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The Wheeler-DeWitt equation of vacuum geometrodynamics is turned into a Schrodinger equa-
tion by imposing the normal Gaussian coordinate conditions with Lagrange multipliers and then re-
storing the coordinate invariance of the action by parametrization. This procedure corresponds to
coupling the gravitational field to a reference fluid. The source appearing in the Einstein law of
gravitation has the structure of a heat-conducting dust. When one imposes only the Gaussian time
condition but not the Gaussian frame conditions, the heat flow vanishes and the dust becomes in-
coherent. The canonical description of the fluid uses the Gaussian coordinates and their conjugate
momenta as the fluid variables. The energy density and the momentum density of the fluid turn out
to be homogeneous linear functions of such momenta. This feature guarantees that the Dirac con-
straint quantization of the gravitational field coupled to the Gaussian reference fluid leads to a func-
tional Schrodinger equation in Gaussian time. Such an equation possesses the standard positive-
definite conserved norm. For a heat-conducting fluid, the states depend on the metric induced on a
given hypersurface; for an incoherent dust, they depend only on geometry. It seems natural to in-

terpret the integrand of the norm integral as the probability density for the metric (or the geometry)
to have a definite value on a hypersurface specified by the Gaussian clock. Such an interpretation
fails because the reference fluid is realistic only if its energy-momentum tensor satisfies the familiar
energy conditions. In the canonical theory, the energy conditions become additional constraints on
the induced metric and its conjugate momentum. For a heat-conducting dust, the total system of
constraints is not first class and cannot be implemented in quantum theory. As a result, the Gauss-
ian coordinates are not determined by physical properties of a realistic material system and the
probability density for the metric loses thereby its operational significance. For an incoherent dust,
the energy conditions and the dynamical constraints are first class and can be carried over into
quantum theory. However, because the geometry operator considered as a multiplication operator
does not commute with the energy conditions, the integrand of the norm integral still does not yield
the probability density. The interpretation of the Schrodinger geometrodynamics remains viable,
but it requires a rather complicated procedure for identifying the fundamental observables. All our
considerations admit generalization to other coordinate conditions and other covariant field
theories.

I. INTRODUCTION

Geometrodynamics views the Einstein theory of gravi-
tation as a Hamiltonian dynamical system. The intrinsic
geometry and extrinsic curvature of a spacelike hypersur-
face in an Einstein spacetime are limited by a system of
constraints which also generate the evolution of these
quantities under the deformation of the hypersurface.
Nothing in the structure of the constraints helps us to
distinguish the true dynamical degrees of freedom from
the quantities which determine the hypersurface. This
causes severe problems in the interpretation of quantum
geometrodynamics where one is expected to describe an
experimental arrangement which would measure a given
dynamical variable at a given instant of time.

An underlying reason for these difhculties seems to be
that in a generally covariant theory there is no a priori
way of recognizing spacetime events or, in the canonical
theory, of recognizing instants of time and points of

space. As a consequence, one cannot measure the metric,
but only geometry. Geometry is the metric modulo
diffeomorphisms. The invariance under difTeomorphisms
leads to the constraints. The constraints tell us that not
all components of the metric are dynamically significant,
but do not tell us how to separate those which are
significant from those which are not.

Long before people discovered how to treat gravity as
a dynamical system and became preoccupied with its
quantization, they invented a conceptual device for
recognizing events: the notion of a reference Auid. ' The
particles of the fluid identify space points, and clocks car-
ried by them identify instants of time. These fix the refer-
ence frame and the time foliation. The way in which the
Quid moves and the clocks tick is encoded in the coordi-
nate conditions. These are statements about the metric
which hold in the coordinate system of the Quid and are
violated in any other system.

The reference Auid is traditionally considered as a
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tenuous material system whose back reaction on
geometry can be neglected. There is just enough matter
to tell us where we are, but not enough of it to disturb the
geometry. Such a view of the reference Auid has its draw-
backs. Because the spacetime geometry is unaffected by
the Auid, gravity is subject to the same old constraints
and Hamilton equations. The coordinate conditions
break the diffeomorphism invariance too late, after its
unwanted consequences are already felt. Second, the
reference Auid eludes a canonical description: The coor-
dinate conditions tell us how the Auid moves only in-
directly, by telling us how the metric looks in the comov-
ing system. The fluid is not described by its own canoni-
cal variables, and its motion is not derived from a Hamil-
tonian. Gravity is a dynamical system, but the reference
Auid is not. Such a standpoint makes it dificult to in-
corporate the reference Auid as a true physical system
into quantum theory.

This physical picture of the reference Auid is reAected
in the technical procedure by which the coordinate con-
ditions are taken into account. First, the Einstein equa-
tions are derived from the action which is invariant under
spacetime diffeomorphisms and does not mention the
reference Auid. Second, the coordinate conditions are im-
posed. They do not change the Einstein equations, but
merely specify the spacetime platform from which one
observes the gravitational field. In the canonical theory,
this procedure corresponds to taking the original system
of first-class constraints on the geometric variables and
supplementing it by four additional constraints which ex-
press the coordinate conditions. The enlarged system of
constraints is no longer first class, and one is thus able to
eliminate four variables and their conjugate momenta
from the theory, either directly or by using the Dirac
brackets. These are the variables fixed by the coordinate
conditions. The resulting Hamiltonian yields the dynam-
ics of the remaining variables in the coordinate system
carried by the Auid.

In this paper, we shall advocate an alternative way of
handling the coordinate conditions which corresponds to
viewing the reference Auid as a material system coupled
to gravity. We impose the coordinate conditions before
varying the action, by adjoining them to the action with a
set of Lagrange multipliers. The additional terms in the
action introduce a source into the Einstein law of gravita-
tion and break the diffeomorphism invariance of the
theory. The source describes the gravitational effect of
the reference fluid. The loss of invariance suspends the
original constraints. As a result, the metric in the
comoving frame of the Auid becomes measurable.

At this stage, our approach has two defects. The loss
of invariance, while beneficial to our quest for observ-
ables, prevents us from working in any other coordinate
system than that associated with the Auid. Second, we
are still lacking the canonical variables whose change
would describe the motion of the Auid. Both of these de-
fects are rectified by parametrizing the action. Parame-
trization restores the invariance of the action by express-
ing it in arbitrary coordinates while adjoining the
privileged coordinates stipulated by the coordinate condi-
tions to the metric field variables. The privileged coordi-

nates play the role of the Auid variables, and their varia-
tion yields the equations of motion of the Auid.

In the canonical formalism, the Auid variables become
complemented by conjugate momenta. Canonical coordi-
nates of the Auid identify the space frame and instants of
time; the canonical momenta tell us how the frame moves
and the clocks tick. Gravity acts on the Auid, and the
Auid produces a gravitational field. Because the
parametrized action is again diffeomorphism invariant,
the dynamics of the gravitational field coupled to the
coordinate Auid is generated by the familiar super-
Hamiltonian and supermomentum constraints. However,
these constraints now live in an extended phase space of
the metric variables supplemented by the Auid variables.
They are first-class constraints, and there are no other
constraints in the theory.

The Auid variables mark the spacetime events. In their
role of canonical coordinates, they determine an embed-
ding in the encompassing spacetime. On such an embed-
ding, the metric and extrinsic curvature can be freely
specified and become thus classical observables. In the
Dirac constraint quantization, the classical constraints
are turned into restrictions on the physical states of the
system. They yield a functional Schrodinger equation ac-
cording to which the state of the metric field evolves from
one embedding to another. The resulting formalism
offers a clean framework for interpreting quantum
geometrodynamics: The Auid variables enable us to
recognize the instants of time and points of space. As a
result, not only the geometry, but the metric itself be-
comes measurable. The conceptual problems associated
with vacuum geometrodynamics seem to disappear when
gravity is coupled to the reference Auid.

The idea of using phenomenological Auids to interpret
quantum gravity is quite old. In the covariant approach,
DeWitt coupled the gravitational field to an elastic medi-
um carrying mechanical clocks. From these objects, he
constructed idealized apparatuses which, in the spirit of
the Bohr-Rosenfeld analysis of measurability in quantum
electrodynamics, were able to detect appropriate projec-
tions of the quantized Riemann curvature tensor. A little
later, DeWitt used the same device for interpreting the
canonical minisuperspace quantization of the Friedmann
universe. He introduced a cloud of clocks into the mod-
el and studied their correlation with the radius of the
Universe.

An interest in minisuperspace quantization surged
when Misner and his school conducted a systematic
study of homogeneous anisotropic cosmologies. In inter-
preting their results, they did not introduce matter, but
focused attention on the gravitational variables. In this
manner, the difficulties associated with interpreting the
solutions of the vacuum Wheeler-DeWitt equation be-
came apparent. In an attempt to circumvent these
difficulties, Lund' introduced the perfect Auid as a
source of spherically symmetric inhomogeneous
Tolman-Bondi models. Because of the symmetry, the
Auid Aows without rotation. The velocity potential of the
Aow can serve as a clock. The super-Hamiltonian con-
straint is linear in the momentum conjugate to the veloci-
ty potential and the Dirac quantization of the model thus
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leads to a Schrodinger equation.
Neither DeWitt nor Lund attempted to generalize

their respective interpretations of minisuperspace quan-
tum models to full quantum geometrodynamics.
DeWitt's approach was recently rediscovered by Rovel-
li." Rovelli used a square-root Hamiltonian for the
clocks. He argued that when the clock's momentum is
large in comparison with its mass, the Dirac constraint
quantization approximately leads to a Schrodinger equa-
tion. In this argument, Rovelli disregarded the positivity
of the square-root Hamiltonian which, through the neces-
sity of using the absolute value, spoils the Schrodinger
nature of the constraint. Unruh and Wald' also advo-
cated the Schrodinger approach to geometrodynamics.
They noted that the suspension of the constraints is
equivalent to the introduction of a fluid source. They did
not explore the structure and canonical description of
such a source any further, possibly because their aim was
to construct a purely geometric theory. Instead, they
studied a time variable brought in by the unimodular
coordinate condition. '

While the use of phenomenological fluids in quantum
gravity is old, their association with coordinate condi-
tions is a new feature of our approach. It stems from the
problem of representing spacetime diffeomorphisms in
canonical gravity. '" Isham and Kuchar"' resolved this
problem by breaking the invariance of general relativity
by the Gaussian coordinate conditions and restoring it
again by parametrization. This procedure leads to the
modification of the constraints by terms which are linear
in the momenta conjugate to the Gaussian coordinates.
Hartle' discussed the Schrodinger equation obtained by
imposing the new constraints as restriction on the physi-
cal states. In the end he dismissed the new terms as de-
void of physical reality. Halliwell and Hartle' related
the new form of the constraints to the sum-over-histories
approach to quantum gravity. Rovelli" raised the ques-
tion whether the Isham-Kuchar" procedure is related to
his fluid of clocks. This paper elucidates such a relation-
ship and, by identifying the newly introduced variables
with the velocity potentials of the Gaussian reference
fluid, resolves the issue of their physical realizability.

The methods introduced in this paper are applicable to
the reference fluid associated with any coordinate condi-
tions. ' However, the technical discussion is limited to
the Gaussian coordinate conditions. The present work is
part of a broader program of studying the role of coordi-
nate conditions in canonical quantization of generally co-
variant systems. ' The analysis of harmonic coordinate
condition has already been completed and will be present-
ed separately. The general procedure has also been ap-
plied to the unimodular coordinate condition of Unruh
and Wald. ' ' We concluded that the associated time
variable is inappropriate for specifying a spacelike hyper-
surface and thus fails to provide a satisfactory interpreta-
tion of quantum geometrodynamics. ' We have used the
same approach for introducing the conformal, harmonic,
and light-cone gauges in canonical theory of a bosonic
string. Similar techniques have been applied to the
canonical formalism of (induced) two-dimensional gravi-
ty 23

The rest of this paper is entirely devoted to the study of
the Gaussian reference fluid. We follow the general algo-
rithm of adjoining the Gaussian coordinate conditions to
the action by a set of four Lagrange multipliers and then
restoring the invariance of the action by parametrization.
It turns out that the term "reference fluid" eminently fits
the physical interpretation of the field equations: The
energy-momentum tensor appearing in the Einstein law
of gravitation has the structure of a heat-conducting
dust. The Lagrange multipliers which enforce the Gauss-
ian coordinate conditions attain the meaning of the mass
density and heat flow. When we impose only the Gauss-
ian time condition, but not the Gaussian frame condition,
the heat flow vanishes and the fluid becomes an ordinary
incoherent dust. At this stage, an important point arises
which plays a pivotal role in the interpretation of quan-
tum geometrodynamics: The dust can be real only if its
energy-momentum tensor satisfies the familiar energy
conditions. It turns out that for the heat-conducting
dust, the strong, dominant, and weak energy conditions
are all the same. They are expressed by a single inequali-
ty involving the mass and heat multipliers and the metric
tensor. If the dust conducts heat, the energy conditions
may be satisfied by the initial data, but violated in the
dynamical evolution.

