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I discuss the statistics of "quons" (pronounced to rhyme with muons), particles whose anni-

hilation and creation operators obey the q-deformed commutation relation (the quon algebra
or q-mutator) which interpolates between fermions and bosons. Topics discussed include repre-
sentations of the quon algebra, proof of the TCP theorem and clustering, violation of the usual

locality properties, and experimental constraints on violations of the Pauli exclusion principle

(i.e. , Fermi statistics) and of Bose statistics.

I. INTR.ODUCTION

Within the last three years, two new approaches to par-
ticle statistics (in three or more space dimensions) have
been studied in order to provide theories in which the
Pauli exclusion principle (i.e. , Fermi statistics) and/or
Bose statistics can be violated by a small amount. One
of these approaches uses deformations of the trilinear
conunutation relations of Greenii and Volkov. i~ (Defor-
mations of algebras and groups, in particular, quantum
groups, are a subject of great interest and activity at
present. The extensive literature on this subject can be
traced from Ref. 13.) The particles which obey this type
of statistics, called "parons, " have a quantum field theory
which is local, but some states of such theories must have
negative squared norms (i.e. , there are negative probabil-
ities in the theory). The negative squared norms first ap-
pear in many-particle states; it does not seem that they
decouple from positive squared norm states (as, in con-
trast, the corresponding states do decouple in manifestly
covariant quantum electrodynamics). Thus theories with
parons seem to have a fatal Aaw.

The other approach uses deformations of the bilinear
Bose and Fermi commutation relations. The parti-
cles which obey this type of statistics, called "quons, "
have positive-definite squared norms for a range of the
deformation parameter, but the observables of such the-
ories fail to have the usual locality properties. This fail-
ure raises questions about the validity of relativistic quon
theories, but does not cause a problem with nonrelativis-
tic quon theories. (As I prove below, the TCP theorem
and clustering hold for free relativistic quon theories, so
even relativistic quon theories may be consistent. )

Still other approaches to violations of statistics were
given in Refs. 21—23. One should also recall the early
work of Gentile~4 which proposed to interpolate between
Fermi and Bose statistics by allowing up to It; particles
(instead of only one) to occupy a single state. (Gentile's
model does not give a small violation of statistics, but
it does interpolate. ) An interpolation between Bose and
Fermi statistics using parastatistics of increasing order
was studied in Ref. 25; this also does not give a small
violation.

The purpose of this article is to discuss quons, and to
consider several issues related to statistics in the light of
these recent developments. In Sec. II, I discuss the quon
algebra, aka& —qaiay = bkt. In Sec. III, I discuss the
case of a single oscillator. Section IV considers Fock-like
representations of quons. Section V describes operators
which annihilate or create particles in a given place in
a many-particle state. In Sec. VI, I discuss the use of
the q = 0 operators as standard building blocks for the
operators with q in —1 ( q & 1. In Sec. VII, I construct
the free quon field and show that it obeys the TCP the-
orem despite the fact that the observables of the theory
are not local. Section VIII deals with experiments rel-
evant to small violations of the exclusion principle (i.e.,

of Fermi statistics) and of Bose statistics. Concluding
remarks and directions for further research are given in
Sec. IX.

II. THE QUON ALGEBRA

The quon algebra (or q-mutator)

~a&~ —Q~g &@ = ~mr

is a deformation of the Bose and Fermi algebras which
interpolates between these algebras as q goes from 1 to
—1 on the real axis. The quon algebra, supplemented by
the vacuum condition

