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A solution to the issue of time in quantum gravity is proposed. The hypothesis that time is
not defined at the fundamental level (at the Planck scale) is considered. A natural extension of
canonical Heisenberg-picture quantum mechanics is defined. It is shown that this extension is
well defined and can be used to describe the “non-Schrédinger regime,” in which a fundamental
time variable is not defined. This conclusion rests on a detailed analysis of which quantities are
the physical observables of the theory; a main technical result of the paper is the identification of
a class of gauge-invariant observables that can describe the (observable) evolution in the absence
of a fundamental definition of time. The choice of the scalar product and the interpretation of
the wave function are carefully discussed. The physical interpretation of the extreme “no time”

quantum gravitational physics is considered.

I. INTRODUCTION

A. A timeless problem

A major conceptual problem in quantum gravity! is
the issue of what time is, and how it has to be treated in
the formalism. The importance of this issue was recog-
nized at the beginning of the history of quantum gravity,?
but the problem is still unresolved and has recently re-
ceived increasing attention®. The controversy about time
in quantum gravity does not refer to a uniquely defined
problem; the quarrel has been over the questions even
more than over the answers.*~17 In this paper we propose
a point of view on the puzzle and a physical hypothesis
for its solution.

The physical hypothesis that we put forward is the ab-
sence of a well-defined concept of time at the fundamental
level.

We shall provide a precise mathematical form of this
hypothesis. For the moment, we may illustrate it as fol-
lows. We suggest that at the Planck scale dynamical sys-
tems cannot be described as evolving in a universal time
quantity ¢. More precisely, they cannot be described as
Hamiltonian systems in the strict sense. Instead, evolu-
tion may only be defined with respect to physical clock
variables.

As will be discussed, this revised concept of time is,
in a sense, implicit in classical general relativity. In this
paper, we show that quantum mechanics can be natu-
rally extended in order to incorporate it. The idea is not
new (actually, it is quite old: “Tempus item per se non
est ...”18); it is implicit in several works (see for instance
Refs. 2, 5,7, 9, and 17). But to our knowledge it has

never been defined and studied in detail.
The main assertion of this paper is that there is a nat-

ural extension of canonical Heisenberg-picture quantum
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mechanics, which remains well defined in the absence of a
well-defined Schrodinger equation, and in the absence of
a fundamental time. This extension is well-defined both
in terms of the coherence of the formalism, and from the
point of view of the viability of the standard probabilistic
interpretation.

The key step that allows us to define this extension is a
technical result concerning the observables of the theory.
The result is that, even in the absence of a fundamen-
tal time and of an exact Schrodinger equation, there are
gauge-invariant observables (commuting with the Hamil-
tonian constraint) which describe evolution with respect
to physical clocks. These observables are self-adjoint
operators on the space of the solutions of the Wheeler-
DeWitt equation.

Thus, the solution we propose to the time issue in
quantum gravity is the following. At the fundamen-
tal level, there is no absolute time in terms of which a
Schrédinger equation could be defined. The fundamental
theory is described by the extended Heisenberg-picture
canonical quantum mechanics, equipped with the stan-
dard probabilistic interpretation. Evolution with respect
to physical clocks is described by self-adjoint operators
corresponding to the observables we mentioned.?

In the course of the paper, this picture will be moti-
vated, detailed, and shown to be consistent. Of course,
only a future complete quantum gravity theory can es-
tablish if it is also realistic.

The problem of time arises in the canonical formulation
of the theory as follows. In quantum general relativity
(as in any diffeomorphism-invariant quantum field the-
ory), the Schrédinger equation is replaced by a Wheeler-
DeWitt equation, in which the time coordinate has disap-
peared from the formalism. An accepted interpretation
of this fact is that physical time has to be identified
with one of the internal degrees of freedom of the theory
itself (internal time).* Evolution “in time” is identified
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with evolution with respect to this internal time. We fol-
low this interpretation. In this philosophy, it has been
shown®613:14 that a Schrodinger equation may emerge
from the Wheeler-DeWitt equation.

However, it is very likely that, for any choice of the
internal time, only an approzimate Schrédinger equation
emerges. In other words, the evolution in the internal
time is described by a Schrodinger equation only within
some approximation. This situation is satisfactory as far
as the connection between the theory and the world that
we see is concerned. In fact, whatever experiment we may
perform, we are always well inside this Schrédinger ap-
proximation. But a theory that makes sense only within
an approximation is not a satisfactory theory. Thus, the
following question is relevant. Does the theory make
sense beyond the Schrodinger approximation?

If one attempts to take the theory seriously beyond
the Schrodinger approximation, several difficulties arise.
Just to mention one of them, if the Schréodinger equation
is valid only to the first approximation, then the norm of
the state is only approximately conserved. Can a prob-
abilistic interpretation be maintained if the norm is not
exactly conserved?

Different attitudes towards the physics of the Wheeler-
DeWitt equation outside the Schrédinger approximation
can be found in the literature. An illuminating discus-
sion on the disagreements on the issue of time is given
in Ref.19. Here, we quote some of these attitudes; the
list and the references are exemplary only and are by no
means exhaustive.

(a) The theory makes sense only if an “exact internal
time” is found such that an exact (rather than approx-
imate) Schrodinger equation holds.?® In this case, there
would not be any non-Schrodinger regime.

(b) The theory outside the Schroédinger regime re-
quires modifications of the basic structure of quantum
mechanics; for instance, we should use infinite norm
states, or give up canonical (i.e., Hilbert space) quantum
mechanics.”

(c) Because of these difficulties, a quantum-mechanical
theory of the gravitational field does not make sense, and
a radical revision of the basic ideas of quantum mechanics
is needed for quantum gravity.?!

(d) Standard quantum mechanics, suitably inter-
preted, can be used also for the non-Schrodinger regime.?

The solution we propose in this paper is more or less
distinct from the ones listed. We suggest that the basic
structure of canonical quantum mechanics, namely, the
Hilbert space of states, self-adjoint operators represent-
ing observables, probabilistic interpretation, and wave
function collapse, may still accommodate quantum grav-
itational physics. An exact internal time is not required,
nor particularly relevant for the quantization. Rather,
it is the concept of time itself that needs to be revised.
The formalism of classical mechanics (as we will eluci-
date) is already capable of accommodating this revised
concept of time. Canonical quantum mechanics, in turn,
can be very naturally extended in order to incorporate

this revised concept of time.

For clarity, let us say that here we do not address the
problem of the existence of an exact internal time in gen-
eral relativity. Instead, we assume, first, that a way to
obtain an approximate description of the world as we see
it (with time) can be extracted from the theory; second,
that this description is valid only within the approxima-
tion. As far as the problem of the choice of the internal
time is concerned, we refer to the literature,®® and in
particular to the recent work of Ashtekar on the defini-
tion of an internal time in the weak-field limit.® See also
the works on the Machian cosmological time!* and on
the observables in general relativity.!®

The discussion in the present paper is relevant not only
for general relativity, but also for any generally covariant
field theory. The same problems we treat here appear
in the topological quantum field theories?? and in any
formulation of string theory that does not assume a fixed
background metric on the target space.

The paper is organized as follows. In Sec. I B we intro-
duce the basic physical hypothesis. In Sec. IC we mo-
tivate this hypothesis by discussing the concept of time
in classical general relativity. In Sec. IT A, we show that
there is a formulation of classical mechanics which allows
us to treat dynamical systems without making reference
to universal time. In Sec. II B, we discuss the observables
that describe the evolution with respect to clock time. In
Sec. IIT A, the quantum mechanics of the systems with-
out time is defined. In Sec. III B, two technical issues are
investigated: the quantization procedure and the prob-
lem of choosing the scalar product. Sec. IIIC extends
the results on the observables that describe evolution in
clock time to the quantum domain. In Sec. IV A, the
proposed solution to the time issue in quantum gravity
is summarized. Section IV B contains a discussion of the
difficulties of this solution and some speculations. Sec-
tion IV C contains the conclusions.

