PHYSICAL REVIEW D

VOLUME 43, NUMBER 12

15 JUNE 1991

Fermion masses from supersymmetric dynamics in proper time

P. D. Jarvis and M. J. White*
Department of Physics, University of Tasmania,
Boz 252C GPO,

Hobart Tasmania 7001, Australia
(Received 28 August 1990)

The proper-time superparticle formulation of the Dirac operator is extended by the introduc-
tion of supersymmetric dynamics for extra coordinates, representing multiplets of chiral quarks
and leptons. The resulting internal Hamiltonian is interpreted as their mass-squared operator.
Graded Kahler geometries are proposed for the additional coordinates, with the ¢ numbers gen-
erating the spectrum of one fermion family, and the ¢ numbers (in the holomorphic first-order
formulation) generating bosonic excitations corresponding to family replication. A simplified
SU(5) model is described which is compatible with the SU(5) minimal Higgs scenario [for one
standard SU(5) quark and lepton generation plus singlet neutrino).

I. INTRODUCTION AND MAIN RESULTS

In the context of grand unified theories (GUT’s), the
structure of the fermion mass spectrum is usually a mat-
ter for fortuitous choices and/or fine-tuning of Yukawa
couplings, leaving some “surviving” particles light, and
others effectively to decouple by acquiring masses at some
large unification scale. In the basic SU(5), SO(10), and
E¢ models, family replication is handled simply by hav-
ing (three) copies of a fundamental fermion multiplet!;
supersymmetric GUT’s fare little better.?

The situation is more promising for various higher-
dimensional schemes such as Kaluza-Klein models, su-
pergravity models, or superstrings regarded as compact-
ifications. The Dirac operator acquires an internal piece
and it is the topology of the internal manifold which de-
termines the number of massless chiral fermions.? Unfor-
tunately in these models there are usually severe tech-
nical difficulties which limit the extent to which definite
predictions can be made.

On the other hand, the experimental observation of
three generations of the basic quarks and leptons (pro-
vided the top quark is confirmed) cries out for some
dynamical explanation. Technicolor and/or composite
models have had some success,* although there is at
present no evidence for quark or lepton substructure. At
a different level there has been some considerable study
of the numerics of the mass matrices and the Cabibbo-
Kobayashi-Maskawa (CKM) matrix itself,®> on the basis
that this is the only trace of any hypothetical new inter-
action which might be responsible.

The scheme for fermion mass proposed in the present
work departs from field theory by utilizing the first-
quantized picture (technically the proper-time formalism
for the Dirac operator; see below). In the spirit of the
higher-dimensional schemes mentioned above, it is pro-
posed to extend the formalism by the adjunction of extra

X}

internal coordinates, which carry a group action (that
of the gauge group of the model), and whose quantiza-
tion and dynamics determine the particle states (inter-
nal quantum numbers) and their mass spectrum, respec-
tively. The extra coordinates can be either a numbers
(fermionic) or ¢ numbers (bosonic), and it is natural to
conjecture that the excitations of the former correspond
to particles grouped in one family, while excitations of
the latter (below some continuum threshold) give rise to
family replications.

The first-quantized or proper-time formalism derives
from the “world-line” formulation of Feynman® and
thus is as old as renormalizable quantum field theo-
ries, although it is often regarded merely as a tech-
nique for extracting Green’s functions and in functional
manipulations.” In the case of a particle moving in curved
space,® it is a form of a nonlinear ¢ model,® and super-
particle constructions have been related to superfields.!?
It is occasionally advocated as an alternative calcula-
tional scheme to perturbative quantum field theory.!! For
present purposes it is sufficient that any desired Green’s
function of a given second-quantized theory should be
reproducible in the associated first-quantized picture (cf.
string theories where the string field theory should repro-
duce the amplitudes of the first-quantized string).

The supersymmetric proper-time action for a Dirac
particle moving in external gravitational and Yang-Mills
fields, with extended dynamics, is

S = / dt [ %:b“gu,,(x):b" + %il/)uvt"ﬁygpu(x) + zg&

. 1-
+EH A€ + SEV FubE|, (1)
and forms the starting point of the present work. Here
zH(t),p#(t),p = 0,...,3 are vectorial c-number and a-
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number coordinates, respectively, representing the par-
ticle’s spatial and spin degrees of freedom; A,(z) and
F,,(x) are the usual Yang-Mills potential and field
strength, taking their values in some representation of
the Lie algebra of the gauge group, the metric g,,(z)
implies that the particle is moving in curved space; and
€%, 83 a,a=1,2,...,n, are a set of 2n internal coordi-
nates. Below, they acquire additional dynamics through
the curved space which they parametrize [via a metric
k.5(¢,€)], and an interaction potential W (¢, €) [cf. (3) to
(5) and (9) to (14) below].

