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In this work we explicitly demonstrate the equivalence of covariant (Feynman) perturbation
theory with noncovariant light-front perturbation theory (LFPT) for lowest-order self-energy
corrections in the (1+1)-dimensional Yukawa model. We also perform calculations in old-
fashioned perturbation theory in the infinite-momentum frame (OFPT ) to elucidate the differences
between LFPT and OFPT

I. INTRODUCTION

Interest in the study of quantum-field-theory models in
the light-front formalism has recently grown. Most stud-
ies employ Hamiltonian diagonalization in a Fock-space
basis. The realization of nonperturbative renormaliza-
tion in a manifestly noncovariant formalism is an essen-
tial feature of such studies. To tackle this issue, it is pru-
dent to first understand perturbative renormalization in
the light-front formalism. In this work we perform the
lowest-order fermion and boson mass corrections in the
(1+1)-dimensional Yukawa model using light-front per-
turbation theory and show their equivalence with the cor-
responding covariant results. Surprisingly, such calcula-
tions have never been performed in a straightforward
manner.

The light-front formalism was invented by Dirac' and
rediscovered by Weinberg in the guise of old-fashioned
perturbation theory in the infinite-momentum frame
(OFPT„). For scalar field models light-front perturba-
tion theory (LFPT) and OPFT are equivalent. For
theories involving fermions, there are subtle differences as
was first pointed out by Susskind. Chang and Ma were
the first to discuss second-order self-energies and the
magnetic moment in QED in covariant perturbation
theory using light-cone variables. They did not, however,
carry out their calculation in light-front field theory.
Drell, Levy, and Yan discussed lowest-order fermion
mass and wave-function renormalization for a (3+1)-
dimensional pseudoscalar Yukawa model in the frame-
work of OFPT . Chang and Yan discuss second-order
self-energies and vertex correction for the (3+ 1)-
dimensional Yukawa model in the context of light-front
Feynman rules. They take the field operators to be nor-
mal ordered and hence do not get contributions from the
instantaneous interactions. In this case the unrenormal-
ized amplitudes are noncovariant and more divergent
than corresponding Feynman amplitudes. We comment
on this below. Brodsky, Roskies, and Suaya have per-
formed lowest-order calculations in QED in the frame-
work of QFPT . Their calculation, similar to that of
Drell, Levy, and Yan, involves subtle limiting pro-
cedures that do not clearly generalize to higher orders.

Bouchiat, Fayet, and Sourlas have discussed lowest-
order radiative corrections in the light-front perturbation
theory. However, their regularization involves the use of
an indefinite metric (Pauli-Villars type), whereas we regu-
larize without invoking the indefinite-metric formalism.
Their renormalization procedure cannot, to our
knowledge, be employed in nonperturbative calculations.
Further, their evaluation of the instantaneous contribu-
tion appears to be somewhat involved compared to our
straightforward calculations. To the best of our
knowledge, a straightforward demonstration of the
equivalence of covariant perturbation theory and LFPT
for unrenormalized amplitudes is lacking in the litera-
ture.

The light-front Hamiltonian exhibits spurious light-
front infrared singularities in contrast with its equal-time
counterpart. Thus even the tree-level Hamiltonian needs
regularization in the light-front formalism. First, we pro-
vide a method for regularization. In the regulated theory
separate contributions are noncovariant, but the total
contribution is covariant once the instantaneous interac-
tions are taken into account. For the unrenormalized
amplitudes to be the same in Feynman theory and LFPT,
infrared and ultraviolet regulators must be of a special
form, which can be easily deduced from the equal-time
theory. In a renormalizable theory one is free to allow
cutofFs to approach their limits in any desired manner
without inducing any ambiguities other than those al-
ways encountered in renormalization.

II. SPURIOUS LIGHT-FRONT
SINGULARITIES AND THEIR REGULARIZATION

The light-front Hamiltonian in the plane-wave basis for
the (1+1)-dimensional Yukawa model presented in the
Appendix exhibits singularities. It is worthwhile to
remember that in deriving this Hamiltonian we have al-
ready introduced an infrared cutoft to eliminate the point
k+ =0. Thereby, we have eliminated the vertices respon-
sible for the occurrence of disconnected vacuum dia-
grams. Normal ordering the Hamiltonian, we have gen-
erated self-energy contributions at the tree level, which
have been named "self-induced inertias" in the litera-
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k+= (k +k) .
1

u'2
(2.1)