The canonical description of the Gaussian reference
fluid introduces the momenta conjugate to the Gaussian
coordinates. The mass and heat multipliers are linear
homogeneous functions of such momenta, and so are the
energy and momentum densities of the reference fluid.
The importance of this feature cannot be overem-
phasized. It underlies the Isham-Kuchar" procedure for
representing spacetime diffeomorphisms by canonical
transformations, and it ensures that the constraints lead
to the Schrodinger equation in the quantum theory.

The presence of the fluid variables makes it possible to
simplify the general canonical formalism by requiring ei-
ther the frame to be Gaussian or the foliation to be
Gaussian, or both of these at once. This leads to three
versions of reduced canonical formalisms which are
directly applicable to quantum theory. The energy condi-
tions in the canonical formalism can be expressed as an
additional set of constraints on the metric and its conju-
gate momentum. For a heat-conducting dust, the
dynamical constraints and energy conditions fail to be
first class. The total system of constraints turns out to be
first class only when the heat flow vanishes and the dust
becomes incoherent.

The Dirac constraint quantization of the gravitational
field coupled to the Gaussian reference fluid leads to a
functional Schrodinger equation. In the reduced canoni-
cal formalism adopted to the Gaussian frame, the state
becomes a functional of the metric induced on a given hy-
persurface. For an incoherent dust, the Gaussian frame
coordinates are missing, the reduction cannot be accom-
plished, and the state depends only on geometry. These
two conceptual frameworks thus lead to different notions
of what variables are physically observable. By reducing
the states to the Gaussian foliation, the functional
Schrodinger equation reduces to an ordinary Schrodinger
equation.
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The functional Schrodinger equation possesses the
standard positive-definite conserved norm. One would
like to interpret the integrand of the norm integral as the
probability density for the metric (or the geometry) to
have a definite value on a hypersurface specified by the
Gaussian clock. For a heat-conducting dust, such an in-
terpretation fails because the energy conditions cannot be
implemented in quantum theory. This means that the
Gaussian coordinates cannot be identified by observing
physical properties of a realistic material system, and the
interpretation of the probability density for a metric loses
thereby its operational significance. For incoherent
Gaussian dust, the energy conditions can be carried over
into quantum theory. The integrand of the norm integral
still cannot be interpreted as the probability density for
the geometry, but the reason is more subtle: When the
geometry operator is implemented as a multiplication
operator, it throws the state out of the subspace on which
the energy conditions are satisfied. The interpretation of
the Schrodinger equation is viable, but it requires a rather
complicated procedure for finding the fundamental ob-
servables and correct expressions for their probability
densities. There is no such thing as a free interpretation
of quantum geometrodynamics.

system of coordinates, the Einstein equations in vacuo fol-
low from the Hilbert action

(2.4)

S [g,b, N, N'j= f dt f d xp' (x)g,b(x)

—H —H6 6
N N (2.5)

is obtained by smearing the gravitational super-
Hamiltonian

(2.6)

by variation of the spacetime metric yzL(X). An
equivalent canonical form of the action is obtained by the
Dirac-AD M (Arno witt-Deser-Misner) rearrangement:
First, the spacetime metric is replaced by the lapse N, the
shift X', and the spatial metric g,b. Second, the momen-
tum p' canonically conjugate to g,b is introduced by the

Leg endre dual transformation. The Hamiltonian
H &+H N of the canonical action

II. GAUSSIAN COORDINATE CONDITIONS
AND THE ACTION PRINCIPLES

Gaussian coordinate conditions are the simplest propo-
sal ever made on how to break the coordinate freedom of
the general theory of relativity: In the normal Gaussian
coordinates X =(T,X"), four components of the space-
time metric y are fixed by four algebraic relations,
namely,

and supermomentum

by the lapse and the shift multipliers:

H &= dxXxH x

H N= f d x N'(x)H, (x) .

The variation of X and X' leads to the constraints

(2.7)

(2.8)

and
H (x) =O=H, (x), (2.9)

yOk p (2.2)
and the variation of g,b,p' leads to the Hamilton equa-
tions of motion

X" X"'=X"'(X') (2.3)

The formalism we are going to build is covariant under
the transformations (2.3).

Our goal is to incorporate the Gaussian conditions into
the action principles of general relativity. In an arbitrary

At least locally, the spacetime can be foliated by the
leaves of a constant Gaussian time T, and the worldlines
X"=const form a congruence which defines the Gaussian
frame of reference. The time condition (2.1) ensures that
the normal proper time separation between two neighbor-
ing leaves of the Gaussian time foliation is everywhere
the same and equal to dT The frame .condition (2.2)
means that the congruence of the Gaussian frame is or-
thogonal to the Gaussian time foliation. One can impose
the time condition (2.1) without fixing the frame (2.2), or
one can impose both conditions at once. These two alter-
natives provide two difFerent conceptual frameworks for
canonical gravity.

Note that the frame condition (2.2) fixes the Gaussian
frame of reference, but it leaves the labeling of its points
arbitrary. Indeed, Eq. (2.2) still holds after the relabeling

g,b(x)= {g,b(x), H ~+H NI,

jr ' (x)= Ip "(x),H ~+H
(2.10)

The foliation in the Dirac-ADM action is arbitrary. In
particular, we can require that it be Gaussian, i.e., that
t = T. The time condition (2.1) then takes the form

%=1 . (2.11)

If we also require that the points on each hypersurface be
labeled by spatial Gaussian coordinates X, i.e., that
x "=X",the frame condition (2.2) gives

~k p (2.12)

Coordinate conditions can be imposed either before or
after the variation. When imposed after the variation,
the Einstein law of gravitation in vacuo, or its canonical
equivalent (2.9) and (2.10), remains valid. The conditions
prescribe only the spacetime coordinate system or, in the
canonical formalism, the passage from one hypersurface
to another. Thus the Gaussian time condition reduces
the Hamiltonian (2.8) to the form h +HN, and the com-



43 GAUSSIAN REFERENCE FLUID AND INTERPRETATION OF. . . 423

piete Gaussian conditions reduce it even further to

h=f dxH (x). (2.13)

(g'~ (x)M(x)) =[g'~ (x)M(x), h J

= —(g'~ (x)M"(x)) „, (2.19)

gg((x)= [gg((x), h [, p "'(x)= [pk'(x), h ] . (2.14)

The former constraints can now be considered as some
ordinary nonvanishing dynamical variables:

M(x;g, p]:=—g
' (x)H (x),

Mk(x;g, p]:=g '~ (x)H k(x) .
(2.15)

For that role, we chose their scalar form and called them
by different names.

The dynamical variables (2. 15) are evolved by the
Hamiltonian (2.13). Because the super-Hamiltonian (2.6)
and supermomentum (2.7) obey the Dirac "algebra, "

[H (x),H (x')] =g '(x)H ( k)5 x((x,x') —(x~x'),
(2.16)

The constraints (2.9) still hold, and the reduced Hamil-
tonian (2.13) thus still weakly vanishes.

When the coordinate conditions are imposed befove
the variation, the rules of the game are entirely changed.
The metric yzL can no longer be freely varied. There are
two equivalent ways of handling this situation. The first
one is to express yzL in terms of some freely variable
quantities so that the coordinate conditions are identical-
ly satisfied. The second way is to adjoin the coordinate
conditions to the action by Lagrange multipliers and vary
these as well as the metric y~~ freely.

The ADM decomposition allows us to treat the Gauss-
ian coordinate condition in the first way. We shall dis-
cuss the situation at the level of the canonical action prin-
ciple (2.5). When the Gaussian time condition (2.11) is
imposed, only N and gk&, p

' are freely variable. The
canonical data g&&,p

' then do not need any longer to
satisfy the super-Hamiltonian constraint H =0. When
the complete Gaussian conditions (2. 11) and (2.12) are
imposed, only gz& and p

' are freely variable. Both the
super-Hamiltonian and the supermomentum constraints
are then suspended. The Hamiltonian (2.13) no longer
vanishes; instead of being a mere combination of the con-
straints, it acquires the status of a true Hamiltonian. Let
us analyze the details of the forma1ism obtained by im-

posing the complete Gaussian conditions.
In the following considerations, t = T and x =X . Be-

cause the constraints are suspended, the evolution can
start from arbitrary canonical data g&&(x),p" (x). These
are evolved by the true Hamiltonian (2.13) according to
the Hamilton equations

(g' '(x)Mk(x))'= [g'~'(x)M„(x), h J
=0 . (2.20)

By Eq. (2.20), the dynamical variables g' (x)Mk(x) are
constants of motion. Equation (2.19) is a continuity
equation for M(x) whose current is given by M "(x).

Let us now treat the coordinate conditions in the
second way: Instead of varying the Hilbert action under
the auxiliary conditions (2.1) and (2.2), we adjoin them to
the action by the multipliers M(X) and Mk(X) (we will
justify the reuse of these symbols below):

S[y~L, M, Mk] S[y—~L]+S [yet, M, Mk],
with

(2.21)

S [yzL, ,M, Mk]

:=f d'x( —
—,'M(x)ly(x)i'"(y"(x)+1)

+M„(x)iy(x) i'"y'"(x)), (2.22)

which yields the Hamilton equation (2.14).

III. PARAMETRIZED ACTION AND THE
STRUCTURE OF THE REFERENCE FLUID

and vary y&L, M, and M freely. The variation of S
with respect to the metric yzL introduces a source term
into the Einstein law of gravitation. We shall provide
its physical interpretation in the next section.

After the Dirac-ADM rearrangement, the action (2.21)
and (2.22) assumes the form

S[gg(,p ', N, N, M, Mq]
= f dt f d x(p"'gq, NH~ N"H—~~—

——'g M(N —N ')+g ' MqNN")

(2.23)

on the Gaussian foliation t =T and in the Gaussian
frame coordinates x =X . Its variation with respect to
M and M& yields Eqs. (2.11) and (2.12). The variation
with respect to N and N" leads then to Eqs. (2.15) which
fix the multipliers M and Mt, as functions of the canoni-
cal variables gk&,p"'. When we use Eqs. (2.11), (2.12), and
(2.15) to eliminate the multipliers N, N" and M, Mk from
the action (2.23), we obtain the canonical action

S[g&&,p"']= f dt f d xp"'gk& —h, (2.24)

k(x), H (x')j =H (x)5&(x,x'), (2.17)

[H „(x),H, (x')] =H ((x)6 k(x, x') —(kx~lx'),
(2.18)

and the Hamiltonian (2.13) is an integral of H (x), we see
that

The Hilbert action S is invariant under arbitrary
transformations of the spacetime coordinates X . The
action S whose variation enforces the coordinate condi-
tions breaks this invariance. As a result, the field equa-
tions obtained by varying the total action (2.21) hold only
in the Gaussian coordinate system. One knows, however,
that one can always restore the diffeomorphism invari-
ance of the action by its parametrization. This process
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consists of expressing the privileged (Gaussian) coordi-
nates X =( T,X") as functions of arbitrary (label) coordi-
nates x

XK XK( a) (3.1)

S[y p, MK, X =5 x ]=S[yKL,MK] . (3 2)

The Hilbert action is invariant by itself, and one does not
need to adjoin the functions (3.1) to the metric variables
yKI to satisfy Eq. (3.2):

and adjoining these functions to the original field vari-
ables.

The new action S[y &,MK, X ] is uniquely determined
by the requirements that it be invariant under transfor-
mation of x" and reduce to the old action S[yKI, MK]
when the Gaussian coordinates are used as the labels:

&&PT ~k =0
,p (3.9)

Because of the invariance of the action, the Euler equa-
tions of the fluid follow from the Einstein law (3.6) and
(3.7) and the coordinate conditions (3.8) and (3.9).

The Gaussian frame and Gaussian time have a number
of important geometric features which stem from the
coordinate conditions (3.8) and (3.9). Introduce the vec-
tor field

Ua. aPT
,p (3.10)

which is the four-velocity of the Gaussian frame. By Eq.
(3.8) U is unit and timelike; under the assumption that
the Gaussian time T grows from the past to the future, it
is also future pointing. Moreover, U is irrotational and
geodesic:

S'[y.,]=f d'xlyl'"~[y. ,]. (3.3)
U) p)

=0 and U .pUP=O . (3.11)

The condition (3.2) is, however, needed to determine the
parametrized action S:

The symmetric tensor U[ .p] is purely spatial:

U[ .p] U =0 (3.12)

S (y g, MK, X ]
= f d'x( ,'M~y~'—"(—yi'T.T +I)

it describes the expansion and shear of the Gaussian
frame.

The projection

j

1/2 a/3T Xk ) (3.4)
A

ki'. ~p~k ~ 1

,u, p (3.13)

Under the transformations of x, both the Gaussian
coordinates X (x )=(T(x ),X"(x )) and the inulti-
pliers MK(x )=(M(x ),Mk(x )) behave as scalars. The
action (3.4) is thus manifestly invariant under arbitrary
transformations of x . By comparing the new action
(3.4) with the old action (2.22), one easily verifies Eq.
(3.2).