There are three papers which are strictly related to the
present one and complementary to it. In the first one,!®
a model with approximate Schrédinger equation and no
absolute time is introduced. Its quantization is a concrete
example of the ideas exhibited in the present paper. In
the other two papers,'® the problem of the observables of
general relativity is studied, respectively, in the classical
and quantum contexts. Gauge-invariant observables of
the kind introduced in this paper are constructed.

B. Clocks and absolute time

Perception of the flow of time is probably an elemen-
tary experience. In Newtonian physics, as well as in stan-
dard quantum mechanics, it is assumed that this experi-
ence corresponds to the existence of an absolute quantity,
the time. This quantity, namely, the time of Newtonian,
Hamiltonain, or quantum mechanics, will be denoted ¢ .

To measure t we use clocks. A clock is a system with
a variable, for instance the position of a hand, which has
a simple behavior in ¢. In this paper, we shall denote a
clock variable (the position of the hand) as T ; we shall
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denote variables of different clocks as 7", 7", 7", ... . Good
clocks may have, for instance, a linear behavior in ¢:

T(t) = at. (1)

It is an elementary-physics-course observation that we
never really measure t; rather, we always measure 7T's.
The value of a physical quantity @, measured at a time
t, is denoted Q(t). Since time is determined by measuring
a clock variable T', what is actually measured is not Q(t)
and T'(t), but only the combined quantity Q(7"). Thus, ¢
does not ever appear in laboratory measurements.

The observation that we never reach ¢ in the exper-
iments, but we only reach T,7”,7”,..., is not a triv-
ial observation. Since ¢ cannot be observed, Eq.(1) can
never be verified. We check clocks one against the other;
namely, we measure T(T"), T'(T"), ..., and so on. Cor-
respondingly, the problem of constructing clocks has his-
torically been, and still is, a delicate problem. Galileo
used his pulse to measure the oscillation period of a pen-
dulum and to discover that it was isochronous. A few
years later doctors were using pendulums to measure the
periods of people’s pulses and to check whether they were
isochronous.

Indeed, what we have is a large collection of clocks.
The clocks agree one with the other within certain un-
avoidable experimental errors. Up to a certain approx-
imation, they provide a reasonable standard, against
which dynamical theories and new clocks can be checked.
But anytime there is need of measuring time at smaller
scales, experimentalists find themselves in the same sit-
uation as Galileo: the pulse as measure for the pendu-
lum and the pendulum as measure for the pulse. From
the experimental point of view, ¢ can be defined only as
the idealized extrapolation of the (concurring) value of a
large ensemble of clock variables.

If t can never be reached experimentally, still it plays a
major role in the conceptual framework of Newtonian and
quantum mechanics. Indeed, Newton or Hamilton equa-
tions, as well as the Schrodinger equation, are grounded
on the underlying assumption that there exists a ¢, in
which the dynamics is defined.

There are many basic differences between the abso-
lute time variable ¢ and the clock variables T, 7", T, ... .
Any realistic physical clock variable satisfies Eq.(1) only
within some approximation. ¢ is assumed to run from
minus infinity to plus infinity; clock variables may vary
within a bounded interval. In general, the agreement be-
tween the clock variable T' and the assumed absolute ¢
is taken for granted only down to a certain scale. Be-
low that scale, higher-order physical effects, systematic
or statistical errors and quantum fluctuations (Hartle has
made a detailed study of the dynamics of clocks under
various circumstances, concluding that ideal clocks ca-
pable of surviving quantum gravitational fluctuations do
not exist”) jeopardize the performance of any clock: If
I look carefully at the hand of my watch, I see that it
proceeds in little jumps. These differences between ¢ and
T imply that, given a variable Q(¢) and a clock variable

T(t), in general it is not possible to describe the evolution
in clock time Q(7") in Hamiltonian form.

Given these observations, we may now state the ba-
sic physical idea of this paper. We put forward the
hypothesis that the idealized absolute Hamiltonian, or
Schrodinger, time ¢ cannot be defined down to the Planck
scale. At the Planck scale it is still possible to talk of the
clock variables T, 7Y, T", ..., but it does not make sense
to talk of the absolute time ¢.

More precisely, we suggest that the theoretical frame-
work needed for understanding quantum gravity requires
that one abandon the idea of the existence of the univer-
sal quantity ¢, of which the specific clock variables are ap-
proximations. Only the quantities Q(7"), Q(1"), ... are de-
fined at the fundamental level. Since the evolution in the
clock times does not admit a Hamiltonian description,
similarly, we do not expect that a Schrodinger-equation
description could be possible.

In the next section we motivate this hypothesis. In the
following ones, we show that the theoretical instruments
for handling the absence of ¢ already exist in classical
physics (Sec. II ), and can be easily constructed in quan-
tum physics (Sec. III).

C. Time in general relativity

The first adjustment of the idea of a universal time ¢
follows from special relativity. In special relativity ¢ is
replaced by a class of related times: the Lorentz times
of all the different Lorentz observers. Equivalently, the
hypothesis of the existence of ¢ is replaced by the hypoth-
esis of the existence of the Minkowski manifold with its
peculiar metric structure.

A much more radical and subtle modification of the
concept of time is implicit in general relativity. In view
of the quantization, and in particular in view of the fact
that the Schrodinger equation requires ¢, the concept of
time in classical general relativity has to be accurately
considered.

As a preliminary step, let us consider the motion in
an arbitrarily assigned gravitational field, namely in a
given solution g,, of Einstein equations. (In this paper
we assume a compact topology for the spacelike slices of
spacetime.) Every object travelling along a world line {
in g,, measures a time flow which is given by the proper
time along {. Thus, there is a definition of a time quantity
for every given solution g,, of Einstein equations and
every given trajectory ! in this solution. By itself, of
course, the independent time coordinate z° [argument of
guv(x,2%)] is not a physical time: physics, indeed, can be
reformulated in terms of any reparametrization of z°.

In quantum gravity, we are concerned not with the mo-
tion in given gravitational fields but with the dynamical
evolution of the gravitational field itself. Einstein equa-
tions provide the evolution of the gravitational field in
2% but 2° is not a physical time. In which physical time
is the evolution of the gravitational field given? As is
well known, this question is far from trivial. We wish
we were able to formulate (compact space) general rel-
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ativity as a Hamiltonian system evolving in a physical
time parameter ¢, but such a formulation has never been
constructed.

Let us begin to study this question in physical terms.
In nongravitational physics, the experimentalist has a
clock and describes the evolution with respect to it. The
clock is represented in the theory by the independent
variable ¢t. Now let us consider gravity. Assume the
experimentalist has a clock and measures the evolution
of the gravitational field with respect to this clock. To
which variable of the theory does the clock correspond?
The clock cannot be identified with the time coordinate
z" for the following reason. The evolution of the gravi-
tational field in the clock time is uniquely determined by
the initial conditions, while the evolution of g, in z0, as
given by Einstein equations, is underdetermined.

The solution, of course, is that the clock is a physi-
cal object; its motion and its rhythm are determined by
its equations of motion. If we consider the equations of
motion of the gravitational field and the clock, then the
problem is not underdetermined. But the gravitational
field enters the equations of motion of the clock (without
a gravitational field the equations of motion of physical
objects cannot even be written). The dynamics of the
clock cannot be disentangled from the dynamics of grav-
ity itself. [This is very different from nongravitational
physics. In nongravitational physics, we can first solve
the dynamics of the clock, and forget about it, and then
study the dynamics of, say, the Maxwell field. One can,
in fact, always assume that the interaction between the
field and the clock (how the clock is affected by the field)
can be made arbitrarily small.] In order to calculate the
evolution measured by the experimentalist, we have to
evolve the gravitational field and the clock variable to-
gether, then solve away x,z%, and obtain gravitational
quantities as functions of the clock variable. (For a more
detailed version of this discussion, see Ref. 16.) The con-
clusion is that, in order to predict the evolution in the
physical clock time of the gravitational field, we have to
consider the coupled gravity+clock dynamical system.

