lead to
several unique modifications unexpected from pure
Kalb-Ramond theory, as will be elaborated in this paper.

In the rest of this section, we summarize the gravita-
tional sector of the low-energy effective Lagrangian aris-
ing from compactified four-dimensional heterotic super-
strings. In Secs. II and III, to the lowest order of the
string world sheet and the loop perturbation expansion,
we explicitly construct self-dual string instantons and
non-self-dual wormholes. In Sec. IV, we find fermionic
zero modes in the instanton and wormhole backgrounds.
It is shown that only instantons provide two chiral gravi-
tino zero modes, the right number to induce dynamical
supersymmetry breaking. Carrying nontrivial ‘“magnet-
ic” Kalb-Ramond charges, the instantons and wormholes
immediately lead to a nonperturbative generation of the
mass gap of the Kalb-Ramond gauge field.® In four-
dimensional spacetime, the consequence is a confinement
of oriented strings into domain walls.” (For a discussion
of the phase structure of pure Kalb-Ramond gauge
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theory, refer to Ref. 4, and references therein.) Further-
more, the “spacetime” instantons invalidate the superpo-
tential nonrenormalization theorem®® and lead to a gen-
eration of superpotential F terms on a nonperturbative
level. All these are shown in Sec. V. In fact, as explained
in Sec. VI, these phenomena are very analogous to the
confinement of invisible-axion!® strings in the standard
model extended to incorporate Peccei-Quinn symmetry.
The QCD instantons break explicitly the nonlinearly real-
ized Peccei-Quinn symmetry, and generate a nonpertur-
bative axion potential. Because of the electric disorder
provided by the QCD instantons, the “magnetic” flux out
of the axionic string, originally radially symmetric, col-
lapses down to a wall whose thickness is of the order of
the QCD scale. Thus axionic strings get confined to ax-
ionic domain walls, forming the boundaries of the
domain walls. ]

Let us consider the ten-dimensional heterotic string
whose internal six dimensions are compactified on a six-
dimensional Calabi-Yau manifold, denoted as K6.11 Be-
cause of the vanishing first Chern class of K, this
compactification is known to lead to four-dimensional,
N =1 spacetime supersymmetry. [In fact, our subsequent
considerations are largely independent of the precise
compactification scheme as long as the four-dimensional
field theory preserves N =1 spacetime supersymmetry.
Thus, we may abstract the relevant compactifications as
any ¢ =9 (2,2) conformal field theories.] Since the second
cohomology group H'"(K) is nonempty, the Kaluza-
Klein modes of the ten-dimensional Kalb-Ramond field
give rise to four-dimensional massless scalar fields
(would-be axions) whose number equals the second Betti
number b, of the Calabi-Yau manifold. These massless
scalar fields are axions since, on the quantum level, they
possess Peccei-Quinn symmetries and axionlike couplings
to the gauge and the matter fields. However, it is known
that world-sheet instantons!>'? break Peccei-Quinn sym-
metries associated with most would-be axions. Fermionic
zero modes of the world-sheet instanton suppress this
breaking for (at least) one of the compactification gen-
erated axion field. Together with the internal dilaton
field and their superpartners coming from the shape and
size deformations of the Calabi-Yau internal manifold,
the remaining truly axion field forms one chiral scalar
superfield T of the gravity sector in the four-dimensional
N =1 supergravity. There exists also a model-
independent chiral scalar superfield S, directly coming
from the ten-dimensional dilaton and the Kalb-Ramond
gauge field and their superpartners.'* Our main concern
in this paper is the dynamics of these chiral scalar
superfields in four-dimensional compactified heterotic
superstring theory. The Kaéhler Lagrangian of these
fields is compactly written as a nonlinear ¢ model over a
coset space that will be identified shortly:
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We abbreviate S and T fields by Z, suppress all higher-

order terms in gradient expansion, and denote the four-

dimensional gravitational coupling constant 877G, =«>.

Scaling symmetry at the string tree level and four-
dimensional N =1 spacetime supersymmetry uniquely
determine the leading-order Kéhler potential:
K(S, D)=~ 5In(s +5)—SI(T+T). (1.2

K K

Inserting the Kahler potential equation (1.2), the La-
grangian equation (1.1) is written as
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The two scalar supermultiplets may be decomposed as
S =exp(D)+iF,kA - -
and (1.4)
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where F, and f, denote the Peccei-Quinn scales associat-
ed with S and T fields, respectively. Ellipses denote the
dilatinos and auxiliary fields. Using Eq. (1.4), bosonic
part of the Lagrangian equation (1.3) can be put into
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If one considers the gauge sector at the same time, there
are other scalar fields in the definition of the chiral
superfield T coming from the dimensionally reduced
gauge fields. Primarily interested in the gravity sector,
we shall set them to zero in what follows.

The T superfield in Eq. (1.4) possesses a hidden non-
compact SL(2,R) symmetry, associated with the coset
space SU(1,1)/U(1)=SL(2,R)/U(1) on which the matter
Lagrangian in Eq. (1.1) is defined

aiT +b

T +d’ ad —bc=1.

iT a,b,c,d €R, (1.6)
In particular, its discrete subgroup SL(2,Z) represents
modular invariance (generalized duality symmetry) relat-
ing between strong and weak couplings. (Even though
the modular invariance has been established only for the
T moduli field, we suspect that there is a stringy
Montonen-Olive!>-type duality associated with S moduli
field. This possibility is further hinted by a stringy
cosmic-string solution recently found by Dabholkar and
Harvey as a dual soliton to the string instanton we will
find in this paper.'®) This symmetry will play an intrigu-
ing role when we discuss the physical implications of the
string instantons and wormholes in Sec. V.

The two chiral superfields S and T span the submani-
fold of the moduli space of the N =1 supersymmetric
four-dimensional heterotic string theory. The tree-level
string theory possesses a flat direction associated with
them. It is of prime importance to find any mechanism
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to lift the tree-level flat directions of the superpotential.
However, there is a powerful nonrenormalization
theorem of the superpotential that forbids any perturba-
tive renormalization of the superpotential.>° On the oth-
er hand, it has been observed that nonperturbative phys-
ics may evade the perturbative nonrenormalization
theorem. Such examples known so far include world-
sheet string instantons,'>!® and gluino condensation!” in
the strongly interacting, hidden gauge sector in EgXEjg
heterotic string theory. As will be shown, the spacetime
string instantons we will discuss in this paper provide yet
another mechanism of generating nonperturbative super-
potentials for both S and 7 moduli fields.

II. SPACETIME STRING INSTANTONS

We first study the Kahler Lagrangian of chiral scalar
superfields in Eq. (1.5) in the gravitational background
8uv- Since the S and T moduli fields are completely
decoupled, we find it sufficient to study the model

2
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There are two coupling constants in the theory: the
Kalb-Ramond coupling constant f, and the dilaton cou-
pling constant B. Inferring Eq. (1.4), we see that 3 takes
values B=1 and B=1/V'3 for S and T fields, respectively.
Recall that the scaling symmetry of classical strings and
the N =1 supersymmetry fix the numerical values of f8’s.