The coordinate invariance of the parametrized action

S[y is, MK, X ]=S [y ii]+S [y p, MK, X ] (3.5)

GaP l ToP
2

(3.6)

in which

T i'=2~y~ '"8SFyny (3.7)

is the energy-momentum tensor of the reference Quid.
The variation of the multipliers M~ yields the Gaussian
coordinate conditions

and

y PT T p+1=0, (3.8)

implies that the equations of motion obtained by varying
X (x ) follow from the equations obtained by varying
the remaining variables y p and Mz. The action S de-
scribes a source of the gravitational field. We shall call
this source the Gaussian reference fluid. We have chosen
this term with care: We shall show that the source
behaves very much as an actual Quid. The variables
X (x ) play the role of the velocity potentials, and their
variation yields the Euler hydrodynamical equations. '

The variation of the action with respect to y p leads to
the Einstein law of gravitation

is the Gaussian three-metric on the leaves T(x ) =const.
It behaves as a contravariant tensor under transforma-
tions (2.3) of the Gaussian coordinates X". It can be used
for raising and lowering the Gaussian indices. The vec-
tors (U, Xk =hk&y ~X'&) form an orthogonal basis.
These vectors are tangent to the coordinate lines of the
Gaussian system. Like U[ .p], the symmetric tensor
Xk~ .p] is purely spatial:

Xk[ .p] U =0p (3.14)

From the multipliers Mk and the cobasis elementsX,we can form a spacetime covector

M =M Xk M U~=o (3.15)

T P=MU UP+M'UP'. (3.16)

The tensor (3.16) has the form of the Eckart energy-
momentum tensor of a heat-conducting Quid. The vec-
tor U is the four-velocity of the Quid, the multiplier M is
its mass density, and the vector M constructed from the
multipliers Mk is the heat (low. (From now on, we shall
call Mk the heat multipliers. ) The energy-momentum
tensor (3.16) does not have any stress part 6 P; the coor-
dinate Quid thus behaves as a dust. When we impose
only the time condition, but not the frame condition,
Mk=0, the heat How vanishes, and T p describes an in-

Under the transformation (2.3) of the Gaussian coordi-
nates, Mk behaves as a covector. This ensures that the
action (3.4) remains invariant and that M of Eq. (3.15)
depends only on the Gaussian frame, not on the choice of
the Gaussian coordinates. This brings us to the point at
which we can write the energy-momentum tensor (3.7) of
the reference Quid in a physically transparent way:
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coherent dust:

T ~=MU U~. (3.17)

By virtue of the Einstein law (3.6), T ~ is covariantly con-
served:

The dominant energy condition requires that both ine-
qualities (4.1) and (4.2) be satisfied.

In singularity theorems, one often needs as an input the
strong energy condition which, in addition to Eq. (4.1), re-
quires that

ToP 0;/3 (3.18) VaVP~ 1 TP yVo. V+VnP /3 A (4.3)

The conservation law (3.18) can be projected into the
cobasis U, XA. . Because of Eqs. (3.12) and (3.14), these
projections yield two continuity equations:

(U T ~).ii=0=(XI, T ~).
is . (3.19)

From the structure (3.16) of the energy-momentum ten-
sor, we get the concrete form of the conserved currents:

(MUi" +Mis).p=o, (3.20)

(Mq U~).i3=0 . (3.21)

Equations (3.20) and (3.21) are the Euler hydrodynamical
equations of the Gaussian reference fluid. They can also
be obtained by varying the Gaussian coordinates X (x ).
Equation (3.20) tells us that the rest mass of a comoving
element of dust increases when heat flows into the region.
Similarly, Eq. (3.21) tells us that the quantities Mk in the
comoving element are conserved. This is best brought
out when we write Eqs. (3.20) and (3.21) in the Gaussian
system of coordinates t = T, x k=X~, which is the comov-
ing system of the fluid. Then U =60, X"=5, and
h"'=g"'. Equation (3.20) and (3.21) thereby assume the
form (2.19) and (2.20).

p~0 and ~~, ~~ —p for a=1,2, 3 . (4.4)

A tensor of type II satisfies the weak energy condition if

In principle, a physical system may violate the condition
(4.3).

The energy conditions can be expressed in terms of
eigenvectors and eigenvalues of the energy-momentum
tensor. Classified by its eigenvectors, any T ~ necessarily
belongs to one of the following types: type I: T ~ has
three spacelike eigenvectors and one timelike eigenvector;
type II: T ~ has two spacelike eigenvectors and a double
lightlike eigenvector; type III: T ~ has one spacelike
eigenvector and a triple lightlike eigenvector; and type
IV: T ~ has two spacelike eigenvectors and no timelike
or lightlike eigenvector.

To satisfy the weak energy condition, the energy-
momentum tensor must be either of type I or II. More-
over, its eigenvalues must satisfy certain inequalities. To
write them down, we shall denote those eigenvalues
which belong to spacelike eigenvectors by w~, ~

(these are
the principal stresses). We shall call the eigenvalue which
belongs to a timelike or a lightlike eigenvector —p, (for a
type-I tensor, p is the proper energy density).

An energy-momentum tensor of type I satisfies the
weak energy condition if

IV. ENERGY CONDITIONS p &0 and ~(,~&0 for a =1,2, (4.5)

The use of Gaussian conditions as auxiliary conditions
in the Hilbert action principle is a purely formal device.
It is quite surprising that the energy-momentum tensor
(3.16) which emerges from this procedure seems to de-
scribe a simple physical system, namely, heat-conducting
dust. If we had such a material at our disposal and scat-
tered it throughout space, we could identify the Gaussian
coordinates with its physical state variables. Figuratively
speaking, we could anchor the Gaussian coordinates into
the physical world lines of the dust. However, unlike an
abstract Gaussian system, the dust can be real only if its
energy-momentum tensor satisfies appropriate energy
conditions.

The energy conditions ensure that the energy density
and energy current measured by an arbitrarily moving lo-
cal observer have reasonable physical properties. The ob-
server is completely characterized by its four-velocity V,
V V = —1. At the very least, a physical system must
satisfy the weak energy condition: The energy density
cannot be negative, i.e.,

and, moreover, if

T pL L~&0, (4.6)

m~, ~

~ p for a =1,2, 3 . (4.7)

It satisfies the strong energy condition if it satisfies Eq.
(4.4) and

a = 1

(4.8)

A tensor of type II satisfies the dominant energy condi-
tion if it satisfies Eqs. (4.5) and (4.6) and

where L is the lightlike vector orthogonal to the space-
like eigenvectors and linearly independent of the lightlike
eigenvector.

The dominant and strong energy conditions subject the
eigenvalues to additional inequalities. A tensor of type I
satisfies the dominant energy condition if it satisfies Eq.
(4.4) and

T/3V V~~0 VV: V V = —1. (4.1) ~~,~~p for a =1,2 . (4.9)

SS ~0 VV:V V = —1, S:=—T~V (4.2)

Indeed, one can also justifiably argue that the energy flow
S should never become spacelike:

For a tensor of type II, the strong and weak energy con-
ditions are the same.

Let us now decide when the Gaussian reference fluid
satisfies the energy conditions. First of all, it is obvious
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is a doubly degenerate eigenvalue and its eigenvectors fill
a two-dimensional spacelike plane. This means that the
energy-momentum tensor (3.16) cannot be of type III. It
also means that if T ~ is of type I, the weak energy condi-
tion implies the strong energy condition, and if it is of
type II, the weak energy condition implies both the dom-
inant and strong energy conditions.

Let us first discuss T ~ when M =0. The energy-
momentum tensor must have this form if we impose only
the time condition, but not the frame condition, or it may
happen to have it through a particular choice of the ini-
tial data. Every vector orthogonal to U is then a space-
like eigenvector with the eigenvalue 0. This becomes tri-
ply degenerate:

7T( J ) 7T(2) 7T(3) 0 ~ (4.1 1)

U itself is a timelike eigenvector of T ~ with the eigen-
value —p=M. The weak energy condition is satisfied for

(4.12)

and the dominant and strong energy conditions are
satisfied as well.

Next, let M %0. We know that the spacelike eigen-
vectors with the eigenvalue (4.10) fill a plane. The
remaining eigenvectors of T ~, if any, must lie in the or-
thogonal plane which is spanned by M and U:

Ya M gU (4.13)

The eigenvalue equation T&Y~- Y tells us that the
coeKcient A, in Eq. (4.13) is actually the eigenvalue and
that it must satisfy the characteristic equation

~'+Ms+ IMI'=0,

iMi =y ~M Mp=h"'M M
(4.14)

The solutions of Eq. (4.14) are

X+ ——'( —M+(M' —4~~ ~')'") (4. 15)

We see that for ~M
~

& 2
~
M

~

there are no real eigenvalues,
and T ~ is thus of type IV.

For ~M~ =2~M~, T ~ has a double eigenvalue
k+ =A, =:—p= —

—,'M with the lightlike eigenvector

Y =M +—'MU
2 (4.16)

The coordinate fluid is then of type II. The second light-
like vector in the plane M, U is

L, = —M +—'MU
2 (4.17)

The weak energy condition (4.5) and (4.6) again amounts
to Eq. (4.12). As we have already noted, the weak energy
condition in this case implies the dominant and strong
energy conditions.

that any vector orthogonal to U and M is a spacelike
eigenvector of the coordinate fiuid (3.16) belonging to the
eigenvalue 0. Therefore,

(4.10)

For ~M
~

) 2~M ~, T ~ has two real eigenvalues (4.15). If
M & 0, Y+ is timelike and Y is spacelike. Because
p= —

A, + &0, the weak energy condition is then violated.
If M )0, Y+ is spacelike and Y is timelike. The eigen-
values

P= —a =-,'(M+(M' —4~m~')'") &0

=0(1) (&) (4.18)

~„,=& =-,'( —M+(M' —4~~~')' )&0

If it is satisfied, the dominant and strong energy condi-
tions are satisfied as well. When we impose only the
Gaussian time condition, the Gaussian fluid is an in-
coherent dust (3.17). The weak energy condition then
reduces to Eq. (4.12); it again implies the dominant and
strong energy conditions. The reference fluid which
obeys Eq. (4.19) can be proclaimed to be, if not really
real, then at least realistic.

The fundamental physical fields (like the electromag-
netic field) typically satisfy the energy conditions by the
way in which their energy-momentum tensor is con-
structed from the field variables. Relativistic fluids satis-
fy the energy conditions by virtue of their equations of
state. The Gaussian fluid does not have any equation of
state; the energy condition (4.19) is simply an inequality
involving the Lagrange multipliers M, M& and the metric
tensor. It is thus conceivable that it is satisfied by the ini-
tial data, but gets violated in the dynamical evolution.

A little reflection shows that this cannot happen for an
incoherent dust (3.17). If, in the Gaussian system of
coordinates t =T and x"=X",we start with M(x)~0 at
t =0, Eqs. (2.19) and (2.20) ensure that
g' (t, x)M(t, x)=g' (x)M(x) ~0. However, for a
heat-conducting fluid it is easy to give initial data
gj,i(x),p '(x) such that M(t, x) and M&(t, x)%0, defined
by Eqs. (2.15), satisfy the energy condition at t =0, but
violate it for a later t. Let us present an example of such
data that, shortly before t =0, the Gaussian fluid is of
type I and satisfies the energy condition, at t =0 it be-
comes type II while still satisfying the energy condition,
but slightly later than t =0 it becomes type IV and thus
violates the energy condition.

Study the dynamical variable

E(x;g, p]:=M(x)—2~M(x)~ . (4.20)

The sign of I' determines whether the reference fluid
satisfies the energy conditions and it gives its type:

satisfy the weak energy condition which, as mentioned,
also implies the strong energy condition. Moreover, the
eigenvalues (4.18) satisfy also the dominant energy condi-
tion (4.7).

To summarize, the weak energy condition for the
Gaussian reference fluid requires

(4.19)
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)0, type I
, energy conditions satisfied,

type»,
(0, type IVI energy conditions violated . (4.21)

~s we evolve gk1(x) and p"'(x) by Eq. (2.14) along a
Gaussian foliation, Eqs. (2.19) and (2.20) yield

The super-Hamiltonian of the coupled system is obtained
by adding to the gravitational super-Hamiltonian (2.6)
the energy density H of the Quid. Similarly, the super-
momentum is the sum of the gravitational supermomen-
tum (2.7) and the momentum density H, of the fiuid.
Because the Quid potentials X are spatial scalars, the
momentum density H, must have the form

(g' F) = —(g' M ) +2fMf '(p ' ——'pg"')M M
H~. =P~X~.=PT.+P X' (5.4)

(4.22)

To prove our point, we give gk&(x) and p"'(x) such that
F(x)=0 and (g' (x)F(x)) (0: We endow a three-torus

with a Rat metric gkI =6kI in the Cartesian angle coor-3

dinates x"=(x,y, z), x "H (0,2n), and put

where Pz=(P, Pk) are the momenta canonically conju-
gate to X =(T,X"). The only quantity which we need to
calculate is H . For this purpose, it is justified to simpli-
fy the procedure by putting X'=0.

After the ADM decomposition with N'=0, the La-
grangian density of the Quid assumes the form

11 22 33
( 2+ 2 )1/22

V'3

p' =u sinx, p' =a cosx, p =0,
where cx )0 is a positive constant. We get

M =4m,

Mk =2a(0, —cosx, sinx )
—. (g '/ M")

k =0,

(4.23)

=—'g'/ M(N 'T —NW )
2

—g'/ Mk(N 'TX" NW—") .