The action (1) can be cast in superfield form and is
given in Sec. II. It is supersymmetric for the following
infinitesimal coordinate transformations (where ¢ is an a
number):

bzt = eyp¥, SyY* = —eV,

5E = —ept AL, 6E = —EpFA,e.

The main results of the present study, of extensions of
(1) and their quantization, are as follows.

Following early work on supersymmetric quantum
mechanics,'? it was shown that there was a natural su-
persymmetric structure to the Dirac operator, leading
to quantum-mechanical proofs of the Atiyah-Singer in-
dex theorem.!3 Of primary concern are the spatial and
spinor degrees of freedom [associated with the X, (¢) and
%u(t) coordinates, and typically a fixed representation
of the gauge group is considered, e.g., the fundamental
representation for SU(n)]. In the manifestly supersym-
metric heat-kernel treatment4 internal a-number coordi-
nates were introduced merely as a convenient bookkeep-
ing device in the non-Abelian case. For a treatment of
the Abelian case in a different context, see Ref. 15. It
was emphasized in Ref. 16 that the internal coordinates
could be ¢ numbers or a numbers. The last step is the
projection onto the desired internal representation, and
quantization of the spacetime sector leads to the Hamil-
tonian

H = D?, (2)

so that the appropriate supertrace in the Euclidean
regime yields the Atiyah-Singer index.'3

From the viewpoint of the present study, the above
formulations represent simply the flat-space limit of the
general case in which the internal coordinates have non-
trivial dynamics [k,5 = 6,5 and W = 0; see (11) below].
The Hamiltonian acts on the entire space of the quantized
operators £%, €%, a,a = 1, ..., n corresponding to &%, &2,
a,a =1,...,n (which determines the internal quantum
numbers), rather than being projected onto a fixed repre-
sentation as is implicit in (2). It also acquires additional
pieces, which give rise to the mass-squared operators of
the set of particles (quarks and leptons) carrying the in-
ternal quantum numbers.

The following toy example is illustrative of the general
situation and serves as a paradigm for the full analysis of
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Secs. II-IV. Consider the flat-space, zero-field case where
the internal action is [cf. (11)]

&=/M&—M& (3)

and the coordinates are taken to be a set of n complex a
numbers. (See also Ref. 17.) Then

T =6L/66 = —i€,

Hy = €&n — L = A&,

and dealing with the constraint leads to the conventional
fermionic quantization

{68 =1. @
Thus the total Hamiltonian is
H=Hg + Hy
=3’®14+1® ANy, (5)

acting on spinor wave functions carrying a 2°-
dimensional representation of the gauge group G, gen-
erated by the usual Fock realization of (4). It is natural
to interpret the internal piece in (5) as the mass-squared
operator for these particles, leading in this case to the
mass spectrum \/XN, N =0,1,...,n.

In Sec. II the question of suitable generalizations of
(3) to curved internal spaces is taken up. It is suggested
that in the general case the coordinates &, € describe a
homogeneous (graded) Kahler manifold, the group action
being that of the gauge group of the model [the example
of SU(n/1)/SU(n)®U(1) is given explicitly].

In Sec. IIT a simple model with gauge group SU(5) is
considered. A generalized chiral projection is introduced
which (for appropriate fermionic quantization in the in-
ternal sector) restricts the internal quantum numbers to
the 11,10z, and 5., of two standard generations of SU(5)
plus a right-handed neutrino; a further projection to even
or odd internal occupation numbers is also possible in the
absence of additional mixing terms. A flat-space model,
with a two-parameter potential, is shown to be compati-
ble with the phenomenology of the standard SU(5) min-
imal Higgs-boson-mass generation for this case.

Finally, Sec. IV treats a further extension to graded
coordinates £2, z, £3,%, where the n complex a numbers
€%, 6% a=1,...,n are augmented by a single complex
c-number coordinate z and its conjugate z. Together the
graded coordinates parametrize a graded Kahler mani-
fold, with a typical metric of the form

G (ga§ gaz)_ ()

In this picture it is tentatively suggested how family repli-
cations may arise (with a finite number of families), and
how fermion mixings may arise between families.

It should be pointed out that “internal Grassmann co-
ordinates” have also been advocated via Kaluza-Klein-
type models'® and more generally!® (see also Ref. 20).
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However, the present framework tends towards first-order
rather than second-order actions, and spinor degrees of
freedom are treated via vector-valued a-number coordi-
nates (rather than spinors). On the other hand, the “phe-
nomenological superparticle”?! also entails spacetime su-
persymmetry (rather than supersymmetry in proper
time, as considered here).