~Oa) =O,

determines a (Fock-like) representation in a linear vector
space. For —1 & q & 1, the squared norms of all vectors
made by limits of polynomials of the creation operators
a& are strictly positive. For q = +1 the squared norms oft

all such vectors are never negative; vectors which are not
totally symmetric (antisymmetric) under permutations
have zero norms. Any relation of the form

cg A) A) —c2 A( AI„- ——cab't

can be brought into the form of (1) by the change of
normalization

ak = (ci/cs) Ak, at. = (ci/cs) Aq,
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with q = cq/ci, provided ci/cs ) 0 and cs g 0. The
choice made in (1) is particularly convenient, for the inter-
polation between Bose and Fermi statistics. The choice
aka&t —qa& ak ——q bk~, where N is the number operator,
studied by some authors does not have a convenient in-
terpolation. The Bose (q = 1) and Fermi (q = —1) cases
are, of course, of special interest; another special case is

q = 0 ("infinite statistics") which I discussed earlier. 5

The range —1 & q & 1 shares with the case of q = 0
the property of having positive-norm vectors belonging
to all representations of the symmetric (i.e. , the permu-
tation) group. Also, as in the case of q = 0, Eqs. (1)
and (2) allow the calculation of the vacuum-to-vacuum
matrix element of any polynomial in the a's and at' s.

Note that no commutation rule can be imposed on aa
or a~at. Furthermore, no such rule is needed to calcu-
late vacuum matrix elements of polynomials in the a' s
and at' s. All such matrix elements can be calculated by
moving annihilation operators to the right using (1) until
they annihilate the vacuum according to (2) or by mov-

ing creation operators to the left again using (1) until

they annihilate the vacuum on the left according to the
adjoint of (2). The relation

aka~ —qa~ak —0

Then the energy operator, for example, is

E=) e;n;,

where e; is the single-particle energy . For our q = 0
example of infinite statistics, both the number operator
and the transition number operator have an infinite series
expansion in terms of the a's and at' s:

n; =a;a;+ aka;a;ak+ ak ak, a;a;ak, ak, +
k kg, kg

+ ak ak . -. ak a,. a;ak, . ak, ak, + . .
kg, kg, "k,

(7)

(As far as I know, this is the first case in which the num-

ber operator, Hamiltonian, etc. , for a free field are of
infinite degree. ) In verifying that (5) is valid, the con-
tributions with . aa coming from a given term in n;
cancel against a contribution from the next term in n; so
that the commutator telescopes to give the stated result.
There is an analogous formula for the transition operator
n;& which annihilates a particle in state j and creates a
particle in state i Just. replace ata; in (7) by ataz. The
transition operator obeys

between two a's which one might guess in analogy with
the Bose and Fermi commutation rules holds only when

q = 1; and requires that q = +I in (1); i.e., (4) can
hold only in the Bose and Fermi cases. To see this, in-
terchange I' and 1 in (4) and put the result back in the
initial relation. It is worth remarking that the commu-
tation or anticommutation relations between two a's or
between two at's are also not needed to calculate matrix
elements in the Fock representation [in which (2) holds]
of Bose or Fermi statistics. [The fact that the a's (or
the at' s) commute or anticommute when q —+ +I can be
seen using the expansion of the general-q operators in the
q = 0 operators (see Sec. VI).] Neither are these needed
for normal ordering, i.e. , to expand a product of a's and
at's as a sum of terms in which creation operators al-
ways stand to the left of annihilation operators. Wick's
theorem for quon operators is similar to the usual Wick's
theorem; the only difference is that the terms acquire
powers of q. I give the precise algorithm in Sec. VII.

Although the qualitative results are often the same,
q = 0 (Refs. 15, 27, and 28) is much simpler than general
q. For q = 0, all states formed by monomials in a~'s acting
on the vacuum have norm one, regardless of whether the
at's have the same or distinct labels. Monomial states
are orthogonal unless the same set of at's occur in the
same order. The space of states is obviously a Hilbert
space; i.e. , it has a positive-definite metric. To construct
the operators for the energy, momentum, angular mo-
mentum, etc. , in terms of the annihilation and creation
operators, it sufFices to construct a set of number opera-
tors, n;, which obey the usual commutation relations

[n;, a, ] = —b,, a, .

