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Complete description of gauge-invariant fields in a pure gauge theory
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The basic set of gauge-invariant local as well as nonlocal fields is constructed for a non-Abelian
pure gauge theory with the gauge group SU(N). It is shown that the basic set of local gauge-
invariant fields are local generators of the nonlocal gauge-invariant fields. This provides a complete
description of gauge-invariant fields in a pure gauge theory and thereby provides a complete solu-
tion to the problem of observables at the classical level.

All the known fundamental interactions among the ele-
mentary particles in nature seem to be mediated by gauge
fields. Even without matter, these fields are quite com-
plex except for the case of electromagnetic fields which is
described by an Abelian theory. This has to do with the
geometric richness that goes with a self-interacting non-
Abelian gauge theory. In this Brief Report, we set aside
the geometric structure and take an algebraic approach.
One of the problems we hope to tackle here is that of ob-
servables. Though in quantum theory the question
remains open, in classical theory we solve the problem by
constructing a complete and irreducible set of local as
well as nonlocal gauge-invariant fields and explicitly
demonstrate the relationship between these two classes of
invariants. This provides a complete description of
gauge-invariant fields and completely solves the problem
of observables in a classical theory. It should be men-
tioned here that these works have appeared before in
parts,! " but it is only now that the complete picture has
emerged, and here we report it for the first time.

The mathematical framework for our construction is
the invariants of the theory of matrices transforming ad-
jointly under the action of the group SU(XN). The two
fundamental theorems of the invariants of the theory
relevant for us are>”” the following.

First fundamental theorem. Let X, X,,...,X,,...be
a set of N X N matrices transforming adjointly:

X;—8g _l'xig >
under the action of the group SU(N). The basic set of in-
variants that can be constructed out of these matrices
consist of monomial traces of bounded degree given by
T* ), )

,-l.i.,-k=tr(x - X

h 'k
where the indices (i;,...,[;) are not necessarily
different, and k <2¥—1 for N+3 and k <6 for N =3.

Second fundamental theorem. Every relation among
the invariant polynomials follows from the Hamilton-
Cayley identity applied to the basic monomials described
above.

The term “basic” in the first fundamental theorem
means ‘‘complete and irreducible” when the group is
SU(2). For SU(N), N = 3 the exact formula is not known.

Therefore, the term “basic’ in this case means that mo-
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nomial traces of the theorem contain a basis for the alge-
bra of invariant polynomials. All other invariants are po-
lynomials in this small “basic” set of monomials. As far
as the second fundamental theorem is concerned, an irre-
ducible set of the relation is known for the case of SU(2),?
For higher groups, it is impracticable to list these rela-
tions. However, as in the case of SU(2), the constraints
form a finite set of polynomial relations.®’ Below, we use
only the first fundamental theorem for our construction.
For details? and the relevance of the second fundamental
theorem, in large-N quantum theory, see Ref. 4.

Before we apply the first theorem, we note the follow-
ing two elementary lemmas.2

Lemma 1. There are no nontrivial local gauge-
invariant fields that can be constructed out of affinely
transforming variables, such as the gauge potential 4,
alone.

Lemma 2. There are no nontrivial nonlocal gauge-
invariant variables that can be constructed out of vari-
ables.

W(C,,)=P exp

[(—iga,axm |, b))

the path-ordered exponential for the open loop C,,.

The two lemmas provide us with the relevant variables
for our construction. For the local case, it consists of the
field strength F,, and its covariant derivatives of arbi-
trary order:

{FV}:{ ,u.v’Dle‘uv’ e

v

’Dll"'}‘nFF'V’ .. } .
For the nonlocal case, the relevant variables are the
path-ordered exponentials, defined as

W(e,x)=P§, exp(—igA,dx") 3)

for the closed loop C, passing through the point x. They
are called the Wilson loops for the loop C.
Under gauge transformations, the local and the nonlo-

cal variables described above transform as
Fy(x)—>g_1(x)F7,g(x) ,
(4)
We,x)—g "x)Wl(c,x)g(x) .

Now, we can use the first fundamental theorem to
write down the basic set of local and nonlocal gauge-
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invariant fields.

The first fundamental theorem for local gauge-invariant
fields. The basic set of local gauge-invariant fields in a
non-Abelian pure gauge theory with the gauge group
SU(N) consists of trace monomials of bounded degree
given by

te(F, -~ F, ), 5)

where the indices (y,...,¥y,) are not necessarily
different and k <2¥—1 for N#3 and k <6 for N =3.2

The first fundamental theorem for nonlocal gauge-
invariant fields. Single-loop case. The complete and irre-
ducible set of gauge-invariant fields that can be construct-
ed out of the Wilson loop W(c,x) for a loop ¢ passing
through the point x in a pure gauge theory with gauge
group SU(N) consists of

(W, teW?, .. e Wy | (6)

where W=W(c,x), W?=W(c?,x)=W(c-c,x)=Wilson

loop for the loop traversing c twice, etc.’
Multiloop case. Let ¢,cyy...,Cp,5 - - -

passing through the point x and let

be a set of loops

W, =W(c;,x )=P¢exp( —igAde/‘) ,
Wi=WI(c;-c;,x), etc .
The basic set of nonlocal gauge-invariant variables that
one can construct out of Wilson loops for loops

(cy,¢9,...,C,,...) passing through the point x in a
pure gauge theory with gauge group SU(N) consists of

We)=S ‘“’g’ B ep [yt § o (0 x e

n=0

Each field strength tensor in Eq. (12) can be expanded in
a Taylor series. Combining this fact with Eq. (11), we ob-
tain a new infinite series for the Wilson loop. Each term
in the series contains, apart from the geometric factors,
the dynamical variables in the form tr(F v, o F, ) where

as before each F, is either the field strength or its covari-
ant derivative of some order. Now we use the first funda-
mental theorem for the local gauge-invariant fields which
proves the following theorem.

The theorem on local generators for Wilson loops. The
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the trace monomials of bounded degree given by

wlry, )

tr( W'iVIWiVZ ce
1 2 J

where (i,ip,... )i ) are not necessarily different and
(y1+y,+ o +ve )<2N—1 for N#3 and =<6 for
N=3.3

To show that the basic set of local gauge-invariant
fields are local generators of the nonlocal gauge-invariant
fields, we use the coordinate gauge®~

x*4,(x)=0. (8)
In this gauge, the potential 4, can be written as

A,0= ['x°F, (tx)dt ©)

where ¢ is some parameter, and 4 ,(x) and F,,,(x) are an-
alytic in their arguments. Moreover, in this gauge the
conventional expansion of the field strength F, (x) in
Taylor series,

F, (x)=F,,(0)+xP34F,0)+ -, (10)
can be replaced by!!
F,(x)=F, (0)+xPDgF, (0)+ - -, (11

where d; and Dj are ordinary and covariant derivatives,
respectively.

Assume now that the contour considered for the Wil-
son loop is centered at the origin, and the field strength
and the potential are analytical functions in their argu-
ments. We use Eq. (9) to write the Wilson loop as

f tydt, P F, , (8,%,)%,, dx,, (12)

[
basic set of local gauge-invariant fields given by the first
fundamental theorem on local gauge-invariant fields are
local generators for a gauge-invariant Wilson loop pro-
vided the potential and the field strength are analytic.
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