II. FERMION MULTIPLETS FROM
ANTICOMMUTING KAHLER GEOMETRY

Supersymmetric actions are most readily understood
in a superfield notation, and it has been established??
that the combination

XH =zt + ¢+,
together with the covariant derivative

D= 9 _ i{)—a—,
o0 ot
are the correct ingredients for the spatial and spin de-
gree of freedom parts of the supersymmetric action (1)
describing the Dirac operator, where the supersymmetry
generator is

0 0
= — 4.
@=% "%
Here we consider the extension to a set of complex inter-
nal superfield coordinates ®*,®%, a = 1,2,...,n, where
¢=£%+0n%,
T (7)
Pé = Sa + 6n°%.

(Here the ®2, £€%, &2, €% are considered a numbers, and
n%, 7% ¢ numbers. In the next section an additional com-
plex c-number superfield

Z =z +16¢,
_ _ (8)
Z =Z +10¢,

is considered). The action (1), in superfield form, is

thenl4

S = / dt[gu, (X)DXF XY — 3°Da®,),

where Dy = D+ DX*A,(X) is the covariant derivative
including the gauge potential A,(X).

Since we wish to consider the ®* on a par with X#, and
the latter are related to curved spacetime coordinates, it
is natural to consider ®*, ®° as coordinates of a complex
manifold, and to construct an action using appropriate
geometrical objects. The ®* ~ £%, p? differ, however,
from the X*# ~ zH, 6% since, as the flat space example
(3) shows, a first-order action in the £2, €% (and z, Z)
is anticipated, while the n%,7% (and ¢, {) become aux-
iliary (whereas the z# have a second-order action and
the ¥* remain dynamical with a first-order action. In
the case of extra bosonic coordinates, the action is in
the first-order holomorphic formalism.). Thus a Rieman-
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nian structure alone is not sufficient; for example, terms
éa kap V:€%, even when V, is the covariant time derivative,
are not appropriate if £%, €® are coordinates (rather than
tangent vectors).

A refinement of a complex Riemannian geometry
(which has, of course, arisen in conventional spacetime
supersymmetry?3) is a Kahler manifold. Here the ex-
istence of a certain closed two-form, plus compatibility
with the complex structure leads to a scalar Kahler po-
tential K(®,®) for which in appropriate coordinates the
metric becomes

g 0
k i = ———w[{, k T = —k“a’
ab aq)a 6¢b ab b (9)

kab - 0; kaE = 0.

For the present case it is natural to consider homoge-
neous Kahler manifolds whose symmetry group is iden-
tified with the gauge group of the model. A concrete
example of such a Kahler manifold parametrized by a-
number coordinates is SU(n/1)/SU(n)®U(1), for which

K(®,®) = In(1+ o) ,

9ab = 6o5/(1 + @) — @, B5/(1 + &B)” .
The existence of the scalar K leads to the possibility of
defining natural covariants and invariants by appropriate
differentiation: thus for example??® the only Christoffel
symbols are of the form

8 8 9

037 9Pt §°
The supersymmetric action whose Hamiltonian provides

the mass-squared operator of a set of fermions carrying
the appropriate internal quantum numbers is

[abd] = = K(®,3) .

a 6 a 6 g
S]-—/dtd0[ (Dt<I> 357 —— K - D;® aq)alx)

-V (é,@)] , (10)

where V is a potential (self-interaction term) and K is
the Kahler potential. After integrating over 6 and elimi-
nating 7, 7 one finds [cf. (3)]

— a ¢ 'a_a_ ¢
s,._/dtdo[ (g sk ¢ 8€a1<)—W(£,£)] ;

(11)

where
1 3
W6 = o i s
and
kbk;, = 5.,
(12)
kapk®® = 6,°

Finally, the Hamiltonian corresponding to (11) is
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Hp = W(§,€). (13)

Quantization of first-order actions of this sort can be car-
ried out by Dirac or Becchi-Rouet-Stora-Tyutin (BRST)
methods.?* The result is that the £, £ become fermionic
operators é, € satisfying the (in general nonlinear) anti-
commutation relations

{€9,8%) = k(¢ ).

In Sec. III particular choices of K and V are made in a
toy model. There the internal space turns out to have
its full complement of 2" states, but from the point of
view of phenomenology, it should be emphasized that ap-
propriate nonlinear realizations of (14) may entail fewer
states.