The same conclusion can be reached in a formal way
as follows. In any theory in which there is gauge invari-
ance, we must assume that only gauge-invariant quanti-
ties are observable.? Because of the general covariance
of general relativity, gauge-invariant quantities must be
independent of the coordinates x, z°. Let us focus on z°.
No quantity that depends upon z° can be gauge invari-
ant. Indeed, it is possible to formulate general relativity
without even referring to z°, as in the Hamilton-Jacoby
formulation.

It is not easy to construct (local) gauge-invariant quan-
tities in general relativity. In principle, nothing forbids
that observables in pure general relativity could be con-
structed by expressing certain gravitational degrees of
freedom as functions of certain others. In practice, this
has never been completely achieved theoretically, and
seems hopeless experimentally. To our knowledge, the
only way to construct gauge-invariant observables in a

gravitational theory is to consider general relativity cou-
pled with matter and to express the gravitational degrees
of freedom as functions of the matter degrees of freedom.
Gauge invariant quantities obtained in this way are con-
structed in Ref.16. In any case, we have to solve away
z® and express certain degrees of freedom as functions
of others. Among these others, we identify the physical-
time degree of freedom.

The conclusion of both the physical and the formal
discussions is that in general relativity, physical time has
to be identified with one of the degrees of freedom of the
theory itself (the “clock™). Such a definition of time is
often referred to as internal time.

Internal times differ from a Hamiltonian time in many
respects. First of all, the theory does not single out one
or the other of these internal times. Second, none of the
(proposed) internal times has all the features that char-
acterize the t variable of Hamiltonian and quantum me-
chanics. For instance, reasonable internal-time variables
may grow (in z°) up to a maximum value and then de-
crease. More precisely, there is no proposed internal time
such that the theory can be expressed as a well-defined
Hamiltonian system evolving in this internal time. Third,
by definition an internal time refers to specific physical
variables, unlike the ¢ quantity, which is supposed to be
universal. Thus, general relativity treats time in a pe-
culiar way, as compared to prerelativistic physics. The
absolute quantity ¢ has disappeared. In its place, there
are different possible internal times, related to specific
physical variables.

Now, the internal times can be identified with the clock
variables T', 7", T", ... discussed in the previous section.
Thus, maybe quite surprisingly, general relativity does
not provide the evolution in an absolute time Q(¢) and
T'(t), but only the observable evolution Q(7T"). More pre-
cisely, there exists a time quantity in the theory, which
is 29, but the evolutions Q(z°) and T(z°) are non-
gauge-invariant, and therefore nonobservable: the abso-
lute quantity ¢ has been replaced by an arbitrary and un-
observable gauge parameter z°. The observation made in
Sec. IB, that only Q(T") can be observed, is incorporated
in the formalism of general relativity.

As far as the classical theory is concerned, these fine
distinctions are a bit superfluous. After all, once the met-
ric has been calculated, a pseudo-Riemanian manifold,
does not seem to be conceptually very different from a
Minkowski space. (It is.!®) However, the consequences
of the above discussion are far reaching at the quantum
level. As Wheeler first emphasized, as in the quantum
theory the concept of trajectory disappears, in quantum
gravity there is no pseudo-Riemanian manifold at all.
More precisely, quantum observables are attached only to
gauge-invariant quantities. Thus, there is no room in the
quantum theory for Q(z°) and 7'(z°). Operators corre-
spond only to gauge-invariant quantities. In the quantum
domain, the absence of the absolute time ¢ is not intu-
itively remedied by a picture of the pseudo-Riemanian
manifold.
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The only way out that we see is to completely aban-
don the idea of absolute time. Only the evolution with
respect to clocks makes sense. In certain physical situa-
tions, or for particular solutions of Einstein equations (in
particular, of course, for a flat solution), we may idealize
these clocks in terms of t. At the Planck scale, we may
not.

In standard quantum mechanics, the Schrodinger equa-
tion requires the existence of a t, which corresponds to the
classical Hamiltonian time. To do quantum gravity, an
alternative formulation of quantum mechanics is needed.
This formulation should not require the idealized quan-
tity ¢ as part of the basic formalism; instead, it should
be able to deal directly with Q(T") quantities.

But before going to quantum mechanics, if we abandon
the idea that time is one of the conceptual bedrocks of
the theory, does it still make sense to do physics, calcu-
late measurable quantities, and develop a consistent and
satisfactory picture of an evolving universe?

II. CLASSICAL DYNAMICAL SYSTEMS
WITHOUT TIME

A. Mechanics without time: presymplectic
mechanics

The possibility of describing dynamical systems with-
out Hamiltonian time has to be first explored in the con-
text of classical mechanics.

Mechanics may be defined as the general theory of the
evolution of physical systems in time. From this point of
view, time is required for the very definition of the ele-
mentary mechanical concepts. For instance, the state of
the system is defined at a given time. In such a concep-
tual framework, ¢ is required.

However, there exists an alternative starting point for
mechanics. This is provided by presymplectic mechanics.
This formulation does not require the absolute time for
defining the basic concepts of the theory.

We shall illustrate presymplectic mechanics by first
showing that Hamiltonian mechanics admits a reformula-
tion in terms of a presymplectic space, and then noticing
that this reformulation does not require the variable that
represents time to be specified, or even defined. Read-
ers familiar with presymplectic mechanics may skip this
presentation.

In presymplectic mechanics, which is an elegant gener-
alization of standard Hamiltonian mechanics, a dynam-
ical system is just defined by a presymplectic manifold
(C,w). Let (S,ws,H) be a Hamiltonian system: S is
the phase space, wg is the symplectic form, and H is
the Hamiltonian. Let ¢;,p* be canonical coordinates on
S (ws = dp* Adg;). The dynamical system is completely
described on the space C = S x R, with coordinates
¢i,p*,t, by the presymplectic form

w=ws —dH(p,q,t) A dt. (2)

The motions of the system are the integral lines of the

null vector field of w (orbits, or trajectories, of w). We
denote this vector field Y:

iyw = Y“wab =0. (3)

In the coordinates on C' that we are considering, the
variable ¢t has a preferred role, as is clear from Eq.(2).
This preferred role identifies ¢ as the time variable.
The presymplectic space, however, has a geometric,
coordinate-independent meaning, like the phase space.
In a different coordinate system on C (say p’,¢’,t'), w
may have the same form as in Eq.(2), but with ¢ substi-
tuted by a different variable, say ¢’.

w=wg—dH'(p',¢,t')Adt. (4)

Thus, the presymplectic formulation may accommodate
different time variables. For instance, it may accom-
modate the different Lorentz times of special relativity.
The presymplectic formalism, indeed, provides us with
the only way to write a relativistic dynamical system in
canonical form without destroying manifest Lorentz co-
variance.

Time evolution is described in the presymplectic for-
mulation in a peculiar way. Each orbit of w represents a
possible motion of the system. An orbit defines a corre-
lation between two different variables of the system. For
instance, every orbit defines a function ¢;(t). If ¢ is our
time variable, then this function describes the evolution
of ¢; in t. But the same orbit also defines the function
¢i(t"). Thus, had we chosen t’ as our time variable, the
presymplectic formulation would equally well provide the
evolution in ¢'.

A state of the system is defined as an orbit. Note that
this definition of state does not refer to a particular choice
of the time variable, nor to a particular moment of time.
Rather, it represents, in a sense, the entire history of that
particular state. Looking ahead at the quantum context,
it is meaningful to refer to this kind of definition of state
as a Heisenberg state.

The observables of the system are defined as the scalar

functions @ on C' that are constants along the trajectories
(the orbits)

Y(Q)=Y%.Q=0. (5)

Functions such as ¢;(t), which describe time evolution,
are also observables in the sense of Eq.(5). This state-
ment may seem strange, but it will be carefully clarified
in the next section.

Note that there is no observable corresponding to a
generic variable ¢; (unless g; is a constant of the motion).
The observable is the function ¢;(t). More precisely, there
is one different observable for every real value of ¢.

As a simple example, consider the presymplectic de-
scription of a free relativistic particle. (z°,z%,p,) are
coordinates on C and

. .
w =" dps Adz® — d\/p? + m? A da° (6)
a=1

(p = 0,1,2,3; a = 1,2,3 from now on). The well-
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known constants of motion P, = p,, P, = /p2 + m?
and M* = gzHPY — ¥ P* are constant along the tra-
jectories generated by w. They are physical observables.
The observables that describe the evolution in z° will be
constructed in the next section.