For a free particle of mass m, k (m +k )', where k is
the momentum. Thus k+ =(1/&2)[(m +k )' +k].
In the equal-time formulation, the Geld operator for a bo-
son field, for example is given by

P(x) = f [a (k)e '""+at(k)e'""]
—oo 2772COk

ture. Let us now discuss how to handle the singularities
we encounter in the light-front Hamiltonian. We intro-
duce a regularization in the continuum version. This
method has been utilized before in the study of two-
dimensional P [(P )2] theory. '

Let us recall the formal definition of k+:

III. LOWEST-ORDER LOOP CORRECTIONS

In this section we evaluate the lowest-order loop
corrections to the fermion and boson masses in light-
front perturbation theory and demonstrate their
equivalence with Feynman perturbation theory results.
Two major ingredients in this demonstration are (1) using
Chang s prescription for regulating the spurious light-
front infrared divergence' and (2) keeping the extra
terms (i.e., the self-induced inertias) arising from operator
ordering in the interaction terms.

A. Fermion mass correction

1. Feynman calculation

To lowest order the fermion self-energy is

= lim
dk [a (k)e '"'+a (k)e'""],

A~ oo —A 2&2COk
(2.2)

d g pX(k)=ik, f 6 (q)b, (k —q),
(2m. )

where

(3.1)

where we have introduced the ultraviolet cutoff A. Thus,
for the light-front momentum k+, its limiting values are
given by

and

1
Gf(q) =

g —mf+ie
(3.2)

a11d

2

k+,„= lim — 2A+
A~co 2

(2.3a) b, (k)= 1

—mb +)Q

The lowest-order mass correction is given by

(3.3)

k;„=lim- =1 m
V'2 2A

(2.3b)

5mf =u(k)X(k)u (k), (3.4)

where u (k) is an on-mass-shell spinor. A straightforward
calculation leads to

The limit A —+ ~ is to be taken after performing in-
tegrations over the loop momenta. By this procedure we
have removed the divergence due to the boson and fer-
mion "zero mode. " We are now left with the singulari-
ties in the instantaneous inertias of the form
1/(k,+ —kz+ ). This singularity has the principal-value
prescription.

With our prescriptions we have regulated the spurious
divergences in the light-front theory. We are left with
the original divergences which are present in the covari-
ant theory. There is no need to relate the two light-front
cutoffs as in Eq. (2.3), if one does not want to compare
divergences in LFPT and covariant perturbation theory.
However, it is necessary to relate cutoffs which regulate
self-induced inertias and those regulating divergent loop
integrations. The consideration of chiral symmetry puts
further constraints on the cutoffs that are beyond the
scope of this article.

It is important to note that covariant theory also has
divergences associated with disconnected vacuum dia-
grams. Our main motivation is to investigate in a
Tamm-Dancoff spirit" the spectra of field theories that
do not involve the phenomena of symmetry breaking. To
implement this numerically it is essential to eliminate the
disconnected vacuum diagrams. The regulator prescrip-
tion we use achieves this aim for massive theories under
present consideration.

(1+x)mf
5mf = dX

4m. mf o (1—x) mf+xmb
(3.5)

2. LFPT calculation

The interaction P~ (see the Appendix) used in second
order gives the contribution coming from one-
boson —one-fermion intermediate states. A straightfor-
ward evaluation leads to

dx (1+x)
5m a= — m

4~ x m '(1—x)'+ m 'xmf x mbx
(3.6)

The lower limit of integration is x;„=(1/&2)(mf/
2AP+ ), and the upper limit of integration is
x,„=1 —(1/&2)(mt, /2AP+), where P+ is the momen-
tum of the initial fermion and A is the ultraviolet cutoff.
Using the fact that

5mf(a)=(mf+5mf ) mf 2mf5mf (3.7)

we get

dx mf'(1+x)'
5mf(a) =-

47T 2mf x mf 1 x +mbx
(3.8)

We note that we have removed the cutoffs, and this is a
covariant, finite result.
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which can be rewritten as

5mf(a) =-
4m

] 4mf mb
2 2

dx
2mf o mf(1 —x) +mbx

mf2
ln

2mf 2v'2AP+ ' (3.9)

()A, 1 pdx 1

4 2m x 1 —x

The lower limit of integration is x;„=(I/&2)(mb/
2AP + ), and the upper limit of integration is

x,„=(1/&2P+ )(2A+m&/2A). This yields

(3.10)

where we have separated out the noncovariant divergent
term. P+ is the momentum of the initial fermion. How-
ever, this is not the whole story. To order A, we also
have the contribution coming from the fermion self-
inertia, which when evaluated using our prescriptions for
regularization is given by

Thus the lowest-order shift is logarithmically divergent,
but covariant.