(14)

III. A SIMPLIFIED SU(5) MODEL

In this section the general scheme outlined above is
specialized to the n = 5 case in an attempt to describe the
SU(5) model. The quark-lepton mass matrix in the lat-
ter, generated in the usual scenario from Higgs-Yukawa
couplings after spontaneous symmetry breaking, must
therefore be reproduced by the dynamics of the addi-
tional anticommuting coordinates. A natural choice for
the latter would be a nontrivial Kahler geometry [using,
for example, the manifold SU(5/1)/SU(5)®U(1) men-
tioned above], and interactions such that some type of dy-
namical symmetry breaking would reproduce the fermion
mass matrix. Such a proposal depends on further analy-
sis of the quantum mechanics of this class of model (cf.
Ref. 24), and work along these lines is in progress. In
particular, the explicit treatment in this proper-time pic-
ture of the gauge degrees of freedom is required (cf. Ref.
15) before the complete correspondence with the spon-
taneous symmetry breaking and Higgs mechanism of the
second-quantized formalism is apparent. In the mean-
time, however, a simpler strategy, equivalent as far as
fermion mass generation is concerned to the introduc-
tion of Higgs vacuum expectation values in Yukawa cou-
plings in the field-theory version, is considered: namely,
the restriction to flat space, but with explicit symmetry-
breaking terms.

For illustrative purposes we therefore take in (10) the
(flat) Kahler potential

5
¢ P l s _1 5,8 5 a
K(2,®) = 5(2®) = 2;<1> e,
(15)
Jaa = b4a,a, a=1,...,5,
together with the superpotential
V= (Ra® + A3®)[1 + p1(B®) + 1p2(39)%], (16

in which Ag, A are (complex-conjugate) constant ¢ num-
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bers, a = 1,...,5, and p; and p, are real parameters
(playing the role of arbitrary couplings).
Clearly field redefinitions of the form
& = O1 + 1 (D) + Lux(39)?) (17)
will modify the appearance of (10), (11) by simplifying
the potential at the expense of the appearance of interac-
tions derived from the metric; indeed (17) simply means
that the superfields ®,® experience an interaction with
constant external fields A, A, whereas in (16), although
the manifold is manifestly flat, the external potential in-
teractions involve some rescaling of ®,®. As we shall see,
the parameters p; and p, are essential if the standard
SU(5) scenario is to be reproduced.
With (15), (16) in place the internal Hamiltonian
W (£,€) [cf. (11) and (12)] becomes

W(E,€) = AN(L + 2u1€€ + piEE% + 1 pa€E® + 1E¢7)
—AEEA[(2p1 + 33 + 22)EE + Bpt1 pafE?

+2u3£€3), (18)

where AA = Zi:l AzAq, AEEA = E:,b=1 Az€%€%A,, and

in view of (14), after quantization,

{€%,8% = 5%, (19)

[which is another reason why (15), (16) give a more
straightforward starting point than (25)].

Before examining the spectrum of (18) and working
out the mass-squared operator, the fermion content is
restricted by introducing a generalized chiral projection
on the states. In the field theory description this is just
the restriction to chiral spinors (with, for example, the
eigenvalue of the Hermitian ys matrix being —1 in the
left-handed case). In the present (proper time) case, it is
necessary to interpret this in terms of the quantized op-
erators corresponding to the # coordinate of (1), where

[cf. (14)]
{y#,¥"} = 29

in the flat-space case. Generically one must take d/2
pairs of fermionic creation and annihilation operators a,
o, in space-time dimension d (cf. Ref. 25), and the ¥’s
are combinations such as @ + a! with appropriate nu-
merical factors. Clearly ¢# (like y#) changes the chi-
rality of states, and, as signaled by the selection rule
§Nsp, = =1 (where N, is the total spinor occupation
number in this representation), v5 can be identified with
(—1)N+» using, for example, (o + ol )(a — at) = (=1)Ne,
The Weyl projection for left-handed states would there-
fore be (—1)Nsr = —1.

In the present case where both spinor and internal
states are given in an occupation number basis we in-
troduce

N = N%P 4 N7

and demand the generalized chiral projection
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(-1)V = -1 (20)
From (19) and (20) if we regard the operators £2,
a=1,2,...,5 as creating SU(5) representations from a

vacuum state, and include the required correlation with
spinor chirality, we have the following states:

Ny o 1 2 3 4 5
SU() | 1. 5r 10, 10r 5, 1r

At this stage, a further restriction may be introduced
which is valid for this model but may not necessarily be
so in general [even within this class of model, we can en-
tertain generalizations such as the SU(5)-symmetric in-
teraction V' = A(€apeae®*@*P°PP¢ 4 H.c.)]: namely,
that in the model (18) the internal occupational number
is conserved, so attention can be restricted to just the
even or odd sectors. We choose for example

(=DM =+1. (21)

An alternative would be to implement
charge-conjugation symmetry so that the R fields can be
regarded as the charge conjugate of their L counterparts,
%r =~ (¥r)°. In fact if M is an internal operator which
satisfies AN; = +1 then the AN = 41 projections of
Q = i@ — M satisfy {Q4,Q_} = 82 + M?, and there is
a supersymmetry of the massive Dirac operator.