We have introduced the abbreviations

8'.=(1+g'"T,T b )
) )

(5.5)

(5.6)

(5.7)

and

fMf=2a,

(4.24)
for two kinds of "potential energies" of the Quid which
run as coeKcients through all our calculations.

We can now introduce the momenta

and hence

~ 4F=0, F= — a(a +2a)' (0,v'3 (4.25) and

P.=
F
. =g'"N '(MT M-„X"),—

aT
(5.8)

The Lagrangian density

,'Mf) f'/2(7 ~T—.—T,+1)

fy f

1/2 a s ITXk (5.1)

as desired,
We can summarize our discussion by two statements:

The Gaussian reference Quid is realistic only if the multi-
pliers M, Mk satisfy the inequalities (4.19). Even if it is
realistic at one time, it can become unrealistic later. This
foreshadows the problems encountered in interpreting
the Schrodinger equation obtained by quantizing
geometry whose source is the reference Quid.

V. CANONICAL DESCRIPTION
OF THE GAUSSiAN REFERENCE FLUID

P:= . = —g'~X 'M T.aZF
k ~Xk k (5.9)

From Eq. (5.9), we see that Mk and Pk are not indepen-
dent; they satisfy the constraints

M)kPI)=0 . (5.10)

As a consequence, not all the velocities X ", but only their
combination MkX, can be expressed back as functions
of the momenta. One can either adjoin the constraints
(5.10) to the action by a new set of multipliers, or solve
them immediately and not worry about them any more.
The second option is simpler. The constraints (5.10)
mean that Mk is parallel to Pk', one can thus express the
heat multipliers Mk in terms of a single multiplier J and
the momenta Pk.

of the Gaussian reference Auid (3.4) does not contain any
derivatives of y & . The canonical form of the
parametrized action (3.5) thus follows the pattern of all
theories with nonderivative gravitational coupling:

S[g,b, M~, X ]
= I dt I d x(p' g,„+PKX NH N'H, ), — —

with

M= —g
' JP

Equation (5.9) then reads

T=XJ

and Eq. (5.8) can be inverted as

M X"=N( —g
' P+MJ ') .

(5.1 1)

(5.12)

(5.13)

HG+HF H HG +HF (5.3) The Hamiltonian density
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&:=PT+PkX "—X (5.14)

BM
(5.16)

This determines the multipliers in terms of the Quid vari-
ables:

J=+8', (5.17)

depends only on the combinations (5.12) and (5.13) of the
velocities. When expressed in terms of the momenta, it
takes the form & =NH, with

H'=J 'P-+JW"P„+ ,'g'"-M(W-' —Z ') . (5.15)

The action (5.2) —(5.4) and (5.15) still contains the mul-
tipliers M and J. The value of the multipliers is fixed by
the condition that their variation leave the action station-
ary, which leads to X" (x)=X"(X'(x) ), (5.25)

Each vector field B(X) generates a one-parameter sub-
group of DifFX; the corresponding one-parameter sub-
group of canonical transformations (5.25) is generated by
the dynamical variable

p(e):= J d x e (X(x)}Pk(x) (5.26)

the Gaussian coordinates X . This invariance must be
reQected in the canonical formalism as an internal sym-
metry of the Hamiltonian. Let us find the generators of
this symmetry.

The transformations (2.3) form a group, namely, Diff.
Its Lie algebra, LDiffX, consists of all (complete) vector
fields B=e"(X)Bk on X, closed under the Lie bracket
operation —[B„ez]. A transformation (2.3) induces a
point transformation of the canonical variables
X"(x),Pk (x):

and

m=g-'"w(p —w'w9„) . (5.18)

according to the equations

= IX"(x),P(e) I,

Mk= —g
' O'Pk . (5.19)

The positive sign in Eq. (5.17) is forced upon us by the re-
quirement that T grow from the past to the future, i.e.,
that N) 0 T) 0 in Eq. (5.12). The heat multipliers
M& are then given by Eqs. (5.11) and (5.17):

dPq (x) =IP (kx), P(e)I .

The generators P(e) represent LDiffZ because

I p(e, ),p(e, ) I
=p( —[e,,e,]) .

(5.27)

(5.28)
We can now eliminate the multipliers from the action

by substituting expressions (5.17) and (5.18) back into Eq.
(5.2). The energy density (5.15) of the reference fiuid be-
comes thereby a linear homogeneous function of the mo-
menta:

One can verify that the canonical transformation (5.27)
generated by P(e) does not affect the dynamics of the
reference Quid coupled to gravity, i.e., that it leaves in-
variant the Hamiltonian H&+ HN of the system:

H =n P =8 'P+8'O' P (5.20) IH&+HN, P(B)I =0 O' N, N and Ve . (5.29)

This is a remarkable feature, and we shall devote the rest
of this paper to its exploration.

The coefficients

Because the gravitational super-Hamiltonian and super-
momentum do not depend on the Quid variables, Eq.
(5.29) reduces to the requirement

n~=(w ', ww')- (5.21) IH (x)„P(e)I=O=IH, (x),P(e)I (5.30)

can be identified with the components of the unit normal
to the hypersurface in the Gaussian system of coordi-
nates:

(5.22)

Equations (5.22) follow from the coordinate conditions
(2.1) and (2.2) and from the connection

gab 'VKL+, g+, b T a T b +Akl+, a+,. b
K L k (5.23)

between the Gaussian metric hk& on T= const and the in-
duced metric g, z on X. Note that Eq. (5.23) can be in-
verted for the Gaussian metric:

(g ~& w~T~T~)
, a (5.24)

with T':=g'"T &. The energy condition (4.19) on the
multipliers (5.18) and (5.19) can then be expressed as limi-
tations on the range of the canonical momenta PK.

The spacetime action (3.4) of the reference fiuid
remains invariant under arbitrary transformations (2.3) of

p(e)=o ve —p, =o —M„=o, (5.31)

the vanishing of all P(B)'s implies that the reference
Quid does not conduct heat and reduces thereby to an in-
coherent dust.

Let us relate the canonical formalism for the reference
Quid to the spacetime approach. En theories with non-
derivative gravitational coupling, the energy density H
and the momentum density H, are the I I and I

~~
pro-

jections of the energy-momentum tensor on X:

7 an P —1/2H F T n a+@ —1/2HF
&n n =g ann b (5.32)

Moreover, H alone determines the remaining stress

on the energy and momentum densities of the Quid. It is
easy to check that Eqs. (5.30) are satisfied by expressions
(5.20) and (5.4).

The generators P(e) which leave the Hamiltonian in-
variant [Eq. (5.29)] are by the same token constants of
motion. For the general state of the Quid, these constants
do not vanish. Because
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components of T &.

T =T aH
ab ' aP,a, b abag

(5.33)

Equations (6.1) attain thereby the form

P = 8' 'H —T'H, , (6.5)

The right-hand sides of Eqs. (5.32) and (5.33) belong to
the canonical formalism. The energy-momentum tensor
on the left-hand sides follows from the spacetime ap-
proach. Equations (5.32) and (5.33) connect these two
standpoints.

For the Gaussian reference Auid, H and H, are
given by Eqs. (S.20) and (5.4). Expressions (5.18) and
(5.19) determine the mass density M and heat ffow Mk as
dynamical variables on the phase space. By
differentiating H with respect to g', one obtains

and

P„=—W 'T „H +(X„'+T'T„)M (6.6)

IIx:=Px+hx =0, h~:= n~H—+XgH, ,. (6.7)

or

g.=P+ ~—
H —T H& =0a (6.8)

This arrangement leads to an alternative form of the
constraints:

T b=MTaT b MkT(aX b) . (5 34) and

On the other hand, the spacetime energy-momentum ten-
sor is given by Eq. (3.16). One can easily check Eqs.
(5.32) and (5.33) by evaluating the projections of T &

in
the Gaussian coordinates, referring to Eq. (5.21) for the
normal n

The canonical formalism vastly simplifies when one
chooses not to impose the Gaussian frame conditions, but
only the Gaussian time condition. The derivations be-
come straightforward, and we leave them to the reader.
The final results can be obtained from those we have
presented by putting Pz =0 in Eqs. (5.4), (5.20), and
(5.18):

H =8 'P H =T,P, (5.35)

and

M=g '~ 8'P . (5.36)

The Gaussian clock T tells us how to draw the hypersur-
faces of constant time, but the phase space (T,P) lacks
the markers X which auld identify the spatial points.
Such a shift of the conceptual framework has far-
reaching consequences for the quantum theory.

VI. CANONICAL REPRESENTATION
OF SPACETIMK DIFFEOMORPHISMS

P & HF+Xa HF (6.1)

Here

J a J ba
n+ j +Jg XQ j +JX bg (6.2)

is the cobasis dual to the normal basis (n,X, ). Let Xk
denote the inverse matrix to X

X' X'=a' X' Xb=nb
, a j j~,a k a

Equations (6.2) and (S.21), (5.23) then give

nK=(W ', —W '—T g),

(6.3)

(6.4)

The energy density (5.20) and momentum density (5.4)
of the reference fluid are linear combinations of the mo-
menta Pz. Inversely, the momenta can be expressed as
linear combinations of these densities:

II, :=P„W 'T—„a-'+(X;+T'T „)a'.=O .
(6.9)

The old constraints (5.3), H =O=H„and the new con-
straints (6.7) are completely equivalent. However, the
momenta Pz in Eq. (6.7) are clearly separated from the
rest of the canonical variables. This has an important
consequence for the constraint algebra. The old con-
straints (5.3) are the super-Hamiltonian and super-
momentum of a system nonderivatively coupled to gravi-
ty; as such, they close according to the same Dirac rela-
tions (2.16)—(2.18) as their purely gravitational counter-
parts. On the other hand, the Poisson brackets of the
new constraints (6.7) strongly vanish:

(II,(x), II (x'))=0. (6.10)

This remarkable fact follows by a neat argument which
circumvents the tedious algebra: Because the new con-
straints are equivalent to the old constraints and the Pois-
son brackets of the old constraints weakly vanish, the
Poisson brackets of the new constraints must also weakly
vanish. However, the form (6.7) of the new constraints
ensures that these brackets do not depend on the momen-
ta Px. The constraints (6.7) thus cannot help in any way
to turn those brackets into zeros; this means that the
brackets must vanish strongly.

Equation (6.10) underlies the method by which the Lie
algebra LDiKJV of the spacetime diffeomorphism group
Diff'A, is homomorphically mapped into the Poisson alge-
bra of the dynamical variables on the phase space of the
Gaussian coordinate Quid coupled to gravity. It was
originally proved by direct but lengthy calculations rely-
ing heavily on special properties of the Gaussian coordi-
nate conditions, in particular, on their ultralocality. '

Here Eq. (6.10) follows by a general argument easily appl-
icable to other coordinate conditions. We have thus dev-
ised an algorithm leading to the canonical representation
of LDiff At for a large class of coordinate conditions. We
shall show how it works for an important case of the
DeDonder harmonic coordinate conditions in a separate
paper.

Once the momenta Pz conjugate to the privileged
coordinates X are separated [Eq. (6.7)], and the new
constraints are shown to satisfy Eq. (6.10), the canonical
representation of LDiffA, becomes straightforward. The
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u~II(u):= j d'x u (X(x))II~(x), (6.1 1)

we map each vector field u into a dynamical variable over
the phase space of the coordinate Quid coupled to gravity.
Equations (6.7) and (6.10) guarantee that

elements of LDiffJM are vector fields u, v, . . . , on JR, and
the Lie bracket is their commutator —[u, v]. In the
privileged Gaussian coordinates, the vector fields are
characterized by their components u (X) and U (X).
When restricted to an embedding X =X (x), the vector
fields become dynamical variables over the configuration
space of the coordinate Auid. When we use them to
smear the new constraints on X,

%=8'X, H=8 'H .

The reduced action assumes the form

(7.5)

5 [T(X),gkt(X);P(X),p"'(X);X(X)j

dt d3X PT+p kigki —NH, 7.6

with

We can solve the supermomentum constraint with
respect to Pk and eliminate Pk by substituting this solu-
tion back into the action. In this process, it is convenient
to rescale simultaneously the lapse function and the
super-Hamiltonian:

I II(u), 11(v) I
=11(—[u, v]), (6.12) H=P —g T kH +8' 'H

7

(7.7)

i.e., that the mapping (6.11) is a homomorphism from
LDiAJM into the Poisson bracket over the phase space.
The geometric meaning of the dynamical variables (6.11)
is extensively discussed in our previous papers. '

The remaining variables T, gki, P, p ', and X are now all
considered as functions of the Gaussian coordinates X .

The meaning of the rescaled quantities X and H is re-
vealed by evaluating the Poisson bracket

VII. REDUCED CANONICAL FORMALISMS T(X)= I T(X),Hg I
=X(X) . (7.8)

The Gaussian reference Auid introduces a privileged
frame of reference and a privileged foliation into space-
time, but the canonical formalism we have developed is
capable of describing the change of the gravitational field
in an arbitrary frame of reference and along an arbitrary
foliation: We can follow the change of the field along any
one-parameter family of embeddings X =X (t, x). The
timelike lines of a constant x' do not need to coincide
with those of the Gaussian frame and the spacelike hy-
persurface of a constant t with those of the Gaussian foli-
ation.