We have set the gravitational constant x*=87Gy =1
so that the dimensional analysis gives

[D]=[H,,1=[f,1=1/[B]=(mass unit) .

The Kalb-Ramond field strength H =dB is related to
the imaginary part of S or 7 moduli fields (axions)
through the pseudoscalar representation
1 28D
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(2.2)

Since we are considering only leading order of the
low-energy effective action, appropriate modifications of
the Kalb-Ramond gauge field by the Yang-Mills and
gravitational Chern-Simons three-forms are ignored.
From Eq. (2.2), the ““global” U(1) axion symmetry (non-
linearly realized Peccei-Quinn symmetry)

A(x)— A(x)+C, C=const (2.3)

is related in the dual formalism to a compact U(1)
“gauge” symmetry of the Kalb-Ramond field

B(x)—B(x)+dA(x), (2.4)

where A is a one-form potential. In both representations,
the symmetry generators are the closed zero-form C and
two-form dA(x), respectively. These two symmetries
protect the Kalb-Ramond and the axion field from get-
ting mass terms.

The action (2.1) possesses Poincaré duality between the
dilaton and the Kalb-Ramond gauge fields. This is be-
cause the dilaton “field strength” dD is a one-form while
the Kalb-Ramond gauge field H is a three-form.

The above argument leads us to expect an instanton
solution. In fact, it is more evident by rewriting the ac-
tion equation (2.1) as

S=1[d*%x V=g (V,Dtf,eP’*H,)
S
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Since the first term is manifestly positive semidefinite as
long the dilaton and the Kalb-Ramond gauge fields are
real valued, the Euclidean action is minimized once the
dilaton field and the Kalb-Ramond gauge field satisfy

dD = F f,ePPH* and dH =0 . (2.6)

[We have used ‘“‘duality” in two different contexts here.
The Kalb-Ramond gauge field may be equally represent-
ed by a pseudoscalar field that we called the axion. On
the other hand, the duality of Eq. (2.6) relates ‘“‘field
strengths” of two different fields: i.e., the dilaton and the
Kalb-Ramond fields. In effect, Eq. (2.6) interchanges the
scalar dilaton and the pseudoscalar axion fields.] One
may be suspicious of the existence of any nontrivial solu-
tions of Eq. (3.6), by invoking Derrick’s theorem. Name-
ly, the action equation (3.5) changes as & — A& under the
rescalings'*

gw-—kgw,, S—))\.S, T—-T . (2.7)

Thus, it appears that any nontrivial solution may be re-
scaled to a trivial vacuum configuration. However, the
theorem implicitly assumes that the action comes from a
local field configuration. In our case, the action is entire-
ly from the asymptotic boundary behavior of fields as in
topologically nontrivial situations, thus invalidating
Derrick’s theorem.

Indeed, the field configuration that satisfies Eq. (2.6)
admits a topological interpretation. The action equation
(2.5) is bounded by the Bogomolnyi inequality,'® realized
through spacetime supersymmetry. Minimum action in-
stantons satisfy the (anti-)self-duality given by Eq. (2.6).
The action of the instanton (or anti-instanton) is a topo-
logical charge defined as an intersection number:

S=7F fd“x%(deﬁD)/\H
=B [ d*x (dePP)(de ~PP)

=j/;—a95d23eﬁDH , 2.8)

In the second equality, we used the (anti-)self-duality con-
dition equation (2.6). The last equality exhibits that the
action can be expressed entirely in terms of a surface in-
tegral, as we argued above.

One can easily check that solutions to the first-order
(anti-)self-duality condition equation (2.4) are automati-
cally solutions of the equations of motion for the dilaton
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and the Kalb-Ramond gauge field
V (e?PPHM™)=0 . (2.9b)

The readers should not have missed the close analogy
with the (anti-)self-dual configurations in the classical
Yang-Mills gauge theories. One minor difference is that,
in the present case, we have two “‘gauge” fields: the dila-
ton field one-form dD and the Kalb-Ramond field three-
form H =dB. There is another difference between the
Yang-Mills gauge theory and the present system. Not
surprisingly, the model equation (2.1) is not scale invari-
ant. This is because the coupling constant of the Kalb-
Ramond gauge field carries dimension one. More explic-
itly, we have

72

— 28D
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This is not traceless in general. However, if the dilaton
and the Kalb-Ramond gauge fields satisfy the (anti-)self-
dual condition equation (2.6), the energy-momentum ten-
sor vanishes identically. This is also what happens to
(anti-)instanton solutions of Yang-Mills gauge theory. In
fact, the energy-momentum tensor equation (2.10) may be
rewritten as

T, =4,D+f,e PP3,4)3,D —f,e PP3, 4)+(uev)

1
3
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Thus, the energy-momentum tensor vanishes identically
for the (anti-)self-dual configurations. At the same time,
the energy-momentum tensor expressed in Eq. (2.11)
shows quite naturally the origin of the minus sign in front
of the axionic part which was a confusing point in recent
literature. The reason why we get it without any effort is
because the Bianchi identity dH =0 is automatically re-
tained at every step in deriving Eq. (2.11).!" Precisely the
same phenomenon arises for a complex scalar field theory
in a fixed global charge sector.?’ The dilaton field plays
an analogous role to the modulus field of the complex
scalar field. [In fact, one can shortcut the argument of
Ref. 20 using a dual formulation. This is most easily
done by rewriting the complex scalar field ¢=Re'? and
using the dual formulation to change the angular field
into a Kalb-Ramond field V,=R "2H;‘. One immediate-
ly finds that the “‘radial” field R plays a similar role to the
dilaton field in Eq. (2.1).]

Let us now solve the coupled equations (2.6) with the
SO(4)-symmetry ansatz

ds’=dr*+71dQ} . (2.12)
From Eq. (2.6), we find that
O=dH =+ —L_y2hD . (2.13)

a

(2.10)

A class of solutions which are regular everywhere except
at the center of instanton are

€
e—b’D(T):A+ B|Q2|2 and Habc(T): Q2 13)(‘
2rfaT Tf; T

(2.14)

An integration constant is denoted by A, and three in-
dependent Killing indices on the three-sphere (); are
denoted by a,b,c. The “Kalb-Ramond charge” Q takes
both positive and negative values. The absolute value of
charge is taken for the dilaton solution in Eq. (2.14). This
means that the self-dual instanton is taken for positive
Kalb-Ramond charges, while the anti-self-dual instanton
is taken for their negative charges.