(8)

(The number operator ni, ——nay. )
Operators which obey (5) or (8) are composite Bose op-

erators. Their eigenvalues are additive for product states.
Thus the construction (7) gives a composite Bose opera-
tor, which can be an observable, in terms of quon opera-
tors in analogy with the construction of composite Bose
operators from Fermi operators [for example, the cur-
rent j„(z) = g(z)p„g(z), where g is a Fermi operator]
or from para-Bose or para-Fermi operators (for exam-
ple, the current j&(z) = (i/2)[gt(z), B&P(z)]+, where P
is a para-Bose operator). The condition that observables
must be composite Bose operators leads to conservation
of statistics which states that all interactions must in-
volve an even number of fermions or parafermions and an
even number of paraparticles (except for cases in which

p parafields can occur when the order of the parastatis-
tics is p).2s I expect that conservation of statistics must
also hold for quons and, in particular, that a single quon
cannot couple to normal fields. I plan to discuss the
conservation of statistics for quons in detail elsewhere.
[Conservation of statistics, which holds for both nonrel-
ativistic and for relativistic theories, is a more primitive
property than the spin-statistics theorem. The rule that
a composite state with an even (odd) number of fermions
is a boson (fermion) is a consequence of conservation of
sf af is ties. ]

III. SINGLE OSCILLATOR

Just as results are simple for q = 0, they are also
simple for a single mode; in particular, give simple
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a = f(NO)b, f (No) = (1 —q
'+ )/(No+ 1)(1—q),

[Substitute the Ansiitz for a in the q-mutator relation,
(1), and solve the resulting recursion relation. No is the
number operator for b.] An analogous representation of a
holds using a single infinite statistics operator c obeying
Eq. (1) with q = 0,

a = q(NO) c g'(No) = (I —q"')/(I —q) (10)

now No is the number operator for c which has an infinite
degree expansion in terms of c and ct. Unfortunately,
these Ansa/ze do not seem to generalize to more than
one oscillator. The number operator for a single mode
can be writtens2 n = P &(I —q~) ~(1 —q)&at&a&.

proofs that the single oscillators act in a positive metric
(Hilbert) space. Freund and Nambus~ do this by giving a
representation of a single q-mutator oscillator a in terms
of a Bose oscillator b:

IV. FOCK-LIKE REPRESENTATION
FOR GENERAL Q

To construct the Fock-like Hilbert space for quons, we
must calculate the scalar products between vectors made
by polynomials in the creation operators acting on the
vacuum state. To calculate these scalar products, it suf-
fices to give the scalar products between vectors which
are made from monomials in the at's acting on the vac-
uum. When the degrees of the monomials diR'er, the
scalar product vanishes. The scalar products are non-
vanishing only when the labels of the at's in one vector
are a permutation of the labels of the at's in the other
vector. [I use permutations of places, rather than per-
mutations of labels. Place permutations remain defined
when the same label occurs more than once. So, for ex-
ample, the permutation (132) means that the label that
was in the first place goes to the third place, the label
that was in the third place goes to the second place, and
the label that was in the second place goes to the first
place. Permutations are multiplied from right to left. ]
When the labels are distinct, the scalar product is

Mp, q(q) = (Pat(kq) . . at(k„) ~0), Qat(kq) . . at(k„) (0))

=(a (k~-x, ) a (k~-i„)~0),a (kq-ig) a (kq- „)~0))= q

i(P) = number of inversions in going from the natural or-
der to the order given by P = minimum number of trans-
positions of successive integers necessary to bring 1, . . . , n
into Pl, . . . Pn. Here and in the discussion of the inver-
sion table below the permutations are regarded as acting
on symbols. (An inversion occurs when a number j oc-
curs to the left of a number i ( j.) The inversion table of a
permutation P: (1, 2, . . . , n) ~ (Pl, P2, . . . , Pn) = (Pj )
is a set of n integers; the leftmost integer is the number
of times numbers larger than 1 appear to the left of 1 in
(Pj ) (this first integer can have values fram 1 to n —1),
the jth integer is the number of times numbers larger
than j appear to the left of j (this jth integer can have
values from 0 to n —j) and the last integer is the num-
ber of times numbers larger than n appear to the left of
n (this last integer must be 0). The inversion number
i{P) is the sum of the integers in the inversion table of
P. Each P in S„has one and only one inversion table;
i.e. , the inversion table labels permutations uniquely.
One can calculate i(P) by representing a permutation
P: (1, . . . , n) ~ (Pl, . . . , Pn) by writing the integers in
natural order on one line and writing the integers in per-
muted order on a line underneath. Draw a set of arrows
from the original position of each integer to its permuted
position. Then i(P) is the number of times these directed
lines cross. Reversing the lines gives the permutationP; clearly the number of crossings remains the same,
so i(P) = i(P ~). The inversion number of an even (odd)