As the example suggests, presymplectic systems often
arise in theoretical physics in the form of constrained
Hamiltonian systems with weakly vanishing canonical
Hamiltonian. In the Lagrangian formalism, these sys-
tems can be described by a reparametrization-invariant
action, in terms of a fictitious nonphysical parame-
ter. Indeed, the constraint surface of these systems,
equipped with the (degenerate) two-form induced by the
unconstrained-phase-space symplectic two-form, is the
presymplectic manifold. This presymplectic structure in-
corporates all the relevant information on the system. w
in Eq.(6), for instance, is the two-form on the constraint
surface K(z*,p,) = p* — m? = 0 induced by the uncon-
strained phase-space symplectic form dz* Adp,. In these
systems, the constraint is often denoted the Hamiltonian
constraint.

In the next section we will show that the observables
q(t) satisfy

ixo = —dH, Tot)=X@)={a@,H} @

(where we have used also the more familiar Poisson-
brackets notation). Note that time evolution can be de-
scribed as the existence of a particular structure on the
set of the observables: there exists a class of observables
of the form ¢(¢) such that the ¢ evolution is generated by
a Hamiltonian function H [in the sense of Eq.(7)]. We
call this structure on the set of the observables a time
structure. Equivalently, a time structure is a splitting of
w as in Eq.(2).

In conclusion, in presymplectic mechanics the states of
the system are represented by the orbits of w, and do not
evolve. Observables are represented by scalar functions
on C, constant along the orbits. Note that the definitions
of state and of observable do not make any reference to
the concept of time. This is why presymplectic dynamics
may describe different times for the same system.

What interests us here is a possibility offered by
the presymplectic formalism which is more radical than
the possibility of accommodating different times. Since
presymplectic mechanics does not require the existence
of a time ¢ for the definition of the basic mechanical con-
cepts, it can also describe systems in which there is no
Hamiltonian time ¢ at all.

More precisely, there are presymplectic dynamical sys-
tems (C,w) which are not Hamiltonian systems. [In
this paper we use “Hamiltonian system” in the strict
sense, which does not include the cases (which are in
fact presymplectic systents) in which the Hamiltonian is
weakly vanishing.] These systems do not admit a time
structure. (If a presymplectic system does not admit a
time structure, there cannot be a corresponding Hamil-
tonian system, because the Hamiltonian of the Hamilto-

nian system defines a time structure on the corresponding
presymplectic system.) For instance, the trajectories of w
may be closed. We define a presymplectic dynamical sys-
tem that has no corresponding Hamiltonian formulation:
dynamical system without time.

A simple example of a presymplectic dynamical system
without time is given by the constraint surface C' of the
constraint

K=q¢+¢+pi+p5—M~0. (8)

Since C is compact, it does not admit a time struc-
ture, because a time structure implies the decomposition
C = ¥ x R, where R is the real line. Thus, there is no
Hamiltonian system corresponding to this presymplectic
system.

In the dynamical systems without time, one can still
talk of states (the orbits of w), of observables, and also
of evolution. In fact, the orbits still determine a func-
tional relation between different variables. One variable,
say ¢ in the model (8), can be interpreted as a clock
variable. Every orbit defines the evolution Q(¢1) for any
other variable ) as a function of ¢;. But ¢; does not have
the properties that characterize the Hamiltonian time ¢,
so the evolution in ¢; cannot be described as a Hamilto-
nian evolution. For instance, there are values of ¢; which
are not reached by certain trajectories. This cannot hap-
pen in a Hamiltonian system.

The physical interest of the systems with no time is
that they can be interpreted as systems describing the
evolution with respect to physical clocks, as opposed to
the evolution with respect to the absolute time t. Dy-
namical systems of this kind arise in theoretical physics.
Examples are given by certain cosmological models,? by
any topological field theory,?? by the Barbour-Bertotti
model,’® and many others.

The example par excellence, however, is of course gen-
eral relativity (on a compact space). The Arnowitt-
Deser-Misner (ADM) constraint surface equipped with
the two-form induced by the symplectic two-form of the
ADM phase space is the presymplectic manifold. Gen-
eral relativity can do without an absolute Hamiltonian
time because as a dynamical system, general relativity is
not a Hamiltonian system but a presymplectic system.

We do not regard the lack of a (natural) Hamiltonian
description of general relativity as a failing of the formal-
ism. Instead, we take it as a profound indication that the
absolute time ¢ is not a physical quantity, and that only
evolution with respect to clocks is observable.

The suggestion of this paper is that this indication has
to be taken seriously. If so, it has to be extended also to
quantum mechanics.

B. The description of evolution:
constants of the motion that evolve

In the previous section, a problem was left pending.
The general definition of an observable, namely Eq.(5),
seems to be in contradiction with the statement that the
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evolution of a variable ¢; as a function of another vari-
able t is observable. In this section, we show that this
contradiction does not exist. The analysis will be rather
technical; but it is on a technical point concerning the
existence of these observables that the hypothesis we are
proposing relies. (We believe that many difficulties in
the canonical quantization of parametrized systems fol-
low from the confusion on this peint.)

We assume for simplicity that the presymplectic sys-
tem is defined by a (Hamiltonian) constraint K on a
phase space ¢n,pn, n = 1,..., N. We single out a vari-
able on the phase space, say ¢;, which we use as a clock
variable. For the moment, we assume that ¢, is a Hamil-
tonian time.

The definition as (5) of observable, is equivalent to the
requirement that an observable @ is given by a function
Q(¢n,pn), which has vanishing Poisson brackets with the
constraint K. The question we address is how can such
quantities, constant along the trajectories generated by
K, describe the evolution? The answer is that there do
exist observables that satisfy Eq.(5) and represent the
evolution in ¢;. We now define these observables.

Let us focus on another variable, say ¢;, i = 2,...,N.
We want the observable that represents the evolution of
¢; as a function of ¢;. As we mentioned, this will not be
a single observable, but rather a one-parameter family
of observables, each one representing the value of ¢; at
a different value, say ¢, of the clock variable ¢;. Let us
call these observables Q;(¢). There is one observable Q(¢)
for every real number ¢; Q(t) is an observable, namely, a
function on C' (or the restriction to C of a function on
the phase space):

Qi(t) = Qi(t;qn, Pn)- 9)

The t dependence of Q;(t) should not be confused with its
dependence on C. Q;(t) must be constant on the orbits
for every t in order to be observable. And it should be
equal to the function ¢;(¢1) in any point of C in order to
describe what we want it to describe. The key point is
that the two requirements are not contradictory. In fact,
we define the observable Q;(t) for every real number ¢,
as follows.

Qi(t) is constant along each trajectory, and on each
trajectory it has the numerical value equal to the value
of the variable q; in the point P where that trajectory
intersects q1 = t.

Equivalently, @;(t) is defined by the two equations

{Qi(t;9n,pPn), K(an,Pn)} = 0, (10)

(11)

The first equation implies that @;(¢) is observable:
namely, constant along the trajectories. The second de-
termines the value of Q;(¢) on any trajectory. This value
is the numerical value obtained by looking for the point
¢1 = t along that trajectory and reading out ¢; in that
point. At any point P that lies in a trajectory [, the
function Q;(¢) is equal to the function ¢;(g1) determined

Qi(t;t,92,93, ..., Pn) = ¢

by I. We denote the observables defined by equations
such as Eqs.(10) and (11) evolving constants of the mo-
tion or evolving constants. (The fact that observables of
this kind can describe evolution is discussed, for instance,
in Refs. 17 and 24.)