Thus the net result of the generalized chiral condi-
tion (20) is to introduce the correct correlation between
spinor chirality and SU(5) quantum number such that
the fermions (21) describe two standard SU(5) genera-
tions (plus singlet right-handed neutrino); in cases where
internal fermion number is conserved, the additional re-
striction (22) allows for just one generation (plus sin-
glet neutrino), namely, 1, (N; = 0), 10 (N; = 2),
and 57, (N; = 4). In this connection it should be noted
that in the curved case SU(5/1)/SU(5)®U(1) a suitable
(Dyson?) type quantization may admit the atypical, 31-
dimensional representation of SU(5/1), giving one less
singlet neutrino (for comments on superalgebra represen-
tations and anomalies see Sec. V). In order to evaluate
the mass-squared operator (18) in the occupation num-
ber basis, the question of operator ordering must first be
addressed. As shown for example in Ref. 26,Athe path-

integral quantization of a given operator V(é,C_) leads to
an action of the form (3) but with the potential W (¢, )
being the normal kernel of V(€,€). Denoting Ny by N
hereafter we have

]

M MY M,
(MAC) — Mab Mabcd Mcab
M, M N,

M 0 Y1 H,
= 0 Yi0e®**?H,

YiH, Yam(82H® —82H?) Nac

Yar(6¢HY — 62 H®)
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corresponds to V = (§ )= N

5
and to W = (&6)> = Y &2éb¢¢e
=1

a,b

5
corresponds V' = Z geebérée = N(N -1)
a,b=1

and so on. The complete correspondence is readily given
if for the constant “external” fields A, A the values (A)
= A(1,0,0,0,0), (A) = A(1,0,0,0,0) are taken, and the
operator f—lél denoted N,. Defining 2 =Y, £9€% and T
=3 Az€%E%A, we find simply

E" NN =1)(N-2)(--)(N-n+1),

I = N,N(N = 1)(--)(N —n +2).

The mass-squared operator can finally be constructed
with the help of these results. Identification of physical
states is by means of the SU(5) and SU(4) basis chain
if it is noted that N and N, uniquely identify represen-
tations: for example, for N = 2, N, = 0,1 correspond
respectively to the 6- or 4-dimensional representations of
SU(4) contained in the 10 of SU(5). The complete results
are given in Table I.

Table I gives the mass-squared operator for one SU(5)
generation (plus singlet neutrino) and can be interpreted
by comparison with standard SU(5) Higgs-induced mass
generation. Suppose, for example, that the Lagrangian
for a set of chiral fermions {44} is

L= $A%(i)ohap — s M} gCapp?*9®P

FLMAB(C) B aating (22)
where Cyp, (C™1)*P are the charge-conjugation matrix
and its inverse, and the mass matrices MLB,MAB are
assumed to be derived from Yukawa couplings. For ex-
ample, if the set of (left-handed) chiral fermions is ¥4 =~
¥, Yap, ¥° corresponding to the 1, 10, 5 representations
of SU(5), then with appropriate index conventions

)
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TABLE I. Comparison of mass-squared eigenvalues of a simplified SU(5) model [see Egs. (18)
and (19)] with the conventional Yukawa-Higgs mechanism (23), in the occupation number basis,
together with the conventional particle labels.

SU(4) (Mass)? (Mass)?
SU(5) Ny N, (name) (proper time) (Higgs)
1 0 0 1 (V') 1 Y?
10 2 0 6 (u,u) 14 4py + 242 4Y2
1 4 (d,et) 1+ 2p — pd — p2 vz
1+ 8pq + 1243
5 4 0 4 (d%€) +24p1 p2 + 642 vy
14 6p1 — 6z + 33
1 1(v) —6p1 2 — 6113 Y7

where Y3, Yar, Yio are Yukawa couplings, H,, H® = (H,)! is the vacuum expectation value of the Higgs field (taking
the minimal choice of a single complex 5), and M is an additional (Majorana) mass which is allowed for the singlet

neutrino. Then for this choice,

MM+ MM, 0 MM,
(MIM)* g = 0 Mg, MY 0
MM® 0

Since the mass-squared matrix derived in Table I is di-
agonal in the SU(5) basis, for comparison the Majorana
mass M must be dropped here [a model with AN = 2,
e.g., one containing V’ = A(sabcdeéaébq)cq)dq)e + H.c.),
would be required to reproduce such mixing terms], leav-
ing the diagonal elements (for 1,10 and 5, respectively):

MTM), = Y12|H|?,
1

ef

(MfM)ab = (YM2 - %sz)

x(6SHyH! — 6 HyH® — 6§ H, HY
+6{ H H®)
+ Yio®§(658] — 6:68))
(MTM); = 2Yp 262 |H|? + (V1% — 2Y2)HOH,.