permutation is even (odd). Note that i(P) is not a class
function on S„.For example, i((12)) = 1, but i((13)) = 3,
so i splits a class, and i((12)(34)) = 2, and i((123)) = 2,
so i has the same value on permutations in difI'erent
classes. The matrix M~ q(q) is real, symmetric for real q,
provided, as was shown above, i(P) = i(P ~). This sym-
metry, together with the dependence of M„on PQ
only, shows that the rows and columns of M„are permu-
tations of each other. Note that M~~ q~(q) = M~ q(q),
but M~~ ~@(q) g Mz, q(q) in general.

Explicit calculations which I give below show that in
the open set —1 ( q & 1 all representations of the sym-
metric group occur for two and three particles, with the
symmetric (antisymmetric) representations more heavily
weighted as q approaches one (negative one). In this
range of q all norms are positive~7 so all represen-
tations occur for all n, and very likely the statements
about the weighting of the representations also hold for
all n. Thus quon theories allow small violations of Bose or
Fermi statistics. The problem of negative squared norms
which accurs for paron theories (based on a deformation
of parastatistics) does not arise for quons.

For each eigenvalue A{q) and eigenvector e+ there is
an eigenvalue A( —q) and eigenvector e . Using the fact
mentioned above that the inversion number i(P) is even
or odd depending on whether the permutation P is even
or odd, one can choose a basis so that the matrix M„ is
in two-by-two block form with the diagonal blocks hav-
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ing even powers of q and the oA'-diagonal blocks having
odd powers of q. Each block is an n!/2 x n!/2 matrix.
Write the eigenvectors in the corresponding block form
as v+ —(v+, v+ ) and v = (v, v ), where these are(~) (~) (~) (2)

column vectors, although I wrote them here as row vec-
tors to save space. I et J be the diagonal matrix with
1's in the first diagonal block and —1's in the second
diagonal block. Then using the eigenvector equations
Myv~ ——A~(q)vy and JM„(q)J = M„{—q), we find
that if there is an eigenvector v+(q) = (v( &(q), vt &(q))
with eigenvalue A(q) then there is also an eigenvector
v (q) = (v( )(—q), —vt )(—q)) with eigenvalue A( —q).
For n = 2, 3 the eigenvectors are independent of q. This
argument can be given in the context of the group al-

gebra by defining J to be an element, (not, lii the group
algebra) whose square is the identity and which com-

mutes with even permutations and anticommutes with

odd permutations, i.e., J = e, JPJ = bI P, where

6~ is the signature of P and e is the identity of S„.
Then, again, JM„(q)J = M„(—q) and the eigenvalue

equation M„(q)vy(q) = Ay(q)vy(q), where now v+(q) =
Pp c(P, q)P, leads to the pair of eigenvalues and eigen-

vectors (A+(q), v+(q)) and (A (q), v (q)), where v (q) =
Pi, 8I c(P, q)P—and A (q) = A+(—q). One can easily

find the eigenvectors and eigenvalues for the syrmaetric
and antisymmetric representations for any n. The eigen-
vectors are s = P& P and a = P& bI P and the eigen-
value for the antisymmetric representation follows from

M.{q)a=) q*("») b&g=) q*( &b&Pq=) q*& le~ .„R= ) b~q*~ ) ) S„P,

(12)

(1,1): 1 —q; e —q(12). (13)

where I used the facts that the character of a per-
mutation equals the character of its inverse, which is
true in general, and the character of a product of per-
mutations is the product of the characters, which is
true only for the syrarnetric and antisymmetric repre-
sentations. The argument for the eigenvalue of the
symmetric representation is similar. Thus the eigen-
values are P& q'(+l and P& b&q't+l for s and a, re-
spectively. The discussion of the inversion table given
above shows that these eigenvalues can be factored into
A, = (1+q)(1+q+q ) . .(1+q+ +q" i) for s in S„
and A, = (1 —q)(l —q+ q2) (1 —q+ + q" i) for
a in S„.These calculations can also be done using the
matrices.