The general canonical formalism simplifies when one
requires either the frame to be Gaussian or the foliation
to be Gaussian, or both of these at once. Appropriate
canonical variables are eliminated from the canonical for-
malism, and one works with a reduced phase space. The
questions one can naturally ask are thereby limited, but
the reduced canonical description provides a suitable
framework for their discussion. We shall introduce three
versions of the reduced canonical formalism and use
them later in the quantum theory.

In the first version, we label the points of spacelike hy-
persurfaces by the Gaussian coordinates,

~k k

IH(X), H(X')I =0 . (7.9)

In the second version of the reduced canonical formal-
ism, we confine ourselves to the leaves of the Gaussian
foliation,

(7.10)

but leave the x-frame arbitrary,

X"=X"(T,x) .

As a result, many dynamical variables simplify:

(7.1 1)

The rescaled lapse function tells us what is the Gaussian
time separation between the neighboring spacelike hyper-
surfaces T = T (X, t) and T = T (X, t +dt) along the world
line X"=const of the Gaussian frame. [In comparison,
the lapse function N(x) determines the proper time sepa-
ration between the neighboring hypersurfaces measured
in the normal direction. ] The rescaled super-
Hamiltonian H thus generates the change along the
world lines of the Gaussian frame per unit Gaussian time.
The argument evoked in connection with Eq. (6.10)
guarantees that the rescaled super-Hamiltonians have
strongly vanishing Poisson brackets:

but leave the hypersurfaces themselves arbitrary. The
condition (7.1) stipulates that the x-frame be Gaussian.
%'e specify a hypersurface by giving T as a function of
~k,

8'=1 and 8' =0,

M=g 1/2P, Mk ———g-1~2Pk

(7.12)

(7.13)

T=T(X") .

It follows that

gki =hki —T k T i and 8'"=g 'T
i .

(7.2)

(7.3)

IIF=P, aF. =Xk.P,, a k

g, i =hkiX, Xk k

(7.14)

(7.15)

H k=Pk+T kP . (7.4)

The expressions for H, M, and Mk do not simplify.
However, We can solve the super-Hamiltonian cons:raint with

respect to P and eliminate P by substituting this solution
back into the action,
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S [X "(x),g, l, (x);Pk(x),p'"(x);N'(x)]
= f dT f d'x(P„(x)X "(x)+p'"(x)g.„(x)

H—(x) N—'(x)H, (x ) ) . (7.16)

H (x;X,Pk, g,b] ~0 (8.1)

on an arbitrary hypersurface. ' The super-Hamiltonian
constraint allows us to reexpress this condition entirely in
terms of the geometric variables:

h=f dxH' (x) (7.17)

evolves the variables along the world lines of the Gauss-
ian frame from one Gaussian hypersurface to another.
The superrnomentum

H, =X,PI, +H, ,
1

(7.18)

smeared by the shift vector N', generates the change
which leaves the Gaussian hypersurface fixed, but dis-
places its points into new positions. The Poisson brackets
of the supermomenta (7.18) represent the algebra of spa-
tial diffeomorphisms LDifFX [Eq. (2.18)], and the super-
momentum constraints commute with the Hamiltonian
(7.17):

[H, (x),h I =0, (7.19)

The maximal reduction of the canonical formalism is
accomplished by staying on the Gaussian foliation and
parametrizing its points by Gaussian coordinates. The
reduced action is obtained either by putting T = t in the
action (7.6) and solving the constraint H=0 with respect
to P, or by putting X"=x"in the action (7.16) and solv-
ing the constraint H, =0 with respect to P&. The re-
duced action

&[g„,(X),p"'(X)]=f dZ f d Xp" (X)g„,(X)—h

(7.20)

depends only on the Gaussian metric

The remaining variables are given on the leaves (7.10) of
the Gaussian foliation as functions of arbitrary spatial
coordinates x'. The variables X (x) tell us how the la-
bels x' are connected with the Gaussian frame. The true
Hamiltonian

H (x;g,l„p' ] ~0 . (8.2)

0 for z+0
1 for z)0, (8.3)

we can replace the inequality (8.2) by an equality

B(H (x ) ) =0 b'x E X, (8.4)

i.e., by a system of constraints. This is handy for discuss-
ing the role of energy conditions in quantum theory. The
step function B(H ) is the characteristic function of the
forbidden region of the phase space: Its value is 1 if the
phase-space point lies in the forbidden region and 0 if it
lies outside of it, i.e., if it lies in the permissible region.

To guarantee that the reference Auid be realistic, let us
adjoin the energy conditions (8.4) to the super-
Hamiltonian and supermomentum constraints. Unfor-
tunately, the extended system of constraints is no longer
first class. The superrnomentum constraints remain first
class because the energy conditions are invariant under
spatial diA'eomorphisms. Formally, this follows from the
closure relation (2.17) and the well-known property
z5(z) =0 of the 5 function:

[B(H (x)),H, (x')]=5(H (x))[H (x),H, (x')I

=H (x)5(H (x))5,(x,x')

The inequality (8.2) selects the physically permissible re-
gion of the phase space: The geometric data
g,b(x),p' (x) are subject to the restriction (8.2), the
(spacelike) hypersurface X (x) is arbitrary, and the
embedding momenta Pz(x) are determined from the con-
straints (6.7).

By introducing the step function

gkl(X) hkl(X) (7.21) =0. (8.5)

and its conjugate momentum. These variables are pro-
pagated by the true Hamiltonian (7.17), with X =x
There are no constraints left in the theory.

However, the super-Hamiltonian constraints are not first
class because their Poisson brackets with the energy con-
ditions turn out to be nontrivial. By virtue of the closure
relations (2.16) and Eq. (5.33),

VIII. ENERGY CONDITIONS
IN HAMILTONIAN FORMALISM [B(H'(x)),H(x )]

We have seen that the strong and dominant energy
conditions for the Gaussian reference Auid are equivalent
to the weak energy condition. The weak energy condi-
tion requires that the energy density of the Quid rnea-
sured by an arbitrary local observer be non-negative.
This requirement has a simple transcription in terms of
the canonical variables. The energy density H measured
by an observer who is moving with the four-velocity n
normal to the hypersurface is given by Eq. (5.20). The
weak energy condition thus amounts to the statement
that

=5(H (x))(H '(x)5, (x,x') —(x~x')

+g G i„~T "p '"5(x,x '
) ) . (8.6)

Even if the constraints (6.7) and the energy conditions
(8.4) are satisfied, the Poisson brackets (8.6) do not van-
ish. This rejects the fact noted in Sec. IV that the energy
conditions for a heat-conducting Gaussian Quid are not
preserved in time. The Poisson brackets of the energy
conditions themselves are also nontrivial:
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[e(a'(x )),e(a'(x )) I

=5(H (x))6(H (x'))(H '(x)6, (x,x') —(x~x')) .

(8.7)

For a heat-conducting Gaussian reference fIuid, neither
the constraints (6.7) nor the energy conditions (8.4) can
help us to turn the expression (8.7) into zero. Because the
Poisson brackets (8.6) and (8.7) do not weakly vanish, the
extended system of constraints is not first class.

The standard procedure for completing a system of
constraints into a first-class system is to keep adding the
constraints obtained from the Poisson brackets to the
original system until the enlarged system closes (or be-
comes inconsistent). By following this procedure, we can
prove that the system (6.7) and (8.4) can be closed if we
add to it the additional constraints

In the canonical formalism, the multipliers become
dynamical variables (5.18) and (5.19) on the extended
phase space (g,z(x),p' (x),X (x),px(x)) of the system.
The energy conditions (8.12) thus restrict the range of the
canonical data. One can impose them on an arbitrary
embedding X (x), but this is redundant. Unlike the en-
ergy density H (x), the multipliers M and Mz are space-
time scalars. In canonical formalism, a spacetime scalar
is a spatial scalar which is unaffected by any tilt or bend-
ing of a hypersurface about a fixed spacetime point. In
other words, a spatial scalar P(x) is a spacetime scalar if

IP( x'), H~I =0 (8.13)

for all X(x) which vanish at x'. This condition means
that the Poisson bracket of a spacetime scalar with the
super-Hamiltonian must be proportional to an
undifferentiated 6 function:

Pk(x)=0 . (8.8) IP(x'), H(x) ] =g(x')5lx', x ) . (8.14)

HW G,b,d
—T'T p' 5(x x')) (8.9)

The expression (8.9) vanishes because
H (x)5(H (x))=0, and the differentiated energy condi-
tions (8.4) yield

H, (x)6(H (x))=0 . (8.10)

These constraints switch off the heat conduction, Mk =0,
and turn the Gaussian fIuid effectively into an incoherent
dust.

We have adopted an alternative description of the dust
by choosing not to impose the Gaussian frame condi-
tions, but only the Gaussian time condition. This re-
moves the canonical variables X, PI, from the phase
space. In that case, we can prove directly that the con-
straints (6.7) and the energy conditions (8.4) form a first-
class system. By virtue of Eqs. (5.34)—(5.36) and the con-
straints, Eq. (8.6) assumes the form

Ie(H (x)),H(x')I

=5(H (x))(H (x)W(x)T'(x)5, (x,x') —(x~x')

It is straightforward to check that the multipliers (5.18)
and (5.19) and the super-Hamiltonian (2.6) and (5.20)
satisfy Eq. (8.14). Similarly, by the same criterion, the
Gaussian metric (5.24) is a collection of spacetime
scalars. It follows that the dynamical variable
F( xg, p, X,Px] whose sign determines whether the
reference Auid satisfies the energy conditions is also a
spacetime scalar.

These considerations show that if F(x) ~0 on a given
foliation, say, on the Gaussian fohation T (x ) = t,
X"(x)=x", then F(x) +0 on an arbitrary embedding.
This highlights the difference between the two forms,
(8.1) and (8.2), and (8.12), of the energy conditions. The
conditions (8.1) and (8.2) must be imposed on an arbitrary
embedding; conditions (8.12) need to be imposed only on
a given foliation. The energy conditions (8.12) are thus
suitable for application in the reduced canonical formal-
ism (7.16) or (7.20).

Unfortunately, the new form of the energy conditions
still does not help us with the evolution and compatibility
problems. As with the old form of the energy conditions,

This reaSrms that the energy conditions for the Gaussian
incoherent dust are preserved in time, a result which we
have previously reached by the spacetime approach.
Similarly, Eq. (8.7) reduces to

I e(a'(x) ),e(a'(x') ) I

=5(H (x))6(H (x'))

X(H (x)W(x)T'(x)5, (x,x') —(x~x'))=0 .

I e( —F(x) ),H(x') I =0

Ie( —F(x)),e( —F(x ))j=o
only for an incoherent Gaussian dust.

IX. REFERENCE FLUID
IN QUANTUM GEOMETRODYNAMICS

(8.15)

(8.16)

(8.11)

F(x):=M(x)—2lM(x)l ~0 . (8.12)

This foreshadows our conclusion that energy conditions
in quantum theory can be consistently imposed only for
the Gaussian incoherent dust.

The final question we would like to clarify is the rela-
tionship of the energy conditions (8.1) and (8.2) to those
we have imposed in Sec. IV on the mass and heat multi-
pliers M, MA ..

To quantize geometry which interacts with the refer-
ence Quid, we turn the canonical variables into operators

g,b(x)=g, b(x)X, X (x)=X (x)X,
(9.1)

P '"(x)= i—, Px-(x) = i-
6g., x)' 5X (x)

'

substitute them into the constraints, and require that the
physical states +[X,g,b] be annihilated by the con-
straint operators. For the metric field in Uacuo, such a
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procedure leads to the Wheeler-DeWitt equation, which
is analogous to a Klein-Gordon equation. However, here
the momenta Pz of the coordinate fluid enter into the
constraints linearly, and the resulting equation thus
resembles a Schrodinger equation. This is best exhibited
when the constraints are taken in their new form (6.7):

sponds to the first version of the reduced formalism of
Sec. VII. The state becomes then a functional of T(X )

and of the induced metric gk&(X ) expressed in the spa-
tial Gaussian coordinates:

'P[T(X),g~((X)]:= P[T(x), X (x)=6gx', gg~(x)] . (9.8)

II (x)+[X,g, ]=0 . (9.2) If we change the Gaussian coordinates by Eq. (2.3), the
functional (9.8) changes as well:

Because the momenta Pz are separated from the rest of
the canonical variables, Eq. (9.2) assumes the form

0"[T'(X'),gq ( (X')]

l & /lK(x;X ~gab~p
5X (x)

(9.3) :='P[T(x), X (x)=X"(X'=6,'x'), g,&(x)] . (9.9)

This is a first-order functional difterential equation in the
embedding variables X (x). Therefore, if 'P[X,g,&] is
known on an initial embedding Xo (x), Eq. (9.3) deter-
mines it on an arbitrary embedding X (x ).

The evolution of the state by Eq. (9.3) is consistent only
if the classical Poisson bracket relation (6.10) holds also
for the commutator:

(9.4)

for

'P'[ T'(X' ),gk &

(X' ) ]= P[ T (X),g „(X)]

T(X)= T'(X'(X)),

g „(X)=gk, &,(X'(X))X"(X)X„'(X) .