There exists a constraint to the Kalb-Ramond charge
Q from the requirement of consistent coupling of strings
to the Kalb-Ramond gauge field. A string wave function
must be single valued when the string sweeps a nontrivial
Kalb-Ramond gauge field source. Thus, the Kalb-
Ramond gauge flux should fall in the third integral coho-
mology group H;(M,Z).” This gives rise to a quantiza-
tion of the Kalb-Ramond charge Q

wz=f2[ H-Q€EZ. (2.15)
M
The same quantized charge Q also enters the dilaton field
configuration. A priori, there is no reason that the dilaton
charge is quantized. However, in our instanton
configuration, the self-duality equation (2.6) also relates
the dilaton charge to the axion charge, thus allowing only
quantized values.
Incidentally one may express Eq. (2.14) in a manifestly
covariant form

Q|27 2
e—BD(x)._:A +_[_))Q—f;
[x —xo]

and (2.16)

o
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S
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The integration constant A4 is determined by dilaton
boundary conditions at 7— oo, the Euclidean asymptotic
region far away from the center of the instanton. If the
dilaton field approaches zero, 4 =1, while a divergent di-
laton field sets 4 =0. We will call these type-A and
type-B instantons, respectively. We shall see that these
two types give completely different features of dilaton-
axion dynamics. For example, one may measure the
long-range field strength of the axion and the dilaton
fields to define their respective charges. In the case
A =1, the dilaton and the Kalb-Ramond fields fall off as
R (monopole potential) and their charges, denoted by
qp and gy, respectively, are type A:

gp=—10| and ¢gz=0 . (2.17)
On the other hand, for 4 =0, the dilaton field falls off
like R ! (confining potential) while the Kalb-Ramond
field does like R ~3. Their charges are type B:
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Thus, it appears the two charges are not related to each
other. This sounds odd since the (anti-)self-duality condi-
tion relates them to each other. However, after the non-
trivial dilaton field configuration is taken into account, an
“effective” Kalb-Ramond charge read off from ePH LA
becomes the same as g, and, thus is independent of the
“topological” charge Q.

What if we turn on the gravity? Since the energy-
momentum tensor vanishes identically, the above self-
dual spacetime instantons do not interact gravitationally.
One can understand this from cancellations between the
dilaton and the Kalb-Ramond field Euclidean energy
densities

Too=4D>—fle PP 4?)

1

_Z (2.19)

ca_ S a 28Dyr2 ]
D _je Habc .
The dilaton field furnishes a positive energy density while
the Kalb-Ramond gauge field furnishes a negative one
with precisely the same magnitude. This fact gives us
another bonus. Since the instantons are gravitationally
neutral, one can immediately get (anti-)self-dual multi-
instanton solutions by superposing individual single in-
stanton solutions:

) /2mf?
e—BD(x):A + 2 lQ \ j;‘
a |x _‘xa|

and (2.20)
Qa euv}»a(‘x T Xg )’
H,,(x)=
wvh 2,;' mfr x —x,|*
This phenomenon is reminiscent of the Prasad-

Sommerfield limit of non-Abelian magnetic monopoles.
There, the vector field and the Higgs field exchange
forces cancel each other. In our string instantons, the at-
tractive dilaton exchange interaction is counterbalanced
by the repulsive Kalb-Ramond exchange interaction.
That is, the dilaton field plays a role similar to the Higgs
field in non-Abelian magnetic monopoles. In fact, this
identification is quite well justified from the analogy of
the dilaton-axion system to the complex scalar field sys-
tem.

Let us calculate a single instanton action. For type A,
the action is calculated to be finite

21
B, 2

On the other hand, for type-B instantons, the action is
quadratically divergent. If we infrared regularize so that
7=T,

S 4(instanton)= (2.21)

2
Sp(instanton)= % T . (2.22)

2

However, using the dilaton solution equation (2.14), we

can compactly express the instanton actions for both -

cases as

21

a

S(instanton)= |QlePP (=) (2.23)

This is obtained as follows. One may imagine a topologi-
cally trivial vacuum configuration with a background di-
laton field at some constant value D (). One may cut
out a four-dimensional ball B, out of the background,
and patch the instanton configuration given in Eq. (2.14).
The dilaton field should match the background value
smoothly. The excess value of the action to paste such an
instanton configuration is precisely Eq. (2.23). The in-
frared divergence of a type-B instanton action may be in-
terpreted due to the divergent dilaton field far away from
the instanton.

We emphasize that the spacetime string instantons ex-
ist for both S and 7 moduli fields. Namely, the solution
is insensitive to the dilaton coupling constant 3. This is
in sharp contrast to other interesting instanton solutions
in string theory. For example, the existence of world-
sheet instantons'>!3 crucially depends upon the topologi-
cal structure of the initial manifold K¢, and thus only to
the 7 moduli field. Some of the spacetime wormholes we
will discuss in the next section exist only with the T
moduli field again.

The cautious reader must have worried about the
singular nature of the string instanton solutions we obtain
in Eq. (2.14). The dilaton and the Kalb-Ramond fields
diverge at the center of the instanton. After all, the field
configuration is not much different from a singular Dirac
magnetic monopole solution in Maxwell’s electrodynam-
ics. However, there are significant differences between
the latter and our string instanton. As noted in Egs.
(2.21) and (2.22), the instanton action gets no contribu-
tion from the 7=0 region. The divergence we encoun-
tered in the type-B instanton were from the infrared re-
gion, not from the center of the instanton. This is in con-
trast with the Dirac magnetic monopoles, in which the
self-energy diverges unless we regularize the monopole to
a finite size. Furthermore, since we have used an effective
low-energy four-dimensional effective field theory of
superstrings, the fine structures of solutions Eq. (2.14) on
a scale shorter than the compactification scale 7=M_ !
should be treated through a full-fledged ten-dimensional
string theory. In particular, the internal six-dimensional
manifold should start to show complicated massive mode
excitations. From the point of view of four-dimensional
effective field theory, these massive mode excitations are
expected to act as a source to the massless gravity sector.
In effect, the Bianchi identity of the Kalb-Ramond field
gets modified to

dH =Q8™(x —x,) . (2.24)

The vanishing contribution of the action from the core
region of the instanton suggests that we may replace the
short-distance field configurations of Eq. (2.14) by some
regular string-theory solutions. Thus moduli space of our
spacetime string instantons would be much larger than
naively expected from the field-theory limit, once de-
formed through a full string configuration space. The sit-
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uation is very analogous to the ’t Hooft-Polyakov mag-
netic monopoles in non-Abelian gauge theories. Far out-
side the monopole core, only the long-range Abelian
gauge field component is present. This is well approxi-
mated by a singular Dirac magnetic monopole. Howev-
er, inside the monopole core region, the short-ranged
non-Abelian gauge field and Higgs field excitations are
present. These excitations render the monopole self-
energy finite. In our spacetime string instantons, the dila-
ton field plays a role very similar to the Higgs field in ’t
Hooft-Polyakov magnetic monopoles. The nontrivial di-
laton field configuration made the singularities of the
Kalb-Ramond gauge field near the center of instanton
wash out completely. Again, we encountered a close
analogy of the dilaton field with the Higgs field. Another
related example in which the apparent singularity is il-
lusory is Kaluza-Klein magnetic monopoles.?! Their field
configurations look singular from the lower-dimensional
point of view. However, once expressed in terms of the
original higher-dimensional fields, the magnetic mono-
poles are perfectly regular.