Consider the presymplectic system that represents the
relativistic particle, defined in the preceding section. The
observables X°(t) that describe the evolution of z? as a
function of z° are

Xt 2", pu) = 2

p* 0
— ——(z —1). 12
om0
It is easy to check that Eqgs.(10) and (11) are satisfied.
The second one is immediate. The first,

{Xa(t;wu’p”)’pZ_mZ}:_o’ (13)

follows directly from the fact that X ¢(t) can be expressed
as a function of the well-known constants of the motion
P,, M#Y:

P MO
afs. 1 — 8
X% (t;a",pu) = P0t+ P

(14)

The last equation shows that in any point of any tra-
jectory, X2(t), seen as a function of ¢, is equal to the
function z?(z®) determined by that trajectory. Thus,
X°(t) is a function on the phase space which is constant
along the trajectories generated by K, but describes the
evolution of z® in z°.

Evolving constants can be constructed for any func-
tion ¢ = ¢(qn,prn), and for different choices of the time
variable ¢r = qr(¢n,pn). The evolving observable Q(T")
which gives the evolution of ¢ in the clock time ¢p is
defined by the two equations

{QT), K} =0, (15)

Qer) = q,

where the dependence upon the coordinates is not indi-
cated. The explicit form of these observables is obtained
by solving the dynamics generated by the constraint (ge-
ometrically, this amounts to constructing the orbits) and
inverting the solutions of the equations of motion. From
the defining equations, we get

9Q(T)
oT
which can be used to propagate Q(T') in 7T'.

In a generic dynamical system, one is not able to solve
the dynamics exactly and to construct the evolving con-
stant in explicit form. However, the evolving constants
are always defined by Egs.(15) and (16). In the presym-
plectic theory, in a sense dynamics has been reduced to
kinematics. If we know the expression for any observable
Q(1) for every t, then we know everything about the sys-
tem, and the dynamics is solved. This is analogous to
what happens in Heisenberg mechanics. If we know ev-
ery Heisenberg observable Q(t) for every ¢, the dynamics

(16)

{QT’I(} = {Qa[(}r (17)



43 TIME IN QUANTUM GRAVITY: AN HYPOTHESIS 449

is solved. Kinematics becomes nontrivial: it is nontrivial
to construct the observables.

If the dynamical system admits a time structure and
q¢ is a good Hamiltonian time, then K = p; + H, where
the Hamiltonian H does not depend on the momentum
pt, conjugate to ¢;. In this case, Eq.(17) becomes

290 _ (g, ny. (8)

Since H does not depend on p;, the commutator of ¢ with
H is the same as the commutator of Q(t). Therefore,

Q) _
T {Q), H}. (19)

This is the Hamilton equation of motion. Thus, in a
Hamiltonian system the evolving constants are nothing
more than the usual observables, seen as functions of ¢.

In a system without time, it is still possible to define
evolving constants analogous to the ones just defined.
These are the observables that describe the evolution in
the clock time qr. The evolving constants of the system
without time Eq.(8) have been constructed in Ref.15. In
the general case, the Hamilton equation of motion (19)
does not hold. The Hamilton equation is replaced by
Eq.(15), which is more general .

To summarize, the definitions of state and observable
in the Hamiltonian formalism require the existence of
a time ¢, which is absolute and fixed once and for all.
By contrast, the definition of the formal structure of the
dynamical theory in the presymplectic formalism does
not require t. Evolution with respect to a dynamical
variable ¢r, chosen as a clock, is described by a particular
class of observables Q(T'). The basic equation that Q(T")
satisfies is Eq.(15). If the system admits a Hamiltonian
formulation in the time variable g,, this equation reduces
to the Hamilton evolution equation.

III. QUANTUM MECHANICS
WITHOUT TIME

A. Extending quantum mechanics

Can the hypothesis of the absence of the absolute time
be incorporated in quantum mechanics? Is there an ex-
isting formulation of quantum mechanics which does not
require ¢ to exist? Is there a form of quantum mechanics
that extends Schrédinger-equation quantum mechanics,
in the same sense in which the presymplectic mechanics
extends the Hamilton-equation mechanics?

The answer is almost. To define the Schrédinger pic-
ture a time variable ¢ is needed. A Schrédinger quantum
state is defined as the state of the system at time ¢, pre-
cisely as a point of the phase space represents a state of
the classical system at a time t. However, in the Heisen-
berg picture ¢ is not required to define the basic concepts
of the theory. Because of that, it is possible to define
an extremely natural extension of the Heisenberg picture
which may deal with a system in which there is no Hamil-
tonian time ¢.

The Heisenberg states are often introduced as the
states at ¢ = 0. But they can also be interpreted, in a
more fundamental way, as a global (time unrelated) char-
acterization of the state. These states are the quantum
analog of the trajectories in the presymplectic formal-
ism. The interpretation of the Heisenberg states as states
representing the entire history of the system has been
stressed by Dirac.?® If the system admits a Schrédinger
picture, we may represent the state space of the Heisen-
berg picture in terms of the space of the Schrodinger
states at £ = 0. This is the analog of labeling the
presymplectic trajectories by means of their ¢; coordi-
nates at g1 = 0. (The opportunity of using Heisenberg
states was vigorously advocated by Dirac in the first edi-
tion of his celebrated book on quantum mechanics.?®. In
Sec..3 Dirac argues that special relativity forces us to use
Heisenberg states. His physical definition of the Heisen-
berg observable “at a given time” (Sec.I1.9) is precisely
the one we use here. It is interesting to notice that in
later editions Dirac shifted from the Heisenberg defini-
tion of state (which he calls the relativistic one) to the
Schrédinger one (which he calls the nonrelativistic one).
He does that in order to gain in simplicity (after all, he is
doing nonrelativistic quantum mechanics), but he com-
plains (in the preface) that “it seems a pity” to give up
on the relativistic notion. At the end of his life, Dirac
returned to advocate Heisenberg states, and in 1981 he
gave a talk in Erice (Sicily) using a single transparency,
on which there was written only “thdA/dt = [A, H]:
Heisenberg mechanics is the good mechanics.”)

Similarly, Heisenberg observables correspond to the
presymplectic observables. There is no Heisenberg ob-
servable corresponding to the variable ¢; rather, there is
a one-parameter set of observables Q(t) corresponding to
the values of ¢ at ¢, = ¢.

When the system admits a classical Hamiltonian for-
mulation, there is a Hamiltonian operator H, and the
Heisenberg observables are related by

Q(t—i—tl) — eiht'I:I Q(t) e—iht’ﬁ, (20)

Equation (20) is the quantum realization of the time
structure. In differential form, it becomes

ih 8,Q(t) = [Q(t), H]. (21)

It is extremely important to emphasize that this equa-
tion is the quantum version of the Hamilton equation of
motion (19), and it is also the Schrédinger equation as it
looks in the Heisenberg picture.

Now we arrive at our main point. In the classical
systems without time (in the technical sense defined in
Sec.II A) the Hamilton equation (19) does not hold. It
is reasonable to expect that in their quantum physics
the corresponding Eq.(21) would not hold either. In
those systems, an evolving constant Q(7") would corre-

~ spond to a quantum operator Q(7") which does not sat-

isfy Eq.(20). The key point is that this fact does not
disturb the Heisenberg picture at all. The Heisenberg
picture remains well defined also if the relation between
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Q(T) observables at different 7”s is not given by Eq.(20).

What may go wrong in these systems is that the set
of all the observables Q;(T) at a fixed 7' may not form a
complete set. If so, a state is not characterized by its pro-
jection on the eigenstates of a family of Q;(T) for a fixed
T. This means that the outcome of the measurements of
Q,-(T) for a fixed T' does not uniquely characterize the
state. Namely, one cannot define a Schrodinger picture.
(See Ref.15 for a concrete example in which all that hap-
pens.)

Suppose a definition of the Hilbert space H of the
Heisenberg states is given. Suppose the definition of
Heisenberg operators Q as self-adjoint operators on M
is also given. And suppose that among these operators
there are also evolving constants OZ(T) Then, we can
run the entire standard machinery of the probabilistic in-
terpretation of quantum mechanics: the outcome of the
measurement of a quantity @ on a state i is an eigen-
value ¢ of the @ operator; the probability of getting ¢
is the modulus square of the projection of 1 on the ¢
eigenvector, and so on. All this also makes sense if the
operators O;(T) do not satisfy Eq.(21). (The equation
they satisfy will be studied in Sec.III C.)