It is now straightforward to interpret (24) in the SU(5) D
SU(4) basis assuming (H,) ~ A(1,0,0,0,0). The results
are given in the last column in Table I, together with the
conventional particle labels for the various states.
Crucial to the Higgs-induced mass scenario (and hence
the mass-squared matrix) is the charge conjugation sym-
metry which allows the particle states of the 4 of SU(4)
[in the SU(5) 5 multiplet] to be identified with the charge
conjugates of the states of 4 of SU(4) [in the SU(5) 10],
so that the spectrum comprises four Dirac fermions d, e,
with the familiar SU(5) result mgy = m, at the tree level.
Unfortunately, in the model based on (22) the charge
conjugation symmetry is not manifest for the generic pa-
rameters py, o (see Table I). The symmetry can be im-
posed a posterior: by demanding that the entries in Table
I follow the same pattern as those derived from Yukawa

(23)

M°M, + M4M?

f
couplings, namely,

1 =14 6pu1 —6pz + 3u — 61z — 6u3,

1+ 2p1 — pd — po = 1+ 8py + 123 + 2405 + 6443

In fact, there are three nontrivial solutions to these equa-
tions (aside from p; = pp = 0), each corresponding to
fixed ratios of m, = ma: My (Vmixing). However, these
“predictions” should not be taken seriously in this simpli-
fied model. In a more sophisticated version, the requisite
charge conjugation symmetry should appear automati-
cally (cf. Ref. 7), and allowance would also be made for
a (large) Majorana mass parameter. The main point of
the simplified model is that it is compatible with stan-
dard field theory, and moreover that generalizations are
conceivable within the present framework which go be-
yond the field theory description.

IV. FAMILY REPLICATION
FROM GRADED KAHLER GEOMETRY

As pointed out in Sec. I, the supersymmetric formalism
goes through equally well with the additional coordinates
being either a numbers or ¢ numbers, and it is natural
to associate the (bosonic) excitations of the latter with
family replications.

In the Kahler geometry consider for example a poten-
tial

K(€,€,2,7) = K(E6h™ (2, 2),

where as before £%,£%, a = 1,2,...,n are a numbers,
but z is an additional ¢ number with its complex con-
jugate z, and K, h~! are invertible functions of (&¢)
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(= 30_,€%¢%), and z, z, respectively. Then the Kahler
metric is

_ 92t YGaz
@)= (gzz 92z )

kggh™! —€2K'h3!
= (é-blz'lh—l € h—} ) 3 (24)
where
8 0
kab = a—ea'ag?sf{

is the Kahler metric for K alone. In the symmetry-
breaking scheme of Sec. III [cf. (16) and (17)], where
there is an interaction between the additional coordinates
and a constant external potential (representing the vac-
uum expectation value of the Higgs field), the Hamilto-
nian becomes [cf. (11) to (13) in Sec. II]

H = I_XagazAg ,

where g% is now the inverse of the graded Kahler metric
(24). Clearly g2 is of the form

gaz — kash + IGE ,
where 1%? will typically be bilinear in K’ and hJ!, h;'.
Thus the structure of H is

H= hl_Xak"EAz + KalaEAz

=h® Hr+ AH, (25)
where Hy is the mass-squared matrix due to the fermionic
interactions alone, h after quantization plays the role of a
multiplicative bosonic contribution to the Hamiltonian,
and AH is a further mixing term which in general will
not commute with h ® H;.

Clearly if the bosonic states [¢), i = 1,..., F are eigen-
states of h, with eigenvalues )A;, and the fermionic states

|} are eigenstates of Hy with eigenvalues m?2, then

h® Hy |i)|a) = AimZ]i) ® o),

indicating that a basis for H is given by F copies of the
fermionic eigenstates, and that diagonalization of H in-
cluding the mixing term A H implies taking certain linear
combinations of the |i) ® |a).