III. STRING MERONS AND SPACETIME WORMHOLES

In gauge theories, it is known that there exist other
singular classical solutions with negative energy-
momentum tensor, so-called merons, in addition to the
self-dual instantons. Merons and nested merons in non-
Abelian gauge theories become wormholes?>?3 once the
gravitational interaction is turned on. (The merons and
meronic wormholes may well be unstable against polar-
ized instanton configurations. This instability is partly
because they do not carry conserved topological charges.
The string wormholes we will describe below have non-
trivial topological charges, thus stable.)

In this section, we construct similar solutions, string
merons, that possess negative values of the energy-
momentum tensor. Not surprisingly, once gravity is
turned on again, the string merons become spacetime
string wormholes the same way as non-Abelian gauge
theory merons.??

To this end, we again use the spherical coordinates of
Eq. (2.12). The equations of motion are the same as in
Eq. (2.9). The Kalb-Ramond equation of motion is
solved by the same configuration as in Eq. (2.14):

_ Q €abe
Habc—m 7’3 . (3.1

The first integral of the dilaton equation of motion reads

2
(7D —e#P—L
mfa

T = (3.2)

N

Here, E is an integration constant. We find solutions ex-
ist only if E is positive semidefinite.
Introducing a new variable 6(7) such that

V'E coshf(7)= lLLe/”D(T’

a

and (3.3)
V'E sinh6(7)=7D(1) ,

one can explicitly solve the dilaton field equation of
motion to get

e BD(N= 4 4+ 10|

) (3.4)

As in the instanton case, we have two possible types of
wormbholes: type A in which the asymptotic dilaton field
becomes infinite; type B in which the asymptotic dilaton
field approaches finite, weak coupling. As a consistency
check, we find the solution (3.4) interpolates to the in-
stanton solution equation (2.14) continuously as E —0.

The solution, however, develops infinitely many singu-
larities and domains of the complex-valued dilaton field
configuration. This is evident from the solution of Eq.
(3.4). As “time” 7 is decreased from infinity to a critical
time

TfVE
1ol

L, 2 .
T, “=——=arcsin

BV'E

A ) (3.5)

the dilaton field diverges indefinitely. Below the critical
time, the dilaton field becomes complex valued until the
time reaches the next critical value. The dilaton field re-
peats its real and complex values as time 7 is decreased
toward zero. We note that the critical time 7, depends
upon the strength of parameter B. If B becomes larger,
the physically allowed domains get narrower and the
complex-valued dilaton field oscillates faster.

More transparently, one may examine phase trajectory
of the dilaton field by rewriting Eq. (3.2) to

2
—BD\2
l —;(e )

3
T 8 e‘BD

BVE or

1 [0
2

T fIE

(3.6)

One can view Eq. (3.6) as describing a mechanical analog
of one-dimensional simple harmonic oscillator with ener-
gy 6=|Q|*/m*f}E whose one-dimensional coordinate is
X =e PP measured in time T=BVE /27%. The analog
particle trajectories are thus circles in phase space. How-
ever, unless the dilaton field becomes complex valued, it
cannot complete a whole cycle of the trajectory through
the region of the negative X axis. At best, one may hope
the left-half of phase space is inaccessible by imposing a
suitable boundary condition on the dilaton field. We do
not find such a boundary condition. Thus, we regard the
meron solution unphysical.

The situation improves significantly once we turn on
the gravity. We first note that, due to the negative-
energy-momentum tensor in Eq. (3.2), the merons turn
into string wormholes. The reason why turning on the
gravity improves the situation is because a finite
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wormhole neck size makes almost all of the singularities
inaccessible. It is almost because, depending on the
strength of 3, one may still have the outermost singulari-
ty and a core region in which the dilaton field is complex
valued. This gives a criterion of critical value S, for the
parameter 3. The same phenomena occurs also in the
charged black-hole solution with nontrivial dilaton
fields.>*

Let us see this in detail. We consider Euclidean space-
time metric to be

ds’=N(7)¥dr*+a(7)%d Q3 . 3.7

A convenient gauge is a Robertson-Walker metric with
N (7)=1. Again, the nontrivial Kalb-Ramond field solu-
tion reads

Q €abc
7f2 adr)
The first integral of the dilaton equation of motion is
properly modified from Eq. (3.2) to

Q 2
f2

Using this, the zeroth component of the Einstein equa-
tion of motion reads
E

N VPRV T VR
a“<(r)—1 12a (1) .

Habc: (38)

(a’D)*—e?BP =—F . (3.9)

(3.10)

One can solve these equations straightforwardly. The
conformal factor geometry is

1+ E/T72
)4

a(r)~(r—my) (3.11)

(r—mo

From this, one finds that there exists a minimum neck
size of @2=—V'E /12 at which the extrinsic curvature
vanishes. Using Eq. (3.9) and a similar parametrization
as in Eq. (3.3), the dilaton solution reads

b
|0l

‘/E (eAﬁD(T)_C)

arcsin

=BVE deta“(t) )

(3.12)

Again, the integration constant C signifies an asymptotic
behavior of the dilaton field: for type A, C =1, while, for
type B, C =0.

Using the Einstein equation (3.11), we have

o — B./2
V'E fwdta%(t):?jljarcsin V'E fz(r) (3.13)
Here, B, =1/V'3. Combining Egs. (3.12) and (3.13),
__wf?
arcsin |VE ——-(e ~PP("— ()
ol ¢
__B./2
=£arcsin Vv B (3.14)
B. a(r)

As a consistency check, we take E—0, the string in-

stanton limit. It is straightforward to verify that the
solution equations (3.7) and (3.13) reduce to the string in-
stanton solution equation (2.14). Contrary to what it ap-
pears, this limit is not so trivial. This is because the cur-
vature becomes singular as the wormhole neck pinches
down in the limit £ —0.

For type A wormbholes, the dilaton field in Eq. (3.14) is
regular everywhere outside the wormhole neck. For type
B wormholes, the dilaton field has no naked singularity at
finite proper time 7 < o if and only if

1
B < Bc - ‘/3 *
This determines the critical coupling strength of the dila-
ton field to have a regular solution: wormholes out of the
S moduli field possess naked singularities, while those out
of the T moduli field are regular except the spacetime
infinity.

In principle, we can imagine a continuously varying di-
laton coupling constant 3. As the dilaton coupling con-
stant is increased beyond the critical value 3., the dilaton
exchange attraction becomes so strong that a naked
singularity starts to show up at a finite proper distance
away from the center of instanton.

We now calculate the wormhole action in the limit
E=0. We find

(3.15)

S (wormhole) =S (instanton)

— V37?
+Vv
E%

(2B.*—B H+O(E) .

(3.16)

Again, the type B wormholes show infrared divergences,
while type A wormholes are finite. The second term in
Eq. (3.16) is a leading contribution from the wormhole
neck in a perturative expansion in powers of V'E. Also,
for nonzero E, the wormhole action is larger than that of
the instantons. This is in agreement with generalized Bo-
gomolnyi inequality

S (wormhole) > S(instanton) . (3.17)

The equality is saturated in the limit that the wormhole
energy E—0 at which the (anti-)self-duality of the dila-
ton and the Kalb-Ramond field holds.