By virtue of Eqs. (9.6) and (9.7), it still holds that

(9.10)

(9.11)

Equation (9.4) is an integrability condition for the func-
tional differential equation (9.3); it ensures that the evolu-
tion of state from Xo (x) to X (x) does not depend on the
foliation which connects Xo with X (x). The validity of
Eq. (9.4) depends on the factor ordering of the operators
g,&(x) and p '"(x) in hz(x). It is not at all clear that
there exists a factor ordering which makes the operators
IIK(x) well defined and still commuting. If there is no
such factor ordering, the functional difterential equation
(9.3) becomes inconsistent.

Even for much simpler systems than canonical gravity,
one expects that Schwinger terms in the commutators
bring an anomaly into Eq. (9.4). This happens, e.g. , un-
der the standard factor ordering for a parametrized linear
field theory on a Oat background or for a bosonic
string. We have shown that in these cases the factor or-
dering can be modified so that the anomaly disappears
from the commutator (9.4). ' Our further discussion
makes sense only under the assumption that a similar
thing can be achieved in quantum gravity.

The tangential projection of the quantum constraint
(9.2) is the supermomentum constraint

As a result, we can prescribe 4 on an initial embedding
T(X) as an arbitrary functional of six independent func-
tion variables g „(X). The form-invariant states (9.12)
are an exception rather than the rule; Eq. (9.12) holds
only if the par ametrized state functional
%'[T(x),X"(x),g,~(x)] is unchanged by the transforma-
tion (2.3) of the Gaussian coordinates, i.e., if in
correspondence with the classical equation (5.31),

Pk(x)4=0 . (9.13)

Such states do not depend on the Quid variables X"(x).
In any case, the spatial deparametrization

However, the state %[T(X),g „(X)] is in general not
form invariant: P'[T'(X'), gk. &.(X')] is a different func-
tional of T'( X), &g. &

(X') than 'P[T(X),g „(X)] is of
T(X) and g „(X). The reduced state functional (9.8) thus
does not need to satisfy the constraint

( T k (X)P(X)—2pqii(X) )P[ T(X),g~„(X)]=0 . (9.12)

H, ( x)4[ X,g&, ]=0 . (9.&)
T(x),X (x)~T(X)

Its geometric content is the same as in vacuum geometro-
dynamics: It ensures that the state 4 does not depend on
the system of coordinates x' on X. Formally,

naturally leads to the elimination of the supermomentum
constraint for the quantum states.

The reduced state functional (9.8) is evolved in time by
the Schrodinger equation

for

%'[X (x'),g, .„(x')]=4'[X (x),g,„(x)] (9.6)
i = ( —g "'(x)T „(X)H~,(X)

X (x)=X (x'(x)),

g,„(x)=g, ~ (x'(x) )X; (x)X~" (x) .
(9.7)

This means that we can parametrize X by any coordi-
nates we want; in particular, we can parametrize it by the
spatial Gaussian coordinates X . Such a decision corre-

+ W '(X)H (X))4, (9.14)

corresponding to the classical super-Hamiltonian (7.7).
As in the fully pararnetrized theory, the functional
differential equation (9.14) is consistent only if Eq. (7.9)
holds for the commutator of the reduced constraint
operators.
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In the functional Schrodinger equation (9.14), the
frame is fixed, but the hypersurfaces on which the state is
registered are arbitrary. We shall now reduce the formal-
ism in the second way discussed in Sec. VII, by leaving
the frame arbitrary, but restricting the states
0'[ T (x ),X"(x),g, b (x ) ] to the hy per surfaces T(x, t ) = t of
the Gaussian foliation:

0'(t;X"(x),g, i, (x)]:=ql[T(x,t) =t,X"(x),g,„(x)] .

(9.15)

The reduced states (9.15) are ordinary functions of the
Gaussian time t = T, but they are still functionals of the
remaining variables X"(x),g,b(x). By the chain rule,

5%[T(x;t),X (x),g.b(x)]
a, e(t;X"(x),g.,(x)]=j d'x ' ' ' '

a, T(x;r)
X 5T x;t T(x;t)=t

5%( T(x),X"(x),g,b(x)]
d x

X 5T(x) T(x) = t
(9.16)

The reduced states thus satisfy the Schrodinger equation

i B,+(t;X ( x),g, b( x)]=h+(t; X (x),g,b(x)],
in which h is the operator version

(9.17)

h = J d x H (x;g,„(x),P ' (x)] (9.18)

of the classical Hamiltonian (7.17). They also satisfy the
reduced form (7.18) of the supermomentum constraint
(9.5):

iX, (—x)—q +H, (x)%'=0 .
5X (x)

(9.19)

The ultimate reduction of the states is achieved by
both fixing the frame and restricting the states (9.8) to the
leaves of the Gaussian foliation:

%(r;g„,(X)]:=P[T(X, t)=t, g»(X)] . (9.20)

The fixation of the frame eliminates the supermomentum
constraint, and the restriction to the Gaussian foliation
converts the functional Schrodinger equation (9.14) into
an ordinary Schrodinger equation:

i 0, 'P(t;g»(X)]=hql(t;gki(X)],

whose Hamiltonian

h =I d XH (X;g,b(X),p "'(X)]

(9.21)

(9.22)

is constructed from the Gaussian metric (7.21) and its
conjugate momentum.

The comparison of the full formalism with its reduced
versions highlights the role of the Gaussian fIuid in quan-
tum geometrodynamics. In vacuum geometrodynamics,
there is no natural way of identifying spacetime events or,
what is the same thing, of identifying world lines of a
frame or leaves of a foliation. By virtue of the super-
momentum constraint, the states 4 do not depend on the
metric g,b(x), but only on the geometry g(x). By virtue
of the super-Hamiltonian constraint, not even the
geometry g(x), but at best only its conformally invariant
part is measurable. The introduction of the Gaussian
fIuid coupled to the geometry fundamentally changes this
state of afFairs. Spacetime events X can be identified by
observing the Auid variables X . The embeddings

X =X (x) are thus physically fixed with respect to the
material background provided by the Quid. The func-
tionals 4'[X,g, b ] describe the state of the metric field on
such embeddings. By virtue of the supermomentum con-
straints, they are invariant under arbitrary transforma-
tions of the spatial labels x'. However, that does not im-
ply that they depend only on the geometry g(x), because
their construction involves also the fiuid variables X (x).
One can eliminate the frame variables X by using them
as the labels x '. The reduced functionals
'P[T(X);gkl(X)] describe the state of the metric field

g»(X) given in the Gaussian frame on an arbitrary hyper-
surface T=T(X). The fiuid variables X" identify the
points of the Gaussian frame, and one can thus meaning-
fully talk about measuring the metric in this frame rather
than about measuring the mere geometry g(x). More-
over, the fiuid potential T(X) identifies the hypersurface
on which the metric g»(X) is being observed. The
super-Hamiltonian constraint does not restrict the
measurability of the full metric, but rather determines the
evolution of the state from one hypersurface to another.
The reduced states are no longer invariant under trans-
formations of X . They can be made invariant under
transformations of arbitrary labels x' only at the price of
adjoining the fiuid variables X"(x) back to the potential
T(X) and the metric g»(X), i.e., by returning from the
state 'P[ T (X),g»(X) ] to the original state
0'[X (x),g,b(x)] by the parametrization process. The
original states thus characterize the state of the metric
field g,b(x) given on the embedding X (x) in the system
of coordinates x' related to the Gaussian frame coordi-
nates X by the transformation X =X (x').

Instead of asking about the state of the metric field on
an arbitrary hypersurface X, one can less ambitiously ask
only about the state of the Gaussian metric on the leaves
of the Gaussian foliation. The answer to this restricted
question is provided by the state functional +(t;g»( X)].
By allowing only a one-parameter family of hypersur-
faces, one needs only an ordinary Schrodinger equation
to describe the change of such a restricted state. By ad-
joining the fiuid variables X"(x) back to the metric vari-
ables g»(X), one again arrives at a parametrized func-
tional %(t;X (x),g,b(x)]. This functional describes the
state of the metric field g,&(x) on the leaf T=t of the
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Gaussian foliation in the system of coordinates x ' related
to the Gaussian frame coordinates X by the transforma-
tion X"=X"(x').

This conceptual scheme entirely changes when we re-
place the heat-conducting Gaussian Quid by an in-
coherent dust, i.e., when we impose the Gaussian time
condition, but not the Gaussian frame conditions. The
velocity potential T(x) of the Gaussian dust is still at our
disposal to identify the hypersurfaces, but we lack the
markers X"(x) to fix the world lines of the Gaussian
frame of reference. The classical constraints have the
form (5.3) and (5.35). After quantization, they become
the restrictions

i (x)=(W(x)H (x)}O,. 6% G

5T
(9.23)

and

(T,(x)P(x)+H, (x)}iP=0, (9.24)

%(t;g]=%'[T(x,t) =t, g(x)]

satisfies again the Schrodinger equation

i a, q(t;g]=A(t;g] .

(9.25)

(9.26)

However, while the state function (9.15) depends on all
components of the metric gki(X), the state function
V(t;g] depends, for each t, only on the three-geometry
g(x).

We shall now proceed with interpreting the
Schrodinger equations based on the introduction of the
Gaussian fluid variables. We shall see that the conceptu-
al framework relying on the heat-conducting Gaussian
fluid encounters serious dif5culties, while the modified
schema relying on the Gaussian incoherent dust is very
nearly viable.

on the state functional 4[T (x),g, b (x)].
Again, the supermomentum constraint ensures that

%'[T(x),g,b(x)] does not depend on the particular label-

ing x' of X. However, there are no fluid variables X
which could be used as the special labels. Therefore, on a
given hypersurface T=T(x), we cannot measure the
metric components g,b(x), but only the geometry g(x).

The state is evolved from one hypersurface to another
by the Schrodinger equation (9.23). This equation is
different from the Schrodinger equation (9.14) obtained
by the spatial deparametrization based on the Gaussian
frame. The state functional %'[T(X),gki(X)] in Eq. (9.14)
does not satisfy the supermomentum constraint (9.12)
and hence depends on the metric gzi(X) viewed as a col-
lection of six scalar functions rather than on the three-
geometry g(x). The solution space of Eq. (9.14) is thus
larger than that of Eq. (9.23) and (9.24). It contains many
states which do not satisfy the constraint (9.12). Howev-

er, for those states which satisfy Eq. (9.12), i.e., for the
parametrized states with the symmetry (9.13), Eq. (9.14)
reduces back, modulo familiar factor-ordering problems,
to Eq. (9.23).

Like Eq. (9.14), Eq. (9.23) can also be restricted to the
Gaussian foliation T(x, t) = t. The state function

& %I%&= fDg, 4'[T,X",g,„]Ij[T,X",g,„],
&+I+&=f&gk/+*[T, gui]+[T, gk/],

and

&+I+&= f&g. +*[Tg. ]+[Tg. ]

(10.1)

(10.2)

(10.3)

The functional integral in Eq. (10.2) is taken over all
Riemannian metrics gki(X), while that in Eqs. (10.1) and
(10.3) over all Riemannian geometries g(x), i.e., over the
equivalence classes of Riemannian metrics modulo the
spatial diffeomorphisms Diff'. By virtue of the
Schrodinger equation, the normal (10.1) does not depend
on the embedding T(x),X"(x) on which it is evaluated.
Similarly, the norm (10.2) does not depend on T(X) and
the norm (10.3) on T(x).

The norms (10.1)—(10.3) enable us to turn the space of
physical states into a Hilbert space. The operators
representing physical observables must be self-adjoint
with respect to these norms. In particular, the metric
gki(x) and the conjugate momentum p"'(x) must be
represented by the operators gki(x) and P '(x), which are
self-adjoint with respect to the norm (10.2). More gen-
erally, a classical observable

O[X (x),g,b(x),p'"(x)] (10.4)

is any functional of the canonical variables g,b(x),p'"(x)
and of the embedding X (x), which is invariant under
DiffX.

X. ENERGY CONDITIONS AND INTERPRETATION
OF QUANTUM GEOMETRODYNAMICS

When one tries to give a probabilistic interpretation to
the solutions %[g] of the Wheeler-DeWitt equation, one
encounters familiar difficulties. From 'P[g], one can (at
least formally) construct a conserved current, but like
the Klein-Gordon current, this does not yield a positive-
definite inner product. For the Klein-Gordon equation in
a stationary spacetime, one can restrict the solutions to
those which have a positive energy as measured by the
stationary observer. The Klein-Gordon inner product on
the space of positive-energy solutions becomes positive
definite. In a dynamical spacetime, one cannot con-
sistently speak about positive-energy solutions, and the
probabilistic interpretation of the Klein-Gordon equation
fails. The superspace which plays the role of the back-
ground for the Wheeler-DeWitt equation is not station-
ary and the interpretation of the state functional 'P[g]
thus remains problematic.