Since I showed that for q = 0, M„(q) = 1, which is
positive definite, a demonstration that detM„(q) has no
zeroes for q in —1 ( q & 1 sufBces to prove that M„ is
positive definite in this interval. It also sufFices to see
that the eigenvalues of M are positive. For n = 2, 3, the
eigenvalues which I give below are indeed positive in this
range.

It takes less space to write the matrices as elements
of the group algebra of the relevant S„rather than ex-
plicitly as matrices. Thus Mg —— e + q(12), Ms
e+q((12)+(23))+q2((123)+(132))+q (13), and the gen-
eral case is M„= P q'(+lP. Here e is the identity and the
permutations act on places, rather than on specific num-
bers. I label the representations by their Young tableaux
{li,. . . , lz), where the l's are the number of boxes in each
row. For n = 2, only the symmetric and antisymmet-
ric representations occur; the representations, eigenval-
ues and eigenvectors are

(2): 1+ q; e+ q(12),

For n = 3, the symmetric, mixed, and antisymmetric
representations occur, The eigenvectors and eigenvalues
are

(3): (1+q)(l + q+ q ); ) P,

(2 1): (1+q)'(1 —q)

e —(132) —(13) + (23),

e + (132) —2(123) —(13) —(23) + 2(12);

(2, 1): (1 + q)(1 —q)

e —(132) + (13) —(23),

e + (132) —2(123) + {13)+ (23) —2{12);

(1, 1, 1): (1 —q)(1 —q+ q'); ) b(P)P.

(14)

Note that eigenvectors belonging to the representation
(2, 1) occur with two different eigenvalues. The associa-
tion of eigenvalues and eigenvectors for q and —q proved
above is illustrated here.

To go to n = 4 requires dealing with a 24-dimensional
group algebra or with 24 x 24 matrices (of course these
can be reduced to irreducible components which are
smaller). It is useful to have a recursion which goes
from S„~ to S„.An obvious recursion is to multiply
S„~ on either the left or right by the set of permuta-
tions P„= (e, (n —1, n), (n —2, n), . . . , (In)). Since each
transposition can be written as a product of transposi-
tions on neighboring places,
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(n —2, n) = (n —2, n —1)(n —1, n)(n —1, n —2), . . . ,

(1n) = (1,2)(2, 3) (n —2, n —1)(n —1, n)(n —1, n —2) . (3, 2)(2, 1),

the recursion S„=P„S„ i can be written S„={e,(n—
1, n), (n —2, n —1, n), . . . , (12. n —1, n))S„ i, where I
used the fact that the transpositions which do not depend
on n leave S„ invariant, and I have combined the suc-
cessive transpositions into cycles. The analogous result
holds for S„=S„ i P„:S„=S„ i (e, (n, n —1), (n, n—
1, n —2), . . . , (n, n —1, . . . , 21)). Since the inversion num-
bers of the cycles are (0, 1, 2, . . . , n 1) in—each case, these
recursions lead to two types of factorizations of M„ in
terms of M„

M„(q) = [e+ (n —1, n) + . + (12. n)]M„ i(q),

M„(q) = M„ i(q)[e+(n, n —1)+ - +(n, n —1, . . . , 1)].

number operator ny which has the usual commutation
relations [nt, ai] = —6y iai with the annihilation (and
creation) operators. It is no surprise that the number
operator remains an infinite series in the a's and at's for
all q in —1 & q ( 1. Away from q = 0, I do not know a
closed form for the number operator; however, the first
terms in the series are

nkvd = a&al

+(1 —
q ) ) (aitat& —qat&aI)(a&a& —qa&a&) +

(21)

Here I gave the transition number operator nj.„i for k -+ I
since this takes no extra eff'ort. Zagieri has conjectured
a general formula for nI, .