As in the instanton case, the wormhole action can be
written compactly in terms of the asymptotic dilaton field
configuration and the wormhole neck correction that we
denote as A(V'E ):

21 —
S(wormhole)=-——|Q|efP =)+ A(VE) .
wormhole) = - Q]

From the above wormhole action calculation, we expect
the correction A(V'E ) to be an analytic, positive function
of VE.

Finally, let us compare our string wormholes with
those found by Giddings and Strominger.?> They im-
posed a different boundary condition such that the time
derivative of dilaton field vanishes at the wormhole neck.
This changes the dilaton field configuration but the
Kalb-Ramond and metric field configurations remain the

(3.18)
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same as ours. Furthermore, their solution also shows a
singularity to the dilaton field at a finite proper distance
away from the center unless B<f,.=1/V'3. This is pre-
cisely the same condition for our type B wormholes as
given in Eq. (3.15). Furthermore, it is intriguing to ob-
serve that, in the case B=p3, of the T moduli field, our
type B wormhole solution agrees with the one of Gid-
dings and Strominger. The infrared-divergent wormhole
action agrees in both cases, modulo a correction from the
finite wormhole neck we have explicitly calculated.

IV. FERMIONIC ZERO MODES

In this section, we investigate fermionic zero modes in
the instanton or wormhole backgrounds. We restrict
ourselves to fermionic superpartners of the graviton and
the two dilaton-axion moduli fields: spin-3 gravitino
¥,(x) and two spin-1 dilatinos A(x). We will explicitly
count the zero modes of fermionic partners of the S
moduli field, but the same counting goes through to the T’
moduli field too.

The supersymmetry transformations of fermionic fields
are

8,(x)=(V,—LePH )e(x) ,

4.1)
SA(x)=(VD +ePH)e(x) .
We adopted the notation
VD=y#V,D, H,=~H,, vy
=Y u w 2 yvky Y ’
(4.2)

_1
HZEH;LVLY[#VVVX] .
Also, our notation differs from that of Chapline and
Manton by a redefinition of the gravitino (a similar trick
has been noted by the authors in Ref. 26; we thank
Strominger for informing us of these references):

W=l — LA

The supersymmetry transformations of bosonic fields
read

(4.3)

Sg,uvzg(xh/(uwv) ’
8B, =ex)y ¥, -

4.4

The bosonic transformations show that the Kalb-
Ramond gauge field can be interpreted as a spacetime
torsion. More precisely, the covariant derivative in a
nontrivial dilaton and Kalb-Ramond field gets modified
into

V,—»V,=V,—1efPH, . (4.5)
a new covariant derivative with nonzero torsion. This is
precisely the structure that enters into the gravitino su-
persymmetry transformation given in Eq. (4.1).

Let us first count the gravitino zero modes. The gravi-
tino zero modes are provided by those components of su-
persymmetry transformation spinor e(x) that approach
constant at Euclidean spacetime infinity, and, thus, are
not normalizable, while their covariant derivatives fall off

sufficiently fast so that the gravitino wave functions are
normalizable. Unless there exist covariantly constant spi-
nors (with nonvanishing torsion provided by the dilaton
and the Kalb-Ramond fields), we therefore expect four
gravitino zero modes.

Suppose there exist a covariantly constant spinor,

€5(x). It gives a vanishing gravitino wave function
8, (x)=(V,—LePH  )e\(x) . (4.6)

In this case, the spinor must satisfy an integrability con-
dition

V8¢, (x)=[V,—1ePH,,V,—1ePH Je(x)=0. (4.7)
Expanding out the left-hand side, we have
(R, —V,ePH +1e?H |, H, )"0 ,,€(x)=0 . 4.8)

In the background of spacetime instantons, the dilaton
and the Kalb-Ramond gauge fields satisfy a generalized
self-duality condition

-D_
Ve P=xHY, (4.9)
so that Eq. (4.8) becomes
VDV D0 o (1F 75)€(x)=0 . (4.10)

For a nontrivial covariantly constant spinor, Eq. (4.10) is
satisfied if and only if it has a. positive chirality
Ys€o(x)= +e€5(x). Namely, there exist two covariantly
constant spinors of the same chirality in the spacetime
string instanton background. This in turn implies that
there exist two gravitino zero modes of negative chirality,
since the other two states are annihilated by the super-
symmetry transformation. This is precisely the right
number one needs to induce dynamical supersymmetry
breaking since it gives the nonvanishing gravitino two-
point function

( ‘1/}y.a 1/}vbl >instanton:’leo .

Indeed, our spacetime instanton may be regarded as a
concrete realization of Witten’s idea?’ that gravitational
instantons with nontrivial torsion might break supersym-
metry. One can regard our spacetime string instantons as
gravitational instantons. This is more transparent once
the field variables are transformed into those of o model
variables to which the strings couple directly. The dila-
ton and the Kalb-Ramond gauge fields serve as a warp
factor and a spacetime torsion, respectively. A string
consistency of having nontrivial torsion provided by the
Kalb-Ramond field requires us to include a nontrivial di-
laton field at the same time. (Supersymmetry breaking
using Eguchi-Hanson gravitational instantons has been
proposed recently.”® However, these instantons have a
global topology that is not asymptotically Euclidean. In
this regard, it is not clear whether one should include the
Eguchi-Hanson instanton to the quantum level of super-
gravity theory. Thus, we find the proposed mechanism
less appealing than other possibilities with asymptotically
Euclidean instantons such as ours.)

Next, we consider the dilatino zero modes. From Eq.
(4.1), the dilatino wave function in the spacetime instan-

(4.11)
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ton background reads

SA(x)=VePl(1tys)e(x) . (4.12)

Therefore, we find two dilatino zero modes of positive
helicity in the spacetime string instanton background.
Half of the supersymmetry transformation annihilates the
instanton states.

Overall, we thus have two chiral gravitino zero modes
and two chiral dilatino zero modes, half of the number
one naively expects. (These numbers could have been de-
rived by explicitly solving the Dirac and the Rarita-
Schwinger equations. I checked them and found that the
number of fermionic zero modes agrees with the above
counting.) As shown above, the reduction of zero modes
by half is due to the self-duality that the spacetime string
instanton backgrounds provide for. Also, we observe a
definite relationship between the two chiralities of gravi-
tino and dilatino zero modes. Had we chosen a gauge of
€(x) orthogonal to the covariantly constant spinors, there
would be two gravitino zero modes but no dilatino zero
modes. On the other hand, if we had chosen a guage
such that e(x) is proportional to the covariantly constant
spinor, there would be no gravitino zero modes but two
dilatino zero modes.

Finally, we consider the spacetime wormhole back-
ground. Since the wormhole backgrounds are not self-
dual, we do not find any nontrivial solution of covariantly
constant spinor €y(x) to Eq. (4.7). Thus, we have four
gravitino zero modes. Similarly, we find four dilatino
zero modes, since there is no chiral projection. Since
wormholes generate four gravitino zero modes, we find
them not directly relevant to the possibility of dynamical
supersymmetry breaking.