The Heisenberg states are the quantum version of the
presymplectic states: they represent “histories” of the
system. The Heisenberg operators O correspond directly
to the presymplectic observables O. Among these, there
are the quantum evolving constants Oi(T), correspond-
ing to the classical evolving constants O;(T). If the
classical system admits also a Hamiltonian formulation,
then we have Eq.(20), and we may define a Schrédinger
picture. If it does not (it is a system without time),
everything still makes sense. But the Schrodinger pic-
ture cannot be defined.

Quantum mechanics may be synthesized in axiomatic
form (see, for instance, Ref.26). A set of axioms refers
to the definition of state and observable, to the identifi-
cation of the expectation value of the measurement with
the mean value of the operator and to the collapse of
the wave function. One of the axioms (Postulate P3 in
Ref.26) refers to time evolution; let us call it the time ax-
iom. In the Heisenberg picture, the time axiom requires
that all the observables depend on the time variable ¢,
and that an operator H exists such that Eq.(21) holds.

In the Heisenberg picture, the time axiom can be
dropped without compromising the other axioms or the
probabilistic interpretation of the theory. Thus, we may
formulate our basic proposal on the quantization of the
classical systems without time.

(1) We define the structure given by the axioms of
Heisenberg picture quantum mechanics, excluding the
time axiom, as quantum mechanics without time.

(2) We suggest that the quantum physics of the
presymplectic systems that do not have a Hamiltonian
version is governed by quantum mechanics without time,
as defined in 1.

General relativity is one of these systems; thus, we
suggest, nonperturbative quantum gravity is to be con-

structed in the framework of quantum mechanics without
time.

A quantum system without time is constructed in
Ref.15. It quantizes the system (8). The Hilbert space is
defined, and the operators that represent the evolution
of ¢2 as a function of the clock time ¢; are constructed.
(More precisely, the corresponding self-adjoint projection
operators are defined.) We urge the reader to refer to that
paper for a concrete implementation of the general theory
discussed here.

In a quantum system without time, there may be an
approximation within which the Schrodinger equation
(21) holds. Thisis the way we expect that standard quan-
tum mechanics may be recovered. If there is an approxi-
mate Schrédinger equation, the fact that the Schrodinger
norm is only approximately conserved is just a conse-
quence of the approximation and does not disturb the
full theory. The quantum states of the model defined by
Eq.(8) admit!® a representation of the form

¥(q1,492)- (22)
They satisfy an approzimate Schrodinger equation
_ihb%¢(ql’ 92) = H(q1,¢2) + small terms. (23)
The norm
W) = [ dasltan, )P, (24)

obtained by fixing the internal time ¢; and integrating on
the remaining variables, is not conserved in ¢q;. But this
norm is not the one defined by the correct scalar product
of the theory. The fact that this norm is not conserved
in ¢; does not contradict the probabilistic interpretation.
It is as harmless as the fact that the integral in ¢, of the
modulus square of the wave function of a two-d*mensional
harmonic oscillator depends on q;.

Finally, let us discuss the wave-function collapse. The
measurement of the quantity @ at the clock time T is
accompanied by the projection of the state on an eigen-
state of the operator Q(7). The Heisenberg states get
projected at any measurement. The information that
the measurement is performed at the clock time 7' is
contained in the fact that the eigenstates of Q(T"), on
which the state gets projected, depend on 7. The ques-
tion “when” the projection occurs is meaningless since
the state does not evolve.

But there seems to be a problem here. Projectors do
not commute. Even if it is meaningless to say when the
projections occur, nevertheless, the order in which they
occur is not meaningless. But, unlike the Hamiltonian
time ¢, a clock time 7" may (classically) increase and then
decrease along a trajectory. Thus, in general T" does not
define an ordering relation. How do we know the order
in which to perform the wave-function projections? If we
replace the well-behaved ¢ by the ill-behaved T', how do
we know how to order the collapses?

In order to answer this question, we should notice that
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t and the ordering of the collapses are not necessarily re-
lated. This fact was emphasized by Dirac in Ref.25 and
is clearly discussed by Hartle in Ref.7. The following
example shows that time and collapse ordering may be
unrelated. The formalism of quantum mechanics allows
a sequence of measurements not ordered in the time in
which the system evolves. We can measure B(t) and then
A(t") with ¢/ < t. The wave function is projected twice:
First on the eigenstate of the B(t) operator and then on
the eigenstate of the A(t’) operator. This sequence of
projections describes the conditional probability of be-
ing detected at A(t’') for a particle that will be detected
at B(t). This probability is well defined in terms of fre-
quency. One may think that both measurements have
been performed many times, and we are requested to
calculate the distibution of the A(t') outcomes knowing
the B(t) outcomes.

The example suggests that the ordering of the collapses
is not determined by ¢. Rather, the ordering depends on
the question that we want to formulate. The ordering is
usually related to ¢t only because we are more interested
in calculating the future than the past. If we want the
probability that A has the value a at t’, given that B had
or will have the value b at ¢, we first have to project on
the b eigenstate of B(t) and then on the a eigenstate of
A(t'), irrespective of which comes first between ¢ and t'.
Since the ordering of the projections is not determined by
the natural ordering defined by ¢, we may replace ¢ with
a clock variable T" that does not define any ordering. The
issue deserves a more accurate analysis; yet the previous
discussion suggests that the collapse of the wave function
should not cause problems of interpretation in quantum
mechanics without time.

B. Quantization procedures and physical Hilbert
structure

In this section we consider certain problems that
emerge in constructing the Heisenberg theory (H,O;)
starting from a given presymplectic system (C,w) with-
out time.

We discuss two quantization procedures. The first one
is the standard one. The second one is more abstract and
difficult to apply, but it is more complete.

We assume, from now on, that the presymplectic sys-
tem is defined by constrained Hamiltonian systems with
Hamiltonian constraint K(gn,pr) and weakly vanishing
canonical Hamiltonian. A well-known procedure for the
quantization of any constrained system is the following.??
One begins by quantizing the unconstrained phase space.
Let M be the state space and §,,, pn, be the resulting quan-
tum state space and operators. The physical state sub-
space Hpn is extracted by solving the constraint equa-
tions

Kvy=0
on H. The observables

(25)

Q = Q(dn,Pn) (26)
have to be well defined on Hyn. If so, they must send Hpp,

in itself. In ordgr for this to be true, Q must commute
(on Hpp) with K:

[Q,K]=0. (27)

It follows that the corresponding classical observable
must have vanishing Poisson brackets with the constraint

{Q(‘Impn)aK(fIn,Pn)} =0. (28)

Note that these observables are the ones which are con-
stant along the orbits of the presymplectic system, and
therefore they are precisely the presymplectic observ-
ables, as defined in Sec. II A. The standard treatment
of the constrained systems agrees with the basic rules for
the presymplectic systems.

If the procedure can be completed, it provides the
(Hph, O;) structure. The O;(T) observables that quan-
tize the classical evolving constants will be discussed in
the next section.

In this program there are technical difficulties such as
solving the constraint equations and finding and ordering
the physical observables. There is also a general problem:
in general, the physical states that solve the constraint
equation have infinite norm in the natural Hilbert struc-
ture of H (this happens when zero is in the continuum
spectrum of the constraint operator, which is the usual
case). Indeed, one has to define a new physical scalar
product on the space of the solutions.

We discuss this problem here because this difficulty
is sometimes taken as a proof that the quantum theory
cannot be defined in the absence of time. Indeed, let us
suppose there is a Hamiltonian time variable ¢ among the
arguments of the unconstrained wave function. Then,
there is a canonical way of finding the physical scalar
product. One defines the Schrédinger picture, and the
fixed ¢t formulation provides a physical scalar product,
given by the L, structure in the rest of the variables.
The evolution in ¢ is unitary and thus the definition does
not depend on the particular ¢ chosen.

Now, does this mean that if the Hamiltonian time ¢
does not exist, then the scalar product cannot be defined?
The answer is no: in the general case, we do not have this
simple prescription for constructing the physical scalar
product; but this does not mean that the physical scalar
product cannot be defined. It just means that we cannot
use the time structure as a hint for its construction.