2. LFPT calculation

The interaction P~ used in second order gives the con-
tribution from intermediate states containing one
fermion-antifermion pair. A straightforward calculation
gives

5 2( )= A' dx (1 —2x)'
(316)

4~ x (1 —x) m„'x(1 —x) —mf

where the lower limit of integration is x;„=( 1/
&2)(mf/2AP+) and the upper limit of integration is

x,„=1 —x;„.This yields

mb —4m f g2 mf
2 2 2

5mb(a) = dx + ln2
4~ o mbx ( 1 x) mf —2~— &2AP +

(3.17)

1 mb
5m (b) =- ln

4m 2mf 2V'2AP+

Using

(3.11)
Here P+ is the light-cone momentum of the initial boson.
Thus the contribution is noncovariant and divergent. To
the same order in A. , we also have the contribution from
the boson self-inertia:

mb ~ mb —2(1—x)mfln, = dx
2mf o mf(1 —x) +mqx

(3.12)
1

5mb(b) = Pf dx
4m. 1 —x

1

1+x (3.18)

now

5mf =5mf(a)+5mf(b)

mf (1+x)
X

24~ mf o mf(l —x) +m&x
(3.13) (3.19)

with the lower limit of integration x;„=(1/
&2)(mf /2AP+ ) and the upper limit of integration
x,„=( 1/&2P + )(2A+ mf /2A). Thus

5mb(b) = — ln
2 2P+

which agrees with the covariant calculation.
It is important to note that the individual contributions

to fermion mass corrections are noncovariant in LFPT.
They are also divergent. Thus, if we had ignored the
self-induced inertia, we would need a noncovariant, diver-
gent counterterm to make the fermion mass finite.

B. Boson mass correction

A
ln

271

2mf —
—,mb

dx
2 22' o x (1—x)mb —mf

(3.15)

1. Feynman calculation

To lowest order the boson self-energy is

d2k Tr(k +mf )(k +g+mf )
II(q) = —A.

(2m) (k mf +i@)[(k+q)—mf +i E]—
2

2 2 ~ f2
I

(3.14)

The lowest-order boson mass shift is given by

5mb =II(q =mb)

This is again a noncovariant contribution. Adding the
two contributions, we get

5mb =5mb(a)+5mb(b)

mf ) 2mf 2 mb
2 i 2

ln —,(3.20)
A o mbx(1 —x)—mf

which is exactly the Feynman result.
Note that the individual contributions in LFPT are

noncovariant, whereas the sum is covariant as we expect.
If we had ignored the self-induced inertia, we would need
a divergent noncovariant counterterm to make the boson
mass finite.

Thus we have explicitly seen that LFPT is able to
reproduce the covariant results. In Sec. IV we contrast
these calculations with those in the OFPT„.

IV. OFPT CALCULATIONS

The Hamiltonian for the (1+1)-dimensional Yukawa
model in equal-time formalism is presented in the Appen-
dix. In this section we calculate the second-order fer-
mion and boson mass shifts in OFPT using this Hamil-
tonian. We then take the infinite-momentum limit of
these expressions to compare and contrast OFPT with
LFPT. One of our main interests is the fate of discon-
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nected vacuum diagrams in the infinite-momentum
frame. We find that they do not vanish in the infinite-
momentum limit precisely because they are frame in-
dependent. Further, the OFPT expressions are
treacherous, and there are various subtle cancellations.
The number of Fock-space states needed to generate co-
variant results is larger in OFPT than in LFPT. These
facts crucially diiT'erentiate between LFPT and OFPT
for practical nonperturbative calculations.