det M„(q) = (1 k(kpl))(rs k)n!/k(—&+1) (2())

Since the only zeros in (20) are roots of unity, Zagier's
result proves the positive definiteness in —1 ( q ( 1.
(Fivel's paper seems to imply that the zeros occur for

q & = 1, j integral. It is not clear whether there is a
conflict between the results of Zagier and Fivel. )

Both Zagier and Fivel have given arguments that the
proof of positivity in the general case in which any num-
ber of particles is in the same state follows from positivity
in the case in which all particles are distinct. One can go
further and give an explicit formula for the case of more
than one particle in the same state in terms of matrix
elements in which all particles are different. The scalar
product between states in which the operators at in any
positions occur n times is (II n !) i times the scalar
product in which each set of operators which occur more
than once is replaced by a symmetric sum of operators
with distinct labels. This follows directly from the argu-
ment given above for i(P) as the number of crossings of
lines connecting (1, . . . , n) with (Pl, . . . , Pn).

To summarize, all irreducible representations of S„
have positive (norm)2 in this interval. As q —+ +1 the
more symmetric (antisymmetric) irreducibles occur with
higher weight. At the end points, q = +1, only the sym-
metric (antisymmetric) representation survives.

For the case q = 0, Eq. (7) is an explicit formula for the

Thus starting from Mz there are 2" such factorizations
of M„. Factorizations of this kind were given by Zagier
and Fivel.

Since the matrix M„(q) is positive definite for q = 0, s

it will remain positive definite in —1 ( q ( 1 if detM„(q)
has no zeros there.

In an elegant paper, Zagier has proven that

V. OPERATORS WHICH CREATE
OR ANNIHILATE A PARTICLE

IN A GIVEN PLACE

~i, t x t t tA&' = ~ a& a&. a&aq . Qq

~~ ~ ~ ~ ~,

(22)

One can annihilate a particle in quantum state k (if there
is one) in the jth pcisition from the left in a state using

AI, —— / a~, . a~, , ayag, , ag, .t

One can also annihilate whatever particle happens to
stand in the jth position from the left using

~

~ ~ ~ ~ ~
~

~j
Ap = g Qg Qg. Qg. ag. Qg

k

(24)

For general q in —1 ( q & 1 there are analogous formulas
for all of these, but they are complicated; I do not know
a closed form for them.

For Bose and Fermi statistics, the place in which a cre-
ation operator stands in a state can at most produce a
change in sign; however for quon statistics, as pointed out
above, there is no bilinear relation between two creation
(or two annihilation) operators, so the place in which a
creation operator stands is significant. This reflects the
fact that quons can belong to many-dimensional repre-
sentations of the symmetric group. To construct opera-
tors which create or annihilate particles in a given place
for general q is complicated. Here I discuss only the q = 0
case for which explicit formulas are simple. The general
case is qualitatively the same.

Clearly, a&t creates a particle in quantum state k in the
leftmost position in the state. One can insert a& in the
jth place from the left using
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VI. USE OF THE q = 0 OPERATORS
AS STANDARD BUILDING BLOCKS
FOR THE GENERAL-q OPERATORS

One can use the q = 0 operators as building blocks
to construct a representation of the quon operators in
—1 & q & 1. This can lead to an alternative way to prove

the positivity of the norms, since the q = 0 operators are
known to make states which always have positive norm.
Let ~0)0 be the vacuum of the q = 0 case, b;, bt be the
q = 0 operators and T(q) be a map from the Hilbert
space of the q = 0 operators to the Hilbert space of the
operators a;, at for some value of q in —1 & q & 1. The
representation I conjecture has the form

n, = &(q) b;+) ) c~ l(P)bitPbib, + bi bi ) c~")(P)Pbi, bi„,b'+ IT (q)
P

(25)

where the sum goes over the n! permutations of big

b~, b;. The coeFicients, I conjecture, are independent of
the labels of the states and are sums of square roots of
polynomials in q. I have worked out the first nontrivial
case of this formula:

or antisymmetry of the product of two at 's (in the two-
particle sector) when q ~ 1 or q ~ —1. The inversion of
the formula for at in terms of bt and b:

a„=T b„AO+ ) (c(2)[bt, bJ]+ + c(1, 1)[bt, bJ] )Apb, + 2 [(1—q) —1]) [ai, ai] ai +