To find the physical scalar product is always a problem
for any constrained system in Dirac quantization. For in-
stance, the same problem appears in non-Abelian Yang-
Mills theories, where it has far reaching consequences.
The problem is not related to the absence of time.

In order to fix the physical scalar product, namely, to
add a Hilbert structure on the linear space Hyp, the con-
ditions that the scalar product has to satisfy must be con-
sidered. Assume that the linear structure of the physical
state space has been worked out (up, maybe, to comple-
tion issues). We have the linear space of the solutions
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of the constraint equations and a complete set of linear
operators O; on this space. How do we choose the scalar
product? There is a key condition on the choice. Namely,
the operators O; have to be self-adjoint. (The notion of
self-adjointness depends on the scalar product.) Thisis a
highly nontrivial condition on the scalar product. There
are several examples that show that this requirement de-
termines the Hilbert structure.?” Thus, there is a precise
rule for fixing the scalar product. This rule works also
for the quantum systems without time.

There exists an alternative to Dirac quantization,
which overcomes most of these difficulties;?® in partic-
ular, it overcomes the difficulties of choosing the physical
scalar product. This alternative quantization prescrip-
tion consists in directly quantizing the presymplectic sys-
tem, rather than going through the quantization of the
unconstrained system.

The main result of Refs. 28 and 29 is that one can
quantize the presymplectic system by looking for an op-
erator realization of a closed and complete algebra of
presymplectic observables. This can be obtained by find-
ing a transitive group G of automorphisms of the (C,w)
structure and choosing a unitary representation U of
G. This quantization procedure makes use only of the
geometric structure of the presymplectic space (C,w).
Again, no specification of the time variable is needed in
order to complete the quantization procedure. The prob-
lems of ordering, solving the constraints, and picking the
scalar product are bypassed. The difficulty, of course, is
to find G.

An example in which group-theoretical methods pro-
vide a quantization of a system, without any reference to
a choice of time, is the strong-coupling limit of general
relativity.3° An example of a system without time that
can be quantized with group-theoretical methods is given
in Ref.13.

C. Quantum evolving constants

A basic claim of this paper is that the quantum ob-
servables must satisfy Eq.(27) and must correspond to
classical quantities that satisfy Eq.(28).

In ordinary constrained systems (with nonvanishing
canonical Hamiltonian), this result is the standard re-
quirement of gauge invariance. In the systems we are
considering (with vanishing canonical Hamiltonian) this
result has often been rejected with the motivation that,
if we restrict ourselves to the observables that satisfy
Eq.(28), then we cannot describe evolution. According
to such a view, the Hamiltonian constraint generates dy-
namics and not gauges, and therefore, if we want to de-
scribe quantities that evolve in time, we must have quan-
tities that do not commute with K. Then, of course, lots
of troubles follow because an operator that does not com-
mute with K is not well defined on the space of physical
states, and the entire structure of quantum mechanics
collapses.

Such a viewpoint is wrong because it relies on the
wrong assumption that there is no way to describe time

evolution in terms of observables that commute with K.
As we showed, the evolution is well described by observ-
ables that commute with K. These are the evolving con-
stants, introduced in Sec. II B. Thus, there is not any
reason for rejecting Eqs. (27) and (28). (A relevant ex-
ample of presymplectic system is given by a system in
which the integral orbits of w have dimension greater
than 1. In this case the presymplectic formalism does
not distinguish between the dimensions of the orbits re-
lated to the evolution and the ones related to a gauge
invariance. This distinction is not needed in order to es-
tablish a physical interpretation: in any case observables
are functions on the space C constant along the orbits.)

If Q(T;qn,pn) is the observable defined by Egs. (15)
and (16), the corresponding quantum operator is defined
by the corresponding quantum equations

[Q(T), K] =0, (29)

Qir) = (30)

(the second equation can be more easily defined in a rep-
resentation in which ¢p is diagonal). The first is the
fundamental equation that every observable must sat-
isfy. The second defines the specific observable. As in
the classical case, dynamics and kinematics are interre-
lated. If the explicit form of Q(T’; ¢n, pn) is known, then
Q(T) can be defined by choosing an ordering in

Q = Q(Tdn,Pn), (31)

such that Eq.(29) is satisfied. Another nontrivial con-
dition on the ordering follows from the fact that there
should exist a scalar product such that all the quantum
observables are self-adjoint for every 7.

The quantum analog of Eq.(17) becomes

XD i, K1 = 13, (52)

This equation can be integrated to evolve Q,(T) inT.

If the presymplectic system corresponds to a Hamil-
tonian system, and ¢; is a Hamiltonian time, then there
is a Hamiltonian, and, in parallel with Eq.(18), Eq.(32)
reduces to

2% _ 1o0), i (33)

This is the standard Schrodinger equation, written in
the Heisenberg picture. Thus, as was anticipated in
Sec. IIT A, when a presymplectic system corresponds to
a Hamiltonian system, the quantum evolving constants
are nothing but the standard Heisenberg observables, and
the fundamental equation (29) is nothing but the Heisen-
berg picture version of the Schrédinger equation.

In conclusion, in the general case the basic equation
for every observable is Eq.(27). A particular class of ob-
servables is given by the the constants evolving in a clock
time T' = qr; these are defined by Eq.(29). If the clock
time happens to be a good Hamiltonian time, then the
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basic equation (29) reduces to the Schrodinger equation
for the evolving constants.

Evolution can be described also in the absence of a
Hamiltonian time, and in the context of the basic canon-
ical quantum-mechanics formalism: Hilbert space, finite
norm states, self-adjoint operators.

IV. PERSPECTIVES
A. Quantum gravity

We may now come back to gravity, put together the
different results, and put forward in a more precise form
the solution of the time issue that we propose.

In general relativity the notion of an absolute time ¢
is absent. In place of it, internal time variables 7" that
represent physical clocks can be identified. We believe
that the choice of one of these clock times and its identi-
fication with the absolute time ¢ of Hamilton mechanics
is not only very difficult, but also irrelevant and contrary
to the basic physical ideas of general relativity.

Quantum mechanics admits a natural extension, quan-
tum mechanics without time, which can deal with sys-
tems in which an absolute Hamiltonian time ¢ is not de-
fined. Quantum gravity, we propose, is described by this
quantum theory without time.

In principle, the theory can be constructed as fol-
lows. The space Hpy of the solutions of the Wheeler-
DeWitt equation is considered.3! A class of quantum
operators that commute with the Wheeler-DeWitt con-
straint is constructed. Among these, there should be
observables that express the evolution with respect to
a clock variable. (Certain observables of this kind have
been constructed.!®) The scalar product is then chosen on
Hpp in such a way that the observables are self-adjoint.

If this program can be completed, then the fundamen-
tal theory is complete. In principle, any outcome of any
measurement can be computed, in terms of mean values
of the self-adjoint operators on the physical states.

We expect that the theory admits a choice of internal
time T such that the evolution of the observables in T
is given by a Schrodinger equation in 7" within a certain
approximation. Within this approximation, 7' behaves
like an absolute time ¢, and we are in the familiar regime
of standard quantum mechanics. But we also expect that
the Schrodinger approximation breaks down in the gen-
eral case (at the Planck scale?). At this fundamental
level, time is not defined.

It is worth adding here a comment about quantum cos-
mology in order to avoid confusion. In a quantum theory
of the entire Universe specific problems arise. There is
the problem of maintaining the probabilistic interpreta-
tion if a single copy of the system is available; and the
issue of the definition of a quantum theory in which the
observer is part of the system.

Since gravity is the basic instrument for cosmology,
the study of the Universe as a whole and the study of
general relativity are often related. However, the specific

problems of quantum cosmology (such as the one just
mentioned) and the specific problems of quantum grav-
ity (such as the time issue) are logically independent. To
be convinced of this independence, consider that nothing
prevents us from studying the quantum cosmology of a
flat universe (with, say, just Yang-Mills fields). Alterna-
tively, we can study the gravitational field and consider
the observer and the other fields as external (of course,
external in the dynamical sense, not in the space-time
sense). In the first case we have a quantum cosmology
with no gravity; in the second case we have a quantum
gravity which is not quantum cosmology.