A. Fermion mass

The interaction Hamiltonian Hv in second order gives
a contribution to the energy shift of the fermion coming
from one-boson —one-fermion intermediate states:

5E/ b= lim f dk
27K Ep A oo —A 2CO p )tt Eg

u (P)u (k)u (k)u (P)

(4.1)

Here P is the momentum of the initial nucleon,
Ek=(m&+k )'~ and cok=(mb+k )'~ Note th. at this
is a noncovariant but Pnite result. Now we let P~ ~.
Put k =xP with A/P &x —& A/P. Note that we have to
take the limit A —+ ~ before we take the limit P~ ~.
We split the integral into several pieces and evaluate each
separately:

5E//&& ( disconnected )

fdk fdk™~/ I
7T Ek EI . 2e)~+

v(k')u (k)u (k)v (k')
~k+k'+Ek+Ek' (4.2)

Note that this is highly divergent but independent of p (a
covariant contribution) and survives the P~&m limit.
The connected piece is

5E/I/b ( connected )

dkf ~ 1 m/ v(k)u (P)u(P)v (k)
—A 2&p+@ Ek Ep+E& +~p+

(4.3)

This contribution is evidently nonco variant. It is
important to note that 5E&//b (connected) and

5E/&/„(disconnected) individually violate the Pauli
exclusion principle, but their sum does not.
5E///b (disconnected) is a purely vacuum correction,
which is to be removed by readjusting the vacuum ener-
gy. This is easily done as long as one is performing ana-
lytic calculations. The 5E&&&b (connected) contribution
can be evaluated as follows. Put k = —xP and again split
up the integral, remembering that we have to let A —+ ~
before we let P~ ~:

A/p 0 1 —e 1+a A/p

(a) A/P &x &—0.

1 1
6m = dx

4~ 2m& wet x(1—x)—
(b) —e&x (e:

1 1
5m lim P dx

4m 2m I' ~ —e (m ~+x ~p~)'~~mI

(c) e&x &1:

5mf ~0 o

(b) 0&x (1—e:

1 —e
5m dx

4m 2m& 0 1 —x

(c) 1 —e &x & 1+e:
1 1

5m = P dx
4m' 2m —e (m +x p )f

(d) 1+e & x & A /P:
m&(1+x)

5m~ =—
4~ 2mI ~ x m& 1 —x +mbx 6m~ =— 1 ~/p 1

dx
4~ 2mf 1+6 x 1 —x

(d) 1&x & A/P:

6m~~0 .

Thus taking the limit P~ ~ has made the contribution
from one-fermion —one-boson states singular in various
kinematic domains. However, this is not the whole story.
Because of bda and a d b terms in the Hamiltonian, a
second-order contribution also comes from two-
fermion —one-antifermion —one-boson intermediate states.
This contribution is

5EII/& =
5E/&/& ( disconnected ) + 5E&&&b ( connected ),

Adding all the contributions and using

1 4e P
( 2+ 2/p2)1/2 2

mb mb

we recover the covariant result.

B. Boson mass

The contribution to the energy shift of the one-boson
state coming from one-fermion —one-antifermion inter-
mediate states is
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16E -= lim
2~ 2cop ~-

X dkf mf mf
Ek EI

X
U(P —k)u (k)u(k)U (P —k)

~I —Ek —EJ —~
(4.4)

Here P is the momentum of the initial boson. Note that
this contribution is noncovariant. By multiplying Eff by
2coz we obtain the mass shift 6mb. Now we wish to take
the P~ 0o limit. Note that we take the limit A~ ~ first
and then let P~ ~. Put k =xP with —A/P (x & A/P.

(b) —e&x &e:

5mb~0 .

(c) e&x & 1 —e':

5mb~0 .

(d) 1 —e&x & 1+e'

5mb~0 .

(e) 1+@(x(A/P:

2nm,'= — f dx—
4'll 1+e x

(a) A/P—&x & —e:
k2 1

4' —w/s x

(b) —e&x &e:

1
6mb = lim dx

4n r ~ —e (m 2+x ~P~)~~~mf

(c) 6(x (1 e:

6mb = m
dx (2x —1)

4~ f e x (1—x) m'x (1 x) mf— —

(d) 1 —e&x & 1+e'

+ 1
6mb = — P dx

4~ — (m'+x'P')'"mf x

(e) 1+@&x (A/P:

f dx-
4n —w/p x

Adding all the contributions, the frame dependence drops
out, and we recover the covariant result.

Note that (1) the OFPT„result agrees with the covari-
ant result only after several delicate cancellations, and (2)
the disconnected vacuum contributions of time-ordered
perturbation theory survive the P~ 0o limit precisely be-
cause they are independent of the frame of reference.
Thus the readjustment of the vacuum energy is still need-
ed in the OFPT calculation.