This structure, while not worked out in detail here, is
therefore an attractive scenario for the origin of family
replications, and for the generalized mixing matrices. In
a proper time formulation including the gauge degrees of
freedom, the dynamics should be such that the |7} ® |a)
states emerge as the true gauge eigenstates. At the same
time one might hope to interpret the states corresponding
to the continuum of h in terms of some singular sector of
the complete dynamics. Further work along these lines
is in progress.
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V. CONCLUSION

As explained at length in the introductory discussion
(Sec. I), the strategy of analyzing fermion mass and mix-
ing here proposed is to put aside the field-theory descrip-
tion in favor of a proper-time formulation with additional
extended dynamics (Sec. IT). This strategy is worked out
in a simplified example (Sec. III), but the general formal-
ism is robust and admits of further generalizations such
as a mechanism for family replication (Sec. IV). The fol-
lowing general comments list some of the points in favor
of the scheme as well as some problems to be clarified in
future work:

(i) The introduction of extended dynamics in curved
space suggests a geometrical origin of the fermion spec-
trum (cf. Ref. 27). The model has some resemblance
to the noncommutative geometry of Connes,?” while re-
maining in the tradition of higher-dimensional theories.

(i) The generalized chiral projection (20) in the SU(5)
case provides another way (among many) to explain the
correlations between chirality and equivalence class of
representation of the observed fermions; namely, that the
10 and 5 go together, rather than, say, the 10 and the 5.
In this context a “grading by chirality” (cf. Ref. 28) is
automatic given the way the states are constructed [see,
e.g., the table following (20)].

(iii) The introduction of a graded Kahler manifold nat-
urally leads to mixings between repeated families because
of noncommuting parts of the mass-squared Hamiltonian
[see (25)]. Presumably inclusion of the gauge degrees of
freedom (cf. Ref. 15) would clarify why the [i) ® |a)
states associated with h ® H; are by themselves gauge
eigenstates [see (1)].

(iv) The simplified SU(5) model in Sec. III sets aside
the geometrically derived dynamics [cf. (i) above] in
favor of a flat space model with an explicit symmetry-
breaking potential derived from an external field, equiv-
alent to (but at this level rather simpler than) the Higgs
mechanism for mass generation. In three nontrivial cases
the simplified model was compatible with the SU(5)
minimal Higgs-boson-mass scenario, with fixed ratios of
Me = Mg : My : (Vmixing)-

(v) The present study is at the first quantized, su-
perparticle level; as mentioned above, the gauge degrees
of freedom could be introduced explicitly also (cf. Ref.
15), and their interactions may generate the symmetry-
breaking direction dynamically. The corresponding field
theory description would then be interesting. In fact it
could be argued that the complex ¢ numbers 2,z actually
amount (in the field theory version) to the addition of
one scalar field (rather than various multiplets) as in the
usual Higgs mechanism.

(vi) A possible continuum sector in the bosonic part
of the mass-squared Hamiltonian (as well as the dis-
crete bound-state spectrum, which corresponds to family
replication) defies interpretation in the present frame-
work. However, it may turn out to signal some impor-
tant regime of the corresponding field theory version and
should not be rejected at this stage.
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(vii) Finally, it should be pointed out that in the
proper-time formulation there seems no need to have
conventional canonical quantization of the fermionic de-
grees of freedom. Parastatistics or modular statistics®® or
perhaps even quantization based on a given Lie algebra
(“compact quantum mechanics3%”) may be equally ad-
missible, and may provide another route to family repli-
cation.

Extensions of the model, with these and related ques-
tions in mind, are currently under study.

P. D. JARVIS AND M. J. WHITE 43

ACKNOWLEDGMENTS

It is a pleasure to thank Bob Delbourgo, Lorella Jones,
Ruibin Zhang, and Roland Warner for discussions and
constructive criticisms of the ideas of the present work.
This work was partially supported by ARC Grant No.
A68615337. Ongoing and previous grants from the Aus-
tralian Research Council, the Alexander von Humboldt
Foundation, (P. D. J.) and contracts from the University
of Tasmania are gratefully acknowledged.

*Present address: Dept. of Physics, Yale University, New
Haven, CT 06511.

1H. Georgi and S. L. Glashow, Phys. Rev. Lett. 28, 1491
(1972); J. Pati and Abdus Salam, ibid. 31, 663 (1973);
H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93, 193
(1975); F. Giirsey, P. Ramond, and P. Sikivie, Phys. Lett.
60B, 177 (1976).

2See, fdr example, G. G. Ross, in Supersymmetry—a Decade
of Development, edited by P. West (Hilger, Bristol, 1986),
p. 374.

3E. Witten, in Shelter Island II: Proceedings of the 1983
Shelter Island Conference on Quantum Field Theory and
the Fundamental Problems of Physics, Shelter Island, New
York, 1983, edited by R. Jackiw et al. (MIT, Cambridge,
MA, 1985), p. 227.

4See, for example, R. K. Kaul, Rev. Mod. Phys. 55, 449
(1983) .