It has been repeatedly suggested that the solution of
the problems of quantum gravity require one to consider
the whole Universe (see for instance Ref.7), and therefore
that quantum gravity and quantum cosmology should be
studied together. This is a very interesting possibility.
But it is just a possibility. In this paper, we have adopted
the opposite philosophy. We considered the time issue
in quantum gravity and we neglected any cosmological
question.

One can question quantum mechanics on the grounds
that for the Universe the interpretation of probability is
problematic or on the grounds that the theory should
include the observer. These problems are not connected
with the gravitational field. On the contrary, the absence
of a time variable and of a Schrodinger equation, which
is a characteristic feature of the gravitational dynamics,
does not spoil the standard interpretation of quantum
mechanics.

Then, there is no problem in the interpretation of the
wave function in quantum gravity. Quantum mechanics
(without the time axiom) provides a precise and well-
defined scheme of interpretation. Most of the confu-
sion on issues concerning interpretation is generated by
asking non-gauge-invariant questions. Very often in the
quantization of models, too little attention is put on the
key requirement of gauge invariance of the observables
[Eq.(27)], and on the requirement (on the scalar product)
that the gauge-invariant observable must be self-adjoint.

In particular, the popular interpretation of |¢[g]|?, as
the probability of measuring the three-geometry g, is
wrong. [¢[g]|? is not a gauge-invariant quantity. Only
quantities of the kind (1/)|Q|1/)), where Q commutes with
the Wheeler-DeWitt constraint, have physical meaning.

B. Problems and comments

We do not think that the proposed solution of the time
issue is clear and complete. Both at the technical and at
the conceptual level, there are points that remain open
or unclear.

Physically, not just any variable can be used as a clock.
We relaxed the requirement that a clock variable 7" must
be a Hamiltonian time. However, we did not provide any
alternative definition of a “time” variable. What does
characterize the physical variables T" that can be used as
clocks? To our view, this is an open question.

A related technical question is the compatibility of the
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two equations (10) and (11) that define the evolving ob-
servables. It is clear from the geometrical picture that
if {¢r,K} = 0, Eq.(17) cannot be integrated. In the
general case, the functional relation that an orbit de-
fines between two variables is only implicit. Q(7) may
be multivalued. Physically, there is nothing wrong with
that, but the definitions should be adjusted. If an orbit
intersects ¢gr = T in M points P,,, we may introduce M
observables Q(™) such that

0™ (gr) = ¢(Pn), (34)

and so on. In other words, Eq.(16) should be replaced by
a weaker equation. The details should be worked out.

Q(T) may be defined only on a bounded interval. This
interval may depend on the orbit. Thus, there are values
of T for which Q(T) is defined only in certain regions of
C. Outside these regions, Q(7") may become complex.
In the quantum domain, this implies that the operator
Q:(T) may have complex eigenvalues and therefore is not
self-adjoint.

A way out is provided in Ref.15. The idea is to use the
projection operators on the eigenstates of Q(T") [Q(T) is
still symmetric] corresponding to real eigenvalues instead
of Q(T) itself. The projectors are self-adjoint and cor-
respond to the basic yes/no experimental observations.
The present paper is more conceptual than technical and,
for the purpose of clarity, we did not use the projector
formalism. But we think the projector formalism is very
likely to be the correct formalism in the general case.

Finally, assuming that the hypothesis we are present-
ing is realistic, developing a physical intuition of the
systems with no time is a nontrivial problem. Simple
models!®1732 may help. In the model in Ref.15, the clock
time fails to be a good time because of global properties
of the orbits. Locally, the system behaves as a Hamil-
tonian system; but on the entire orbit one has to patch
different times. The topology of the orbit is closed and
there is no way to map R smoothly onto an orbit.

An interesting relation between global properties of
the orbits and small-scale measurements emerges in this
model. If one measures a variable in a quasiclassical
state with a high precision, the state is severely affected
by the collapse. The collapse excites components of the
wave function, which correspond to classical trajectories
in which the clock variable reverses its direction right
away.

It is tempting to speculate that this behavior could
be general. Suppose that in gravity we take the grow-
ing radius R of the Universe as a clock variable. Since
the Universe may recollapse, there are orbits for which
R “goes back.” One can speculate that a measurement
which implies a Planck-scale precision may project the
state of the gravitational field on components of the wave
function which correspond to a universe that would im-
mediately start to recontract. Thus, Planck-scale mea-
surements may destroy the unitarity of the evolution in
R.

Apart from these (wild) speculations, the example sug-

gests two ways in which a realistic gravitational system
without time may be concretely considered. One is to
recall that it is difficult to imagine that in general rela-
tivity there could be a good clock that may run forever
on any solution of Einstein equations (recall that most
solutions develop singularities). The second (maybe re-
lated) one is to think that nontime behavior may appear
at very short time intervals. More precisely, there may
be physical reasons for which there are no good clocks
that resolve time below the Planck time.

C. Conclusions

In this paper, we propose a solution to the problem of
time in quantum gravity. We make the hypothesis that
the concept of absolute time ¢, as used in Hamiltonian
mechanics as well as in Schrédinger quantum mechanics,
is not relevant in a fundamental description of quantum
gravity.

This time has to be replaced by arbitrary clock times
T in terms of which the dynamics may not be of the
Schrédinger form. The motivation for this hypothesis is
that in general relativity there is no observable absolute
time. A Hamiltonian formulation of gravity in the strict
sense (choice of a clock time T' and the identification of
T with the Hamiltonian time) is contrary to the basic
physical ideas of general relativity and irrelevant for the
quantization.

An extension of quantum mechanics, which does not
need t, is required in order to incorporate in quantum
mechanics the physical ideas of general relativity. This
extension (quantum mechanics without time) is defined
in a very natural way, just by dropping the time axiom
from the Heisenberg picture.

In a quantum-mechanical system without time, the
Schrodinger equation (which in the Heisenberg picture is
Q = ih[Q, H)) is replaced by the equation [@Q,K] = 0.
There are observables Q(T) (evolving constants) that
describe the evolution with respect to a physical clock
variable. In spite of the fact that evolution in 7' may
be nonunitary, the probabilistic interpretation is viable.
Unitary evolution and the Schrédinger equation may be
recovered within an approximation.

As far as the problem of time is concerned, in a quan-
tum theory of gravity there is no need to give up the
probabilistic interpretation of the wave function, Hilbert
space, finite norm states, and self-adjoint operators cor-
responding to observables. The notion of absolute time is
not necessary, and we think that the difficulties in dealing
with a theory without time are only psychological. We
suggest that, in looking for a quantum gravity theory,
“time” should simply be forgotten.

Our proposal is in a sense conservative and in a sense
radical. It is conservative since we keep as much of gen-
eral relativity and as much of standard quantum mechan-
ics as possible. Our philosophy is that general relativity
and quantum mechanics summarize our basic knowledge
of the world and that we should not change them, unless
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forced by experiments or by a requirement of internal
consistency. It is radical because we assume that at the
fundamental level time is not defined. Thus, a radical
revision of a familiar concept is required. However, this
modification of the concept of time (with respect to the
time of Hamilton mechanics) is forced by general relativ-
ity itself and is implicit in its formalism. The proposed
extension of quantum mechanics is nothing but the inser-
tion of this revised concept of time in the basic structure
of the quantum formalism. The fact that this can be
done so naturally is, for us, a good sign.

Of course, the proposed solution of the issue of time
is only an hypothesis. In order to verify this hypothesis,
a nonperturbative quantum gravitational theory has to
be constructed. In spite of the recent progress in this
direction,3! it is well known that there are major tech-
nical difficulties in the actual construction of a canonical
quantum theory of gravity. In this paper we have tried

to resolve an a priori difficulty which could have under-
mined canonical quantization. We have shown that a
conceptual framework, in which time in quantum grav-
ity is not a problem for the canonical theory, does exist.
Whether or not nature chooses this conceptual frame-
work is an open question.
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