V. CONCLUSIONS
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APPENDIX

Equal-time case

The Hamiltonian is given by

(4.5) H =Hf„,+HV, (A 1)

where k'= —(P +k). Put k = xP. —

(a) —A/P &x & —e: Hf„, = f Ek[b (k)b(k)+d (k)d(k)]—~ 2~ Ek

1
6m b

— dx
4~ —w/s 1 —x

+ f co„at(k)a (k),—oo 2772COI
(A2)
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H~= f dk, f dkz f [bt(k, )b(kz) a(k 3)u(k, )u(k 2)5(k, —k2 —k3)
2m. Ek EI, 2m2cop

1 2 3

+bt(k, )b (kz)a (k3)u(k, )u(k2)5(k, —kz+k3)
—d ( kz)d( k, ) a( k3) v( k, )v(k2)5(k, —kz+k3)
—dt(k~)d(k, )a (k, )v(k, )v(k~)5(k, k2 ——k, )

+ bt(k, )d (k2)a(k3)u(k, )v(k2)5(k, +kz —k3)

+d(k, )b (k~)a (k3)V(k, )u(k~)5(k, +k2 —k3)

+b (k, )dt(k2)a (k3)u(k, )v(k2)5(k, +k~+k3)

+d (k, )b (kz)a (k3)v(k, )u(k2)5(k, +kz+k3)] .

Note that Hz changes particle number by 1.

The light-front Hamiltonian is

Light front case-

P =PM+P~ +PI; +P~

Here

PM = f a (k,+ )a(k~+ ) mI, + a(k,+ ) + f b (k,+ )b(k,+ ) mf+ /3(k,+ )

+ ' d'(k~+)d(k~+) m'+ y(k,+)
k+ ' ' 2k+ 4~ (A5)

with

a(k,+ )=8f dk~+
1

k~++k2+

/3(k,+ )=Pf dk2
k2+ k,+ —k ~+

y(k, )= dk+ k,+
(AS)

The terms arising from normal ordering, u, /3, and y, have been called the "self-induced inertias" in the literature. The
second term of P is

mf k dk,+ dk 2+ dk 3+

4& k + 1/2 2 2k+ k+ 1/2

X [b ( k,+ )b ( k,+ )a ( k ~+ ) +b ( k,+ )b ( k,+ )a t( k ~+ ) ]5(k,+ —k ~+ —k 3+ ) +—
1 3

+[d (k,+ )d(k3 )a(k2+ )+d (k3+ )d(k,+ )a (k2 )]5(k,+ —kz+ —k3+ ) +1 1

1 3

+ [b (k,+ )d (k 3+ )a (k ~ )+ d (k 3+ )b (k,+ )a (k 2+ ) ]5(k,+ +k 3+ —k 2+ )
1 3

Note that Pz changes particle number by 1. The third term of P is

(A9)
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dk 1+ dk+ dk 3+ dk4+

"-4-~(k..) ~2.2k. J2.2k,-~(k. )

X [b (k,+ )b(k~+ )a(k2+ )a(k3 )+bt(k4+ )b(k, )at(k3+ )at(k2+ )]

5(k+ —k+ —k,+ —k )
+[dt(k4+ )d(k,+ )a(kz+ )a(k3+ )+dt(k,+ )d(k4+ )at(k3+ )at(k2+ )]

4 3

+b (k+ )d (k+ )a (k+ )a(k+ )5(k++k+ —k++k+ ) +1 1

k+ —k+ k++k+
1 2 1 3

+d(k4+ )b(k&+ )at(k&+ )a(k3+ )5(k3++k4+ —kz++k&+ ) +1 1
(A10)

Note that PF changes particle number by 2. The fourth term of P is

dk,+ dk 2+ dk 3+ dk 4+

4 + 1/2 + + + 1/2

X b (k+)b(k+)a (k )a(k+)6(k+ —k+ —k++k+) +1 1
1 4 2 3 2 4 3 1

4 2 3 4

+d (k+ )d(k+ )a (k+ )a(k+ )6(k+ —k+ —k++k+ ) +1 1
4 1 2 3 4 3 1 2 k+ k+ k+ +0+

1 2 2 4

5(k3+ —k4+ —k, +k2+ )+ [b (k,+ )d (k4+ )a(kz+ )a(k3+ )+d (k~ )b (k,+ )a (k3+ )a (k2+ )]

(A11)

Pz changes particle number by 0. Note that if we had defined P to be a normal-ordered Hamiltonian to begin with
(just as the free-particle Hamiltonian), the "self-induced inertias" would be absent from the Hamiltonian.
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