+ T', (26)

at& ——T b&t + &(gl+ q —1)) [b&, bJ]+bi

+-,'(V'1 —q —1)).[bk bJ] bi+-

where Ao is the projection onto the vacuum of the q = 0
operators which can be expressed as sinnNO/7rNO, w. here
Np is the q = 0 number operator, and there is a cor-
responding formula for the annihilation operators. The
coefBcients are c~(2) = (1+q)/4 and c~(1, 1) = (1—q)/4,
which suggest that the coeKcients of higher terms will be
related to the square roots of the eigenvalues of M„(q).
The fact that the coefFicients are independent of the la-
bels of the bt's and b's is a great simplification. The
following similar representation results if one does not
use the vacuum projector:

shows that the inversion fails at q = +1.
One can also use the q = 0 operators to construct the

matrix M„(q) as follows: define

AJ = bJ + q) bitbtbi + q ) bit, bit, btb, , bi, +
tl t2

= ) q" ) bJ . bJ, btbi, bi„. (30)

Then

A~t„. A~t, ~0) = ) [M„(q)]~gbtq„be, ~0).
Q

The matrix which constructs A~& in terms of the bt's
and b's is essentially the square root of M„. The norm
squared of the At states (which is [M„(q)] ) is clearly
non-negative, since the bt s live in a positive metric space.

(27)

These expressions are normal ordered expansions in the
q = 0 b and bt operators. The expansions (26) and (27)
can be used to calculate the normal-ordered expansion
of the product of two at's (from now on, I suppress the
operators T, T i):

' ' = —,'V'1+ q[b', b'1++ —,'v'1 —q[b', b']-+
(28)

The two terms in (28) exhibit the expected symmetry

V'II. THE 1'C'I' THEOREM AND CLUSTERINC
HOLD DESPITE THE FAILURE OF LOCALITY

Fredenhagen showed that a theory which has nei-
ther para-Bose (including Bose) nor para-Fermi (includ-
ing Fermi) statistics cannot be local, where local means
both (a) that the observables are pointlike functionals of
the fields and (b) that the observables commute at space-
like separation [i.e. , satisfy local commutativity (LC)].
For the q = 0 case, I showed, in agreement with Fre-
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denhagen's result, that the fields associated with infinite
statistics are not local. There is no reason to expect
that the situation is more favorable for q g 0, and, in-
deed, Fredenhagen's result rules out this possibility. It
is worthwhile to remark that the locality requirement
(b) can hold when requirement (a) fails. For exam-
ple, in a theory with a charged field the total charge
Q = J d zj (z) does not satisfy (a) and neither does
the product J"(z) = Qj "(z), but the product Ji'(z) still
satisfies (b).

It is amusing to note that, despite the failure of LC,
the TCP theorem is valid for free fields which obey
q-mutator relations. Let the q-mutator relations for
annihilation and creation operators for particles, 6 and
bt, and antiparticles, d and dt, be bkbi —qbibk ——Ski,

b~d& —qd~&bI,
—0 and the same for 6 and d interchanged.

Again no commutation relations are assumed between
two annihilation or between two creation operators. As
before, assume that the vacuum is annihilated by the
annihilation operators. Construct free, charged, scalar,
quon fields from these annihilation and creation opera-
tors in the same way free, charged, scalar, Bose fields
are constructed from the Bose annihilation and creation
operators. In momentum space, the quon fields are

1
&(z) =

(2 ),],
d3k —ik z + dt ik.a)

+2(d k

1
&'(z) =

(2 ).(,
d3k -ik x + gt ik x)

V 2~k

uk = ko = gk2+ m2. In terms of charged scalar fields,
these relations for the annihilation and creation operators
translate into

y(+)(z)yt ( )(y) qyt ( )(y)y(+)(z) —/(+)(z y)

(34)

&' '+'(z)&' '(y) q4' '(y)&' "'—(z) = &")(z y)—
(35)

The vacuum conditions are

4(+)(z)lo) = o, yt (+)(')lo) = o.