5See, for example, H. Harari, H. Haut, and J. Weyers, Phys.
Lett. 78B, 459 (1978); H. Fritzsch, ibid. 73B, 317 (1978);
Nucl. Phys. B155, 189 (1979); Y. Achiman, Z. Phys. C 44,
103 (1989); Y. Koide, Phys. Rev. D 39, 1391 (1989).

SR. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); R. P.
Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill, New York, 1965).

7C. Itzykson and J. B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980); L. S. Schulman, Tech-
niques and Applications of Path Integration (Wiley, New
York, 1981); B. S. DeWitt, Phys. Rep. 19C, 295 (1975);
N. D. Birrell and P. C. W. Davies, Quantum Field Theory
in Curved Spacetime (Cambridge University Press, Cam-
bridge, England, 1982).

8B. S. DeWitt, Rev. Mod. Phys. 29, 377 (1957); J. S.
Dowker, J. Phys. A 3, 451 (1970); Ann. Phys. (N.Y.) 62,
361 (1971); Schulman (Ref. 7).

®S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239
(1969).

10Gee, for example, M. Huq, Mod. Phys. Lett. A 5, 519
(1990).

11A. O. Barut, Phys. Rep. 172, 1 (1989).

12F Witten, Nucl. Phys. B185, 513 (1981); B202, 253
(1982); F. Cooper and B. Freedman, Ann. Phys. (N.Y.)
146, 262 (1983).

131, Alvarez-Gaumé, J. Phys. A 16, 4177 (1983); Commun.
Math. Phys. 90, 161 (1983); in Supersymmetry, edited
by K. Dietz, R. Flume, G. v. Gehlen, and V. Rittenberg
(Plenum, New York, 1985); L Alvarez-Gaumé and E. Wit-

ten, Nucl. Phys. B234, 269 (1983).

4D, Friedan and P. Windey, Nucl. Phys. B 235, 395 (1984).

153, G. Rajeev, Ann. Phys. (N.Y.) 173, 249 (1987).

16P. D. Jarvis and S. E. Twisk, Class. Quantum Grav. 4, 539
(1987).

17J. Mafies and B. Zumino, Nucl. Phys. B270, 651 (1986); B.
Zumino, in Shelter Island II: Proceedings of the 1983 Shelter
Island Conference on Quantum Field Theory and the Fun-
damental Problems of Physics, Shelter Island, New York,
1983, edited by R. Jackiw et al. (MIT, Cambridge, MA,
1985); B. S. DeWitt, Supermanifolds (Cambridge Univer-
sity Press, Cambridge, England, 1984); Itzykson and Zuber
(Ref. 7); L. P. Singh and F. Steiner, Phys. Lett. 166B, 155
(1986); P. Windey, Acta. Phys. Polon 15, 435 (1984).

!8R. Delbourgo and R. B. Zhang, Phys. Lett. B 202, 296
(1988); Phys. Rev. D 38, 2470 (1988); R. Delbourgo, R.
B. Zhang, and S. E. Twisk, Mod. Phys. Lett. A 3, 1073
(1988).

'°R. Delbourgo, Int. J. Mod. Phys. A 3, 591 (1988); Mod.
Phys. Lett. A 4, 1381 (1989); R. Delbourgo, L. M. Jones,
and M. J. White, Phys. Rev. D 40, 2716 (1989); 41, 679
(1990); R. Delbourgo and M. J. White, Mod. Phys. Lett.
A 5, 355 (1990).

2°P. H. Dondi and P. D. Jarvis, Phys. Lett. 84B, 75 (1979);
87B, 403(E) (1979), Z. Phys. C 4, 201 (1980); J. Phys. A
14, 547 (1981).

2'W. Krolokowski, Acta Phys. Polon 19B, 275 (1988); 19B,
599 (1988).

??Rajeev (Ref. 15); Zumino (Ref. 17); Friedan and Windey
(Ref. 14).

23B. Zumino, Phys Lett. 87B, 203 (1979); M. Green, J. S.
Schwarz, and E. Witten, Superstring Theory (Cambridge
University Press, Cambridge, England, 1987), Vols. I and
1I.

24]. Govaerts, Hamiltonian Reduction of First Order Actions
(Durham University, Durham, England 1989).

*Maifies and Zumino (Ref. 17); Windey (Ref. 17).

26Itzykson and Zuber (Ref. 17).

27P. Woit, Nucl. Phys. B303, 329 (1988); Alain Connes and
John Lott, Report No. IHES/P/90/23, 1990 (unpublished).

281, Bars, Nucl. Phys. B208, 77 (1982).

%°H. S. Green and P. D. Jarvis, J. Math. Phys. 24, 1681
(1983).

30A. J. Bracken and R. J. B. Fawcett, J. Math. Phys. 29,
1521 (1988).