V. LOW-ENERGY IMPLICATIONS
OF STRING INSTANTONS

What are the low-energy implications of these space-
time string instantons and wormholes? We observed that
the essential features of instantons and wormholes are ax-
ionic charges carried by them. This fact leads to several
intriguing consequences for low-energy physics: for in-
stance, a string confinement and a nonperturbative renor-
malization of superpotential.

A. String confinement

Recall that the instantons carry a nontrivial Kalb-
Ramond magnetic field. Once the instantons and/or
wormholes are turned on, the Kalb-Ramond vacuum is
“magnetically” disordered. Thus, the “electric” field flux
of the Kalb-Ramond gauge field gets confined. In partic-
ular, the four-dimensional Kalb-Ramond gauge theory
admits only a confinement phase for all values of cou-
pling constant, once the nonperturbative instanton effects
are taken into account. No free Kalb-Ramond gauge
field is a physical spectrum. The gauge theory sector de-
velops a nonperturbative mass gap through a Debye
screening. For pure Kalb-Ramond gauge theory in four
dimensions, this can be seen easily from the following ar-
gument. Let wus consider an order parameter

L 4[2*]=exp(i [ ;«d A) of the dual axion field d 4 =H*.
Recall that the dual axion field A possesses a global U(1)
symmetry, that is dual to the local U(1) symmetry of the
original Kalb-Ramond field. The order parameter of the
latter is a Wilson ‘‘surface” ‘W[E]=exp(isz). The
“world histories” = and =* are dual to each other. Let
us consider a topological linking correlation function
defined by

exp(i9,)=(0|W[Z]L ,[Z*]]0) . (5.1)
Since the Wilson “‘surface” measures the “magnetic” flux
of the Kalb-Ramond gauge field as the A4 field traverses
around, the two-point function ¢, in Eq. (5.1) is topologi-
cally determined by a mutual Gauss’ linking number and
the gauge group. Once the “magnetic” instanton fluctua-
tions are important, the global U(1) symmetry associated
with the A field is explicitly broken. Thus, the phase of
Eq. (5.1) changes appreciably only for a finite distance
along a dual link direction £*. This implies that the Wil-
son ‘“‘surface” shows a ‘““volume” law behavior, the right
behavior for the confinement phase of pure Kalb-
Ramond gauge theory. In terms of the pseudoscalar ax-
ion field A4, the “electric” instantons induce a domain
wall whose boundary is nothing but the closed string
L ,[2*]. This argument is applied to our case almost the
same, except for a small but significant modification due
to a nontrivial dilaton field as we shall see below.

Suppose a supersymmetric string sitting without the in-
stanton fluctuations was turned on. Since the superstring
also acts as a source of the Kalb-Ramond gauge field, the
Kalb-Ramond field around the string is radially sym-
metric and long ranged. Once the instanton fluctuations
are important, however, the radially symmetric Kalb-
Ramond field is no longer energetically favorable. The
Kalb-Ramond electric field collapses down to a domain
wall to form an electric flux surface. The energy of the
domain wall is the surface tension times the area. The
domain walls may form out of a single string or multiple
strings. Any oriented strings (they are the ones carrying
the Kalb-Ramond gauge charge) should be confined into
domain walls.

The confinement of superstrings to axionic domain
walls has been already suggested by Witten’ for the S
moduli field. We expect that the same phenomena arises
also from those instantons and wormholes composed out
of the T moduli fields. This is because both the S and T
moduli fields have Peccei-Quinn symmetries and cou-
plings in low-energy string theory. The Peccei-Quinn
scale of both moduli fields 1is naturally the
compactification scale. The spacetime string instantons
and/or wormholes give rise to “magnetic” disorder and a
nonperturbative confinement of strings into domain
walls. Thus, the string deconfinement phase transition is
directly related to the spontaneous compactification of
the extra six dimensions. (Recall that the pure Kalb-
Ramond gauge theory has a Coulomb phase if the space-
time dimension is larger than four. Furthermore, once
the strings are coupled to the Kalb-Ramond field, there
exists also a Higgs phase continuously connected to a
confinement phase.)
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We can estimate the domain-wall surface tension. If a
string defines one of the boundaries of the domain wall,
the surface tension and the string tension compete with
each other. The total energy is roughly

T2mR —umR?>~E(R) . (5.2)

The minimum of energy is at R ~ T /u. Since the string
tension T ~M?2,, while the surface tension u~MZ>Mp,, an
average radius of the confined string to domain wall is
about Mp /M*>>M_ ' Since the size is larger than the
compactification scale, the four-dimesnional approxima-
tion might be well justified. This string confinement is
largely independent of the type of underlying string
theories, details of compactification schemes, thus funda-
mental strings are intrinisically confined within a micro-
scopic scale.

However, in the above argument, we relied upon non-
perturbative physics of pure Kalb-Ramond gauge theory.
Once we take into account the nontrivial dilaton field
configuration, the story is quite modified. In Ref. 29, we
studied the modification of axion domain-wall structure
once the dilaton field is included. Unless there exists a
stable vacua to the dilaton field, we found that the dilaton
field induces an instability to the axionic domain wall.
The wall thickness is increased by a large factor. One
could think of the dilaton field as a Higgs field to Kalb-
Ramond gauge theory. The confinement phase of Kalb-
Ramond gauge theory is contaminated by the dilaton
field. Because of this, the wall tension is considerably re-
duced. The string confinement on a microscopic scale
around the compactification scale would arise only if
some unknown mechanism furnishes a vacuum expecta-
tion value to the dilaton field well before the Kalb-
Ramond dynamics is operative. One such possibility will
be discussed in the next subsection.

B. Nonperturbative breakdown of nonrenormalized theorem

The spacetime string instantons have another conse-
quence. Dine and Seiberg® proved a nonrenormalization
theorem of the moduli field superpotential to all finite or-
ders of string loop expansion. (A proof based upon mi-
croscopic analysis was completed by Martinec.”) Howev-
er, we will see that our spacetime string instantons give
rise to a nonperturbative breakdown of superpotential
nonrenormalization theorem. (In fact, Dine and
Seiberg®® already anticipated that some unknown space-
time string instantons might generate a nonperturbative
renormalization of the superpotential along the S moduli
direction.) The nonrenormalization theorem of the su-
perpotential in the four-dimensional effective Lagrangian
of string theory is based upon the analytic structure of
the possible superpotentiial W and a classical symmetry
associated with the dilaton and axion fields. If the four-
dimensional supersymmetry is not anomalous, the moduli
fields S and T should enter the effective Lagrangian in a
manifestly supersymmetric and analytic way. Scattering
amplitudes, with an insertion of the Kalb-Ramond vertex
operator at zero momentum, are easily shown to vanish®
(the polarization tensor is denoted by E ,,, ):

< c+ [0 E,, VXHTX"+iK -$y*)expliK -X) - - - >
K—0
=0 (5.3)

independent of the world-sheet topology and, thus, to all
finite orders of string loop expansions. This is because
the Kalb-Ramond vertex operator at zero momentum is a
total derivative on any compact world sheet. (The subtle-
ty associated with the zero-momentum limit is overcome
either by an analytic continuation or by the manifest su-
persymmetry form of the vertex operators.)