One can try to resolve such problems by turning the
Wheeler-DeWitt equation into a Schrodinger equation.
An introduction of the reference fluid is one way of ac-
complishing this goal. We have seen that the Gaussian
time T(x) provides a clock with respect to which the
state evolves according to a functional Schrodinger equa-
tion (9.3), (9.14), or (9.23). As in a parametrized field
theory, such an equation possesses (at least formally) a
conserved current which leads to the standard positive-
definite inner product. ' For the three forms of the func-
tional Schrodinger equation we have mentioned, the
norm of the state is given by the expressions
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(10.5)

0 =0[X (x),g, i, (x),P '"(x)] (10.6)

(Ref. 52). Such an observable must be represented by an
operator

is measured in the system of coordinates x' connected to
the Gaussian system of coordinates X by the transfor-
mation X"=X"(x'), be found in the cell Dg, & centered
about g~b (x ).

The expression

which commutes with the supermomentum,
'Ii" [T(x),g, i, (x)]'P[T(x),g, i, (x)] (10.12)

—.[O,H, (x) ]=0,
E

(10.7)

and which is self-adjoint with respect to the norm (10.1).
It follows that the reduced observable

O[T(X),g„)(X),P (X)]

:=O[T(x),X"(x)=6,x', g, i, (x),P ' (x)]

(10.8)

O=O[T(x),g,„(x),P ' (x)] (10.9)

which commutes with the supermomentum [Eq. (10.7)],
and which is self-adjoint with respect to the norm (10.3).

It is tempting to believe that the integrands of the
norm integrals (10.1)—(10.3) represent the probability
densities for the metric (or the geometry) to have a
definite value on a hypersurface specified by the Gaussian
clock. Let us spell such a proposal in the necessary de-
tail.

The expression

%*[T(X),gk)(X) j'P[T(X),gk)(X)] (10.10)

constructed from a solution iP [T (X),gk& (X)] of Eq.
(9.14), is to be interpreted as the probability density that,
on the hypersurface of the Gaussian time T(X), the
metric gl, &(X) measured in the Gaussian frame X be
found in the cell Dgk& centered about g&i(X).

The expression

4* [ T (x ),X"(x),g, i, (x ) ]4'[T (x ),X"(x),g, ), (x ) ] (10.11)

constructed from a solution ~II[T(x),X"(x),g,&(x)] of Eq.
(9.3), is to be interpreted as the probability density that,
on the embedding T(x),X (x). the metric g,&(x), which

is self-adjoint with respect to the norm (10.2). In particu-
lar, this applies to the Hamiltonian (7.7) of the reduced
canonical formalism. Indeed, this Hamiltonian must be
self-adjoint for the norm (10.2) to be independent of the
hypersurface T(X) and the norm (10.1) to be independent
of the embedding. This implies that the gravitational
super-Hamiltonian H (X) and supermomentuin H, (X),
which enter as the building blocks into the Ham~ltonian
(7.7), may be subject to quite a different factor ordering
than the corresponding expressions in vacuum geometro-
dyllamlcs.

A similar caution is needed when defining observables
based on the Gaussian incoherent dust. A classical ob-
servable 0 [ T( x),g,&( x), p' (x)] is an arbitrary functional
of the canonical variables g, i, (x),p'"(x) and of the hyper-
surface T(x), which is invariant under Diff [Eq. (10.5)].
Again, such an observable must be represented by an
operator

P+ (x):=B(H (x)), (10.14)

is simply the projector into the space spanned by the
eigenfunctions of H (x) corresponding to the positive ei-
genvalues H (x):

H '(x)%'„(,
)
=H'(x)%'„(,

)
H'(x) )0 (1015)

In other words, the physical Hilbert space should be
Gspanned only by the eigenfunctions of H (x) with non-

positive eigenvalues.
Call V the Hilbert space of physical states (9.2), Vo the

space of states on a fixed hypersurface X (x) which are
invariant under spatial diffeomorphisms [Eq. (9.5)], and
2+ C 2, Vo C Vo the corresponding subspaces on which
the energy conditions (10.13) are satisfied.

The proposal (10.13) on implementing the energy con-
ditions fails on two counts. First, the energy conditions
get in general violated in the dynamical evolution. As in

the classical theory, this means that

[P+(x),IIx(x')]4%0 f—o.r VHV . (10.16)
E

Second, like the corresponding Poisson brackets (8.7), the
projectors (10.14) do not commute on 7+,

[P+ (x),P +(x')]4%0 for—.%e P+,
E

(10.17)

constructed from a solution 4[T(x),g, ), (x) ] of Eqs.
(9.23) and (9.24), is to be interpreted as the probability
density for the geometry g(x), which is represented on
the hypersurface T=T(x) by the metric g, i, (x), to be
found in the cell D g centered about g(x).

We shall now argue that such an interpretation of the
state functional, in spite of appearances, is not tenable.
The crux of the matter is that the clock variable T(x)
and the frame variables X"(x) are physically realizable
only when the reference Quid satisfies the appropriate en-

ergy conditions. When the energy conditions are violat-
ed, the variables T(x),X (x) cannot be identified by ob-
serving the physical properties of a real system, and the
interpretation of expressions (10.10)—(10.12) thus loses a
sound epistemological foundation. On the other hand, if
the energy conditions are imposed as additional restric-
tions on the state functionals, such restrictions prevent us
from interpreting the expressions (10.10)—(10.12) as prob-
ability densities. This is a dilemma out of which we see
no easy escape.

The energy conditions in the Hamiltonian formalism
can be considered as an additional system of constraints
(8.4). In quantum theory, such constraints should be
turned into operators which annihilate the physical
states:

P+(x)4=0 . (10.13)

The operator version of the step function,
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and hence do not possess a common set of eigenfunctions.
This implies that the whole idea of spanning V+ by such
eigenfunctions is inconsistent.

A standard way of handling this situation is to keep
adding to the original system the constraints obtained by
commutators until the extended system of constraints
closes. This parallels the procedure leading to Eq. (8.8) of
the classical theory. The closure is achieved by adding to
the constraints (9.2) and (9.13) the secondary constraints

Pq(x)4=0 . (10.18)

This amounts to reducing the heat-conducting Quid to an
incoherent dust. Equation (10.18) means that the state
functional 4 cannot depend on the fiuid variables X (x).
Moreover, for Eq. (10.18) not to get violated in a mea-
surement process, any admissible observable 0 must com-
mute with Pz(x) and cannot thus depend on X"(x). The
fiuid variables X (x) are thus not observable, and the
canonical pair X"(x),P&(x) can be dropped from the
phase space. The resulting formalism is equivalent to
that obtained by imposing the energy conditions in quan-
tum geometrodynamics (9.23) and (9.24) of the Gaussian
incoherent dust. For such a system, the Poisson bracket
relations {8.7) and (8.10) carry over, modulo factor order-
ing difficulties, into the commutator relations

. [P +(x),H(x—')]4=0= . [P +(x),P +—(x')]4
l I

(10.19)

on V+, and the energy conditions (10.13) are thereby con-
sistently implemented.

%'e must now decide whether it is still appropriate to
interpret the expression {10.12) as the probability density.

Surely, the functional integral (10.3) gives the con-
served norm of the state %E 2+; however, by the general
rules of quantum theory, its integrand can be interpreted
as the probability density only if the metric operator
g,b(x) [or rather the geometry operator g(x)] is a multi-
plication operator on Po+.

The geometry operator g(x) is defined as a multiplica-
tion operator indirectly, by turning an arbitrary invariant
functional 6[g,b] of the metric into a multiplication
operator. Because G [g,„] depends only on the
equivalence classes of the metrics modulo Ditty,

H, (x)6 [g,b]=0, (10.20)

it can be interpreted as a functional G[g] of the
geometry. An implementation of 0 as a multiplication
operator

0:=G[g]X (10.21)

then amounts to defining g(x) as a multiplication opera-
tor.

The multiplication operator G commutes with the su-
permomentum operator H, (x),

—[6,H, (x)]=0, (10.22)

and hence it keeps the state functional 0' in the space 9o
of the constraint (9.24). However, it does not commute
with the projectors (10.14), because even classically

IG, O(H (x)}[=5{H (x)} G, , (x)p'"(x)5G
5g~b x

—.[g(x),p(x')]=5(x, x') .
l

(10.24)

and, on the other hand, commute with the superrnomen-
tum K, (x) and with the projectors P +(x). One should
then solve the eigenvalue equation

g(x)% h( )
—h(x) Ph( ) (10.25)

and, for a given state %[T(x),g,b(x)) on a fixed hyper-
surface T = T(x), find the true probability amplitude

( h(x )
~
+ ) = fD g V*h(„)[T,g,b ]4(T,g, b ], (10.26)

which, of course, does not need to coincide with
O[T(x),g,b(x)]. The expression

(10.27)

could then be interpreted as the true probability density
for finding the three-geometry h(x). Such a procedure is
closely analogous to the problem of finding the Newton-
Wigner position operator of a relativistic particle, deter-
mining its eigenfunctions, and through the inner product
in the space of positive-energy solutions of the Klein-
Gordon equation, defining the probability amplitude for
the localization of the particle. Our discussion of the
steps which are involved in finding the true probability
amplitude clearly indicates that while the introduction of
the Gaussian coordinate dust may solve the problem of
obtaining a conserved positive inner product, the con-
struction of meaningful observables, such as the spatial
geometry g(x), is still a difficult task. Any suggestion
that the introduction of the Gaussian time, or of a similar
realistic matter time variable, automatically solves the
problem of how to interpret quantized geometry is thus
to be taken with a pinch of salt.

A final word of caution is needed about our procedure
of taking care of the energy conditions in quantum
theory. One can object that the energy conditions (10.13)
are unnecessarily strong and physically untenable. After
all, one knows that even in an ordinary free-field theory

(10.23)

The action of G on a functional +[T(x),g,b(x)] which
satisfies the energy conditions (10.13) thus usually leads
to a state functional which does not satisfy the energy
conditions. For this reason, the multiplication operator
0[g] throws the state functional out of the Hilbert space
Vo+, and the integrand (10.12) of the norm integral (10.3)
cannot be interpreted as the probability density for the
three-geometry g(x).

This does not mean that such a probability density
does not exist, but only that its identification requires a
much more complicated procedure. To find the correct
probability amplitude, one should construct the operators
g(x) and p(x) [defined again indirectly through DiffX-
invariant functionals of g,b(x) and p' (x)] which would,
on the one hand, satisfy the appropriate fundamental
commutation relations
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on a given background, the expectation value of the ener-
gy density can become negative for suitable states in the
Pock space. In other words, if H (x) denotes the ener-
gy density of the field, the projection operator

P G(x):=e( —:H'(x):), (10.28)

constructed from the normal-ordered energy-density
operator:H (x):, does not annihilate all states ~II in the
Fock space. This phenomenon is closely associated with
the appearance of the Schwinger terms in the algebra of
the constraints of the parametrized field theory. One can
thus justifiably argue that the requirement (10.13) as an
expression of the energy conditions in quantum
geometrodynamics should be substantially softened. An
important point to keep in mind, however, is that it can-
not be entirely dropped. Geometrodynamics is funda-
mentally diA'erent from an ordinary bosonic field theory:
The classical energy density of a bosonic field is positive
by its construction from the basic field variables, while
the super-Hamiltonian H (x ) of the metric field is
indefinite even classically. As a consequence, the (weak)
energy conditions 0( H(x))—=0 for a classical bosonic
field are identically satisfied, but the energy condition
e(H (x))=0 must be imposed to ensure the energy con-

ditions 6( H—(x))=0 for the classical Gaussian fiuid.
After quantization, an ordinary bosonic field keeps the
total energy positive, although, because of factor-
ordering problems, it does not succeed to keep the energy
density positive. The same thing can be expected in grav-
itation, but some energy conditions are needed to ensure
that the breakdown of positivity is a necessary conse-
quence of quantum effects rather than an artifact brought
in by an indefinite nature of the classical expression. The
formulation of such energy conditions lies outside the
framework of our discussion which systematically
sidestepped the issues associated with factor ordering and
regularization.
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The notion of a reference Quid was introduced under difterent
names in a number of early publications aiming at a physical
interpretation of the general theory of relativity. Einstein
himself coined the charming term "mollusc" (Molluske); A.
Einstein, Uber die spezi elle und die allgemeine
Relativitatstheorie (Vieweg, Braunschweig, 1920), Sec. 28, p.
67; Relativity: The Special and the General Theory, translated
by R. W. Lawson, 17th ed. (Crown, New York, 1961). This
form was expanded into "a mollusc of reference" by M. Born,
Di e relati Ui tatstheorie Einsteins und ih re physi kalischen
Grundlagen gemeinverstandlich dargestellt (Springer, Berlin,
1920); Einstein's Theory of Relativity, translated by H. L.
Brose (Methuen, London, 1924), Sec. 7.7, p. 269. Hilbert, in
the second of his famous communications on foundations of
physics, formalized the idea that the coordinate system
should be realized by a physical Quid carrying clocks which
keep a causal time: He imposed a set of inequalities ensuring
that the world lines of the reference frame be timelike and the
leaves of the time foliation be spacelike. See D. Hilbert, 2
Mitt. , Nachr. Ges. Wiss. Gottingen 53, (1917). Hilbert's
communications were republished in Math. Ann. 92, 1 (1924),
and in this form they appear in Dauid Hilbert Gessammelte
Abhandlungen, 2nd ed. (Springer, Berlin, 1970), Vol. 3. Hil-
bert used the term "proper space-time coordinate system"
(eigentliches Raum-Zeit-Koordinatensystem). Reichenbach's
conceptual and axiomatic analysis of the theory of relativity
introduced the same concept under the name of "a real sys-
tem" (reales System): H. Reichenbach, Axiomatic der rela-
tivistischen Raum-Zeit-Lehre (Vieweg, Braunschweig, 1924);
Axiomatization of the Theory of Relatiuity, translated by M.
Reichenbach (University of California Press, Berkeley, 1969);
I'hilosophie der Raum-Zeit-Lehre (deGruyter, Berlin, 1928);