In Sec. II, we learned that a gauge symmetry of the
Kalb-Ramond field is equally well represented by a global
symmetry of the axion field in a pseudoscalar field repre-
sentation. Thus, the Peccei-Quinn symmetry associated
with the spacetime axion field ImS is valid to all finite or-
ders of string loop expansions. Since we assumed that the
spacetime supersymmetry is nonanomalous, the superpo-
tential should be an analytic function of the moduli fields
S or T. This implies that the superpotential is indepen-
dent of ReS as well and, thus, not renormalized to all
finite orders of string loop expansions.

Once the spacetime string instantons are included, the
story is different. Let us define a charge operator
aAssociated with the Peccei-Quinn symmetry
Q5= [d*XiA(1,X). If the spacetime string instanton
(wormhole) induces a modification of 8L to the low-
energy effective Lagrangian, the microscopic Peccei-
Quinn symmetry dictates that

[Q5,8L ]=Q8L o . (5.4)
Thus
SL < exp[iQA] . (5.5)

The effective operator induced by the anti-instanton
(wormhole) is a complex conjugate of Eq. (5.5). Further-
more, in Secs. III and IV, we calculated the action of the
spacetime instantons and wormholes. We refer to Egs.
(2.23) and (3.16). The asymptotic dilaton field
configuration denotes an expectation value in much the
same way as a 0 angle dependence originates from an ex-
pectation value of the axion field 4. Combining these
two contributions, we finally get

8L g=e” |0le® 104 fermion part)

=exp(—Q-S)F, - Fy . (5.6)
Here, we denoted the bosonic part of the chiral superfield
S by S, and yet-to-be determined fermion operators by
F.,a=1,...,2N. We emphasize that the fermions car-
ry no Kalb-Ramond charge. There is no more quantum
correction to this expression, thanks to the
nonanomalous supersymmetry.

To complete the derivation, we now count the fermion-
ic operators in Eq. (5.6). In a functional-integral formal-
ism, we calculate scattering amplitudes in the string in-
stanton or wormhole backgrounds to derive the low-
energy effective Lagrangian. The functional integral with
the instanton or wormhole background gives various bo-



536 SOO-JONG REY 43

sonic (metric, dilaton, and axion) and fermionic (gravitino
and dilatino) determinants. The contributions coming
from nonzero modes cancel out, due to the
nonanomalous spacetime supersymmetry. On the other
hand, there are uncanceled bosonic and fermonic zero
modes. Integration over four translational bosonic zero
modes restores energy-momentum conservation. We
have derived the fermionic zero modes in Sec. IV; there
exist two gravitino zero modes and two dilatino zero
modes for instanton backgrounds, and four gravitino zero
modes and four dilatino zero modes for wormhole back-
grounds. Thus, we find they contribute to the fermionic
operator insertions in Eq. (5.6). They constitute new
corrections to the low-energy effective Lagrangian com-
ing from the spacetime instantons or wormholes. [In the
case of spacetime wormholes, there may be additional
wormhole creation and annihilation operators multiplied
to Eq. (5.6).]

The above derivation shows that the spacetime instan-
tons induce a nonperturbative correction to the superpo-
tential for both S and 7 moduli fields. Of particular in-
terest is the correction of the S moduli field superpoten-
tial

W(S)=~ M3} exp(—27S) . (5.7

However, by itself, the scalar potential calculated from a
standard supergravity

Vo=exp(K)[K* 44V , W+WK ,)(V;W+WK )

—3|W|?] (5.8)

does not show a stable minimum at a finite value of the
dilaton ReS. As argued by Dine and Seiberg,’! the vacu-
um energy approaches zero as the dilaton field ReS “runs
away” to infinity. It is not clear if one can find nontrivial
minima at the strong-coupling regime or at the weak-
coupling regime at which the potential turns around posi-
tive along the dilaton field direction (a mechanism that
realizes analogous to the latter has been proposed by
Coleman®? in the context of spacetime topology change;
the zero cosmological constant (coupling constant associ-
ated with an identity operator) feels a deep, exponentially
attractive potential).

However, it is known that there exists another mecha-
nism to induce a nonperturbative correction to the super-
potential W(S): gluino condensation of the hidden Ej
gauge group of heterotic superstrings.!” This mechanism
is known to have its own problems too.

On the other hand, if we consider a combined effect of
both due to our string instanton and gluino condensation
in the gauge subgroup G €E;g in the heterotic super-
strings, the total superpotential reads

3
——5
28,

W(S)=M3, | Cyexp(—27S)+C,S exp

(5.9)

The first and the second terms come from the dilatino
and gluino condensations, respectively. The one-loop 8
function coefficient of the subgroup G € Ej is denoted by

Bo- The prefactors C; and C, in Eq. (5.9) are complex-
valued numerical coefficients. They may be obtained
from a careful evaluation of functional integrations for
dilatino and gluino bilinear operators in the spacetime
string instanton and Yang-Mills instanton backgrounds.
The relative phase between C; and C, generically takes
an arbitrary value. To see if there can be a nontrivial
minima of the dilaton potential, let us concentrate on
physics below the dilatino and gluino condensation
scales. One can calculate the dilaton potential using Egs.
(5.8) and (5.9). For the gauge subgroup G €Eg not too
small, one finds that the two exponential terms in Eq.
(5.9) compete with each other, if

|Cy/Cel >>1 and arg(C,/Cy)= . (5.10)
In this case, a minimum of the potential sets in:
477'30
(S)~ 3 lCd/Cg|>>l . (5.11)

Thus, the dilaton field gets a vacuum-expectation value in
a weak-coupling regime, and the instanton approxima-
tion is well justified. Since this idea depends upon the
conditions in Eq. (5.10), it remains to derive the prefac-
tors C; and C,.

Next, the induced superpotential for the 7" moduli field
takes a form

W(T) =~ Flexp(—2V37T) . (5.12)

The superpotential seems to break explicitly the noncom-
pact SU(1,1) symmetry of the original Lagrangian in Eq.
(1.1). In fact, the Peccei-Quinn symmetry is one of
SU(1,1) symmetry. The spacetime string instantons and
wormholes break not only the Peccei-Quinn symmetry
but also the whole noncompact SU(1,1) invariance. As it
stands, its subgroup SL(2,Z) appears also broken. Recall
that this is the modular group relating between the small
and large size of the internal compactified space. Similar
types of superpotential are also generated by world-sheet
string instantons.'>!3 However, their effects do not break
the modular symmetry since it is an exact symmetry to
all orders of string loop expansions. It is because the uni-
tarity of string perturbation theory is valid to all finite or-
ders. Thus, the nonperturbative superpotential generated
by world-sheet instantons is subject to modular symme-
try. On the other hand, it is not clear whether this is also
the case for the spacetime instantons. In fact, it is con-
ceivable that modular invariance is spontaneously broken
by the nonperturbative string effects. If so, this suggests
that the duality of the internal Calabi-Yau manifold is
spontaneously broken by spacetime string instantons. On
the other hand, it is also very possible that the apparent
violation of the SL(2,Z) duality symmetry by the super-
potential (5.12) is due to our approximation to use the
low-energy effective Lagrangian in the weak coupling re-
gime.

V1. DISCUSSIONS

In this paper, we studied two types of Euclidean solu-
tions of low-energy heterotic superstring theory: instan-
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tons and wormholes. Both solutions carry nonzero
Kalb-Ramond “magnetic” charges and nontrivial dilaton
field configurations. The instantons may arise from both
S and T moduli fields. From many physical considera-
tions, we find the self-dual string instantons more in-
teresting than the wormholes. This could be compared
again with Yang-Mills gauge theory. Yang-Mills merons
are singular classical solutions that are not stable against
instanton polarizations. Furthermore, the wormholes do
not provide chirality projection which is crucial to
dynamical supersymmetry breaking.

Since the spacetime string instanton solutions were de-
rived from the field-theory limit, it is of prime interest to
find conformal field theories that can be identified with
the instantons in the low-energy field theory limit. Not
only providing a full-fledged string theoretic investigation
of nonperturbative physics, such a conformal field theory
of instanton will certainly shed hints to several technical
issues. For example, little is known about the nature of
zero modes and the collective-coordinate quantizations
for topologically nontrivial configurations in string
theory.

We now discuss a few further intriguing points.

A. Analogy with the invisible-axionic strings

The underlying physics of the string spacetime instan-
tons apply equally well to the standard model with invisi-
ble axions.'® Suppose a theory indeed has a built-in or
dynamically generated Peccei-Quinn symmetry. After
the Peccei-Quinn symmetry is spontaneously broken, the
Goldstone boson and invisible axions show up in the
spectrum of the low-energy physics down to the QCD
scale. There, prominent QCD instanton fluctuation will
generate an axion potential V= f2m2(1—cosA4), and
break explicitly the nonlinearly realized Peccei-Quinn
symmetry A4 (x)— A (x)+const. The axion field thus be-
comes massive. Now suppose we had a single axionic
(thus global) string. Before the QCD instanton effects are
taken into account, the axion field emanated from the
string is cylindrically symmetric and is long ranged. The
axion field increases by 27 at a uniform rate as one
traverses a closed path around the string. Once the QCD
instantons make axions massive, this symmetric axion
field configuration is energetically less favorable. The ax-
ion field flux out of the string collapses down to a thin
sheet with a characteristic thickness of the order of the
inverse of QCD scale.

The analogy goes further. Let us imagine the QCD in-
stantons fluctuate in the axion vacuum. Since the axion
couples to the 6 term TrfF-F’, the anomalous equation

of motion of axion field reads

Vi (x)=3 0,6%(x —x,) . 6.1)

a

Here, the instantons are approximated by a pointlike
structure and their integrally quantized topological
charges are denoted by Q,. This is precisely the structure
of the instanton or wormhole solutions in Egs. (2.14) and
(3.14), for instance, Eq. (2.24). As we stressed in Sec. V,
the underlying physics is the “electrically” disordered ax-

ion vacuum. Thus, the axionic strings are boundaries of
axionic domain walls, much like the fundamental super-
strings are boundaries of the Kalb-Ramond domain
walls.

B. Self-duality of the instantons and Bogomolnyi bound

In Sec. II, we showed that the minimum action
configuration of dilaton and Kalb-Ramond fields satu-
rates the Bogomolnyi bound.!® This is indeed due to the
underlying supersymmetry, and the dilatino supersym-
metry transformation in Eq. (4.1) manifests saturation of
the bound. On the other hand, the S and T chiral
superfield sectors of the low-energy effective field theory
of superstrings could have been derived from the
compactification of type II A4 superstrings on a six-
dimensional Calabi-Yau manifold. This compactification
gives N =2 spacetime supersymmetry in four dimensions.
This implies that the S and T scalar field sector is univer-
sal and admits an extension to N =2 chiral supersym-
metry. On the other hand, N =2 supersymmetry algebra
is known to admit central charge extensions. Witten and
Olive®® showed that the central charge is nonzero in the
topologically nontrivial sectors, i.e., soliton sectors.
Furthermore, they showed that the mass bound of the
solitons are saturated even on a quantum level. From
this, we suspect that the saturation of Bogomolnyi bound,
the quantized Kalb-Ramond “magnetic’” charge as a to-
pological charge, and the chiral fermionic zero modes
could be understood from the Witten-Olive argument.
The result should be nothing but a positive action
theorem applied to a topologically nontrivial sector.

We argued in Sec. II that the underlying properties of
the spacetime string instantons are reminiscent of the
Prasad-Sommerfield limit in the non-Abelian magnetic
monopoles. This can be understood in yet another way
from the following argument. Suppose the dilatons get
massive by turning on some dilaton potential. This corre-
sponds to going away from the Prasad-Sommerfield limit
in the non-Abelian magnetic monopole through nonzero
Higgs potential. Now being massive, the dilaton ex-
change attraction becomes short ranged. The effective
range is an inverse of dilaton Compton wavelength.
Since the Kalb-Ramond gauge field interaction still
remains long ranged, the neutrality of multi-instanton or
anti-instantons does not hold any more. The instanton
gas gets balanced like a classical Coulomb gas, interact-
ing with long-range force. Self-dual configuration is criti-
cal in the sense that the instanton gas configuration is to-
pological, insensitive to positions of individual instan-
tons. The dilaton and Kalb-Ramond gauge field forces
cancel each other out. In the Prasad-Sommerfield limit
of non-Abelian magnetic monopoles, the exchange force
between the monopoles are balanced out between the
Higgs field and the gauge field. The transition from
Coulomb-like instanton gas to a “topological” instanton
gas corresponds to the Prasad-Sommerfield limit in our
instanton configurations.

This observation naturally leads to a speculation that
the self-duality of the dilaton and the Kalb-Ramond
gauge fields extends to other solitonic configurations in
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string theories. Dabholkar and Harvey!® wrote a very
relevant paper along this direction. They imagined a
closed cosmic-string state winding around one of the spa-
tial directions compactified on a circle. They showed
that the superstring tension is not renormalized in pertur-
bation theory, due to delicate cancellation among the
graviton, the dilaton, and the Kalb-Ramond field interac-
tions. This is a particularly natural soliton configuration
that the compactified string theory gives rise to. In fact,
the string tension nonrenormalization follows from an
N =2 extended supersymmetry algebra in three dimen-
sions in which the Witten-Olive central charge is the
winding number of the string around the compactified
spatial direction. The winding string of Dabholkar and
Harvey is not the same kind of configuration as the string
instanton self-duality equation of Eq. (2.6). In fact, their
winding string possesses a nontrivial Kalb-Ramond
“electric” field as opposed to the “magnetic” field of our

string instantons. Thus, it would be interesting to derive
a Bogomolnyi bound associated with the ‘electric”
Kalb-Ramond field, from which the winding string
configuration would follow. Work along these directions
is in progress.
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