The Philosophy of Space and Time, translated by M. Reichen-
bach and J. Freund (Dover, New York, 1957). The concept
of the reference Quid found its way into standard textbooks
on the general theory of relativity„e. g. , into L. D. Landau and
E. M. Lifshitz, Teorija polja (Gosundarstvennoe izdatel'stvo
fiziko-matematiceskoj literatury, Moskva, 1962); The Classi-
cal Theory of Fields, translated by M. Hamermesh, 4th re-
vised ed. (Pergamon, Oxford, 1975), Sec. 82; and, in a very
fundamental and systematic way, into C. M@ller, The Theory
of Relativity (Clarendon, Oxford, 1952), Chap. 8, especially
Sec. 8.8. Landau and Lifshitz emphasize that the reference
system can be visualized as a "medium" (sreda) and Mufller
states that "The corresponding system of reference can be
pictured by a real Quid. " Amidst this terminological embar-
rassment of riches, we have decided to use a neutral term
"reference fIuid. "

2The general method of treating the second-class constraints
was developed by P.A.M. Dirac, Can. J. Math. 2, 129 (1950).
Dirac applied it to coordinate conditions in the general
theory of relativity in Phys. Rev. 114, 924 (1959). His discus-
sion is confined to what is nowadays known as "canonical
coordinate conditions. " Dirac's method can be applied to the
Gaussian coordinate conditions studied in this paper after
one adjoins the primary constraints to the secondary con-
straints of the Einstein theory of relativity.

Parametrization of finite-dimensional mechanical systems has a
long history. Excellent descriptions of the parametrized for-
malism can be found in J. L. Synge, in Encyclopedia of Physics
(Springer, Berlin, 1960), Vol. III/1, or in C. Lanczos, The
Variationa/ Principles of Mechanics, 4th ed. (University of
Toronto Press, Toronto, 1970). Foundations of parametrized
field theories were laid down by P.A.M. Dirac, Can. J. Math.
3, 1 (1951), and explained in Lectures on Quantum Mechanics
(Yeshiva University, New York, 1964). See also K. V.
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4B. S. DeWitt, in Gravitation: an Introduction to Current

Research, edited by L. Witten (Wiley, New York, 1962).
~N. Bohr and R. Rosenfeld, Mat. -Fys. K. Medd. Dan. Videnk.

Selsk. 12 (8) (1933). An English translation of this paper can
be found in Selected Papers by Leon Rosenfeld, edited by R. S.
Cohen and J. Stachel, Boston Studies in the Philosophy of
Science, Vol. 21 (Reidel, Dordrecht, 1978).
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7C. W. Misner, Phys. Rev. 186, 1319 (1969); Phys. Rev. Lett. 22,

1071 (1969); in Magic without Magic (JA. Wheeler 60th Birth
day Volume), edited by J. Klauder (Freeman, San Francisco,
1972).

8The review of this work can be found in M. Ryan, Hamiltonian
Cosmology (Springer, Berlin, 1972); M. A. H. MacCallum, in
Quantum Gravity: An Oxford Symposium, edited by C. J. Is-
ham, R. Penrose, and D. W. Sciama (Clarendon, Oxford,
1975); in General Relativity. An Einstein Centenary Survey,
edited by S. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1979).

These difticulties are clearly analyzed in W. Blyth and C. J. Is-
ham, Phys. Rev. D 5, 2458 (1975).
F. Lund, Phys. Rev. D 8, 3253; 4229 (1973)~

C. Rovelli, SISSA Report No. 101/89/ep. , 1989 (unpublished).
W. G. Unruh and R. M. Wald, Phys. Rev. D 40, 2598 (1989).
W. G. Unruh, Phys. Rev. D 40, 1048 (1989).

~4P. G. Bergmann and A. Komar, Int. J. Theor. Phys. 5, 15
(1972); D. C. Salisbury and K. Sundermeyer, Phys. Rev. D 27,
740 {1983);J. Lee and R. Wald (unpublished).

~~C. J. Isham and K. V. Kuchar, Ann. Phys. (N.Y.) 164, 288
(1985); 164, 316 (1985); K. V. Kuchar", Found. Phys. 16, 193
(1986)~

~sJ. B. Hartle, in Fifth Marcel Grossman Meeting, proceedings,
Perth, Australia, 1988, edited by D. Blair and M. Bucking-
ham (World Scientific, Singapore, 1989).

~7J. L. Halliwell and J. B. Hartle, Report No. NSF-ITP-90-97,
1990 (unpublished).

In his fundamental paper on general theory of relativity [A.
Einstein, Ann. Phys. (Leipzig) 49, 769 (1916)], Einstein no-
ticed that the law of gravitation can be simplified by a special
choice of coordinates (pp. 801 and 812). For this purpose, he
used the unimodular [~det(y t3) =1] coordinate condition.
The view that coordinate conditions are necessary for extract-
ing physical conclusions from a covariant theory was force-
fully put forward by E. Kretschmann, Ann. Phys. (Leipzig)
53, 575 (1917). Kretchmann proposed to use four indepen-
dent curvature scalars as the privileged coordinates. This
idea was later revived in connection with constructing observ-
ables in geometrodynamics by A. B. Komar, Phys. Rev. 111,
1182 (1958). Hilbert chose the normal Gaussian coordinates
as a prime example of his "proper space-time coordinate sys-
tem" and used them in a discussion of the Cauchy problem
for the coupled gravitational and electromagnetic field (see
Ref. I). In his 1854 inaugural lecture, Riemann introduced
another important coordinate system, the Riemann normal
coordinates: B. Riemann, Nachr. Ges. Wiss. Gottingen 13, 13
(1968); in 8. Riemann: Gesammelte Mathematische Werke,
edited by H. Weber, 2nd ed. (Dover, New York, 1953); Na-
ture 8, 14 (1873), translated by W. K. Clifford. The spacetime
Riemann normal coordinates are based on a spacetime event
rather than on a spacelike hypersurface, and they are thus not
of much use in canonical geometrodynamics. The spatial
Riemann normal coordinates in canonical gravity were dis-
cussed by J. Nelson and T. Regge, Gen. Relativ. Gravit. 21,

645 (1989). Natural coordinates of an observer moving along
a timelike world line are the Fermi-Walker coordinates, in-
troduced by E. Fermi, Atti Accad. Naz. Lincei Cl. Sci. Fis.
Mat. Nat. Rend. 31, 184 (1922); 31, 306 (1922), and A. G.
Walker, Proc. R. Soc. Edinburgh 52, 345 (1932). In quantum
geometrodynamics, they are potentially important for dis-
cussing measurements performed by such an observer, but
their role in the canonical formalism remains to be studied.
One of the most important coordinate conditions in general
relativity turned out to be the harmonic coordinate condi-
tions introduced by T. DeDonder, La graviPque einsteinienne
(Gauthier-Villars, Paris, 1921), and C. Lanczos, Phys. Z. 23,
537 (1923). The foremost advocate of harmonic coordinates
as the privileged coordinate system in general relativity was
Fock. For a summary of his views, see V. Pock, Teorija pros-
transtva, vremeni i tjagotenija (Gosundarstvennoe izdatel'stvo
techniko teoreticeskoj literatury, Moskva, 1956); The Theory
of Space, Time and Gravitation, translated by N. Kemmer
(Pergamon, New York, 1959). Harmonic coordinates were
extensively used in linearized gravity, in the derivation of
equations of motion for the gravitational sources (see V.
Fock, this reference), in the analysis of the Cauchy problem
[see Y. Choquet-Bruhat, in Gravitation: an Introduction to
Current Research, edited by L. Witten (Wiley, New York,
1962), and S. W. Hawking and G. F. R. Ellis, The Large Scale
Structure of Space Time (C-ambridge University Press, Cam-
bridge, England, 1973), Chap. 7], and in the "covariant ap-
proach" to quantum gravity [see B. S. DeWitt, Phys. Rev.
162, 1195 (1967)]. In canonical geometrodynamics, the most
widely used coordinate condition is the restriction of the
leaves of the time foliation to maximal hypersurfaces (in

asymptotically Oat spacetirnes} or to hypersurfaces of a con-
stant mean extrinsic curvature (in compact spaces). The max-
imal slicing was proposed by A. Lichnerowicz, J. Math. Pures
Appl. 23, 37 (1944) and introduced into canonical geometro-
dynamics by P.A.M. Dirac, Phys. Rev. 114, 924 (1959). The
constant mean curvature condition was proposed by J. W.
York, Phys. Rev. Lett. 28, 1082 (1972). York used these slic-
ing conditions for solving the initial-value problem. A sum-
mary of his techniques and further citations are given in Y.
Choquet-Bruhat and J. W. York, in General Relativity and
Gravitation the Hundred Years After the Birth of Albert Ein-
stein, edited by P. Bergmann, J. Goldberg, and A. Held (Ple-
num, New York, 1980), and in J. W. York, in Sources of Grav
itational Radiation, edited by L. Smarr (Cambridge Universi-
ty Press, Cambridge, England, 1979). These two reviews are
also to be consulted on the discussion of coordinate condi-
tions limiting the spatial frame: The spatial harmonic coordi-
nate condition or the "minimal distortion" coordinate condi-
tion. The literature on coordinate conditions is overwhelm-
ing. Our sample is merely intended to give a feeling for its
relevance to quantum geometrodynamics.

' J. D. Brown, K. V. Kuchar", and C. G. Torre (unpublished).
2 K. V. Kuchar" and C. G. Torre (unpublished) handled the har-

monic conditions through Lagrange multipliers. Unlike the
Gaussian conditions, the harmonic conditions lead to dynam-
ical multipliers and hence to a double extension of the phase
space. The formalism can be reduced to an ordinarily extend-
ed phase space; the harmonic reference Auid attains thereby
the structure of a collection of independent massless scalar
fields. An alternative way of introducing the harmonic condi-
tions is through a parametrized Fermi-type term [K. V.
Kuchar" and C. Stone (unpublished)].
K. V. Kuchar" (unpublished).
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K. V. Kuchar" and C. G. Torre, J. Math. Phys. 30, 1769 (1989);
in Einstein Studies II, edited by J. Stachel (Birkhauser, Bos-
ton, in press).

2 C. G. Torre, Phys. Rev. D 40, 2588 (1989).
~4Gauss introduced this system of coordinates in his study of

two-dimensional surfaces. His 1827 paper "Disquisitiones
generales circa superficies curvas" can be found in Karl
I'riedr&ch Gauss 8'erke (Kaestner, Gottingen, 1870), Vol. 4, p.
217; General Investigations of Curved Surfaces of 1827 and
1825, translated by J. C. Morehead and A. M. Hiltebeitel
(Raven, New York, 1965). From the beginning, the Gaussian
coordinates were frequently used in the general theory of re-
lativity: cf. Hilbert {Ref. 1). For a geometric construction of
Gaussian coordinates and sirnplifications which they bring,
see, e.g. , J. L. Synge, Relativity: The General Theory (North-
Holland, Amsterdam, 1960), especially Sec. I.8.

~5D. Hilbert, "Grundlagen der Physik, "
1 Mitt. , Nachr. Ges.

Wiss. Gottingen, 395 {1915). For the reprinted versions, see
Ref. 1.
P.A.M. Dirac, Proc. R. Soc. London A246, 333 (1958); R. Ar-
nowitt, S. Deser, and C. W. Misner, in Gravitation: An Intro-
duction to Current Research (Ref. 18).

27We are denoting spatial covariant derivatives by a vertical bar
(

~
) and spacetime covariant derivatives by a semicolon (;).

The same options arise when one wants to take into account
holonomic constraints in analytical mechanics: One can ex-

press the configuration of the system in terms of the general-
ized coordinates so that the constraints are identically
satisfied; the Hamilton variational principle then yields the
Lagrange equations of the second kind. Alternatively, one
can adjoin the constraints to the action by means of Lagrange
multipliers; the variational principle then yields the Lagrange
equations of the first kind, with multipliers introducing the
forces from constraints (see, e.g. , C. Lanczos, Ref. 3, Sec. I.5).
P. A. M. Dirac, Can. J. Math. 3, 1 (1951).
The source term is analogous to the forces from constraints in
the Lagrange equations of the first kind.

'The Euler hydrodynamical equations can be obtained from a
variational principle either by varying the streamlines of the
fluid (the Lagrange picture) or the fluid potentials (the Euler
picture). Our action for the Gaussian reference fluid is given
in the Euler picture. The Euler-type variational principle for
perfect relativistic fluids was devised by B. F. Schutz, Phys.
Rev. D 4, 3559 (1971), who developed from it the Hamiltoni-
an theory of the fluid interacting with gravity. Further refer-
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