Before discussing general properties of the vacuum ma-
trix elements of products of these field, I give a few sim-
ple examples. For a vacuum matrix element to be non-
vanishing, the product must have the same number of
P and Pt fields. The nonvanishing two-point functions- &01&( )&'(y)lo) = &'+'( —y) &01&'( )&(y)lo) =
E(+)(z —y), K(+)(z —y) = (2n) s J dsk(2&uk) i expI —k.
(z —y)]. The nonvanishing four-point functions are

014 (*,)4 (z, )&t(z.)&t(z,) lo)

= &oly(, )y (,)lo)&oly(*,)yt( .)Io)

+q&o14(»)0'(») Io& &oI&(»)&'(z4) Io) (37)

&o I&(»)&(»)'&(»)&'(z4) Io)

&014(z,)4t(z, ) lo) &014(z.)& (z.) lo)

+&oly(, )yt( .) Io) &olyt(z, )4(*.) lo),

&01&(* )&'( )&'(* )&(* )Io)

= &ol~( )~'(*.)10&&olo'(.)y( )Io&

+q&0 14 (»)4'(») Io& &o14'(»)4 (z4) Io&, (89)

=&01&"( ) &"( )&"( + + )" &"( + )Io)

(40)
where the open parentheses stand for an adjoint sign or
for no adjoint sign. Clustering requires that for large
spacelike a the expression in (40) should approach the
product of two vacuum matrix elements with the extra
10)&01 inserted between the translated and untranslated
fields. The graphical argument just given shows that the
expansion of (40) in sums of products of two-point func-
tions can be separated into two types of terms: (a) those
with factors containing a contraction between a trans-
lated and an untranslated field and (b) those without
such factors. Terms of type (a) vanish in the limit, be-
cause A(+)(z) vanishes for large spacelike a. (This limit

together with these which follow by taking the adjoint.
The two-point function satisfies not only weak local com-
mutativity (WLC) but also LC from the I&allen-Lehmann
representation which does not depend on commutation
relations. For a general 2n-point function, WLC (and,
by Jost's theorem, s also TCP) follows from a combi-
natorial argument. The 2n-point function is a sum of
products of n two-point functions. Aside from powers
of q, this sum is the same as for the usual scalar field
theory which obeys WLC. To calculate the power of q
belonging to a given term in the sum, draw the points
z~, z~, . . . , z2„on a line. Above the line, draw directed
paths for each contraction iA(z; —zz) which occurs. For
charged fields, of course, contractions can only occur be-
tween a field and its adjoint. The number of crossings of
these paths give the power of q. WLC holds because the
same contractions occur and, since the number of cross-
ings remains the same when all the paths are reversed,
the same powers of q occur. Thus TCP holds. As usual,
this argument extends directly to arbitrary spin fields.
Note that there is no spin-TCP constraint analogous to
the spin-statistics theorem.

To prove clustering, consider a vacuum matrix element
with n fields and n adjoint fields. Translate all the fields
and adjoint fields which occur to the right of the jth field
by the same translation:

&ol&"(z ) . . &"(z )&(a)&"(z+ ) &"( -)Io)
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is taken in the sense of distribution theory. ) It remains
to show that the sum of terms of type (b) factors into
the product of the two vacuum matrix elements which
are the desired limit. To see that this is true, consider
reducing the vacuum matrix element of (40) by sepa-
rating all the fields into annihilation (positive-frequency)
and creation (negative-frequency) parts. The creation
part of the leftmost field annihilates the vacuum act-
ing to the left. The annihilation part of the leftmost
field passes through the creation part of its immediate
neighbor, possibly producing a contraction, and gets a
factor of q according to the commutation rules (34) and
(35). The contraction term, if nonzero, multiplies a vac-
uum matrix element with 2n —2 fields. The remaining
vacuum matrix element of 2n fields has the product of
the annihilation parts of the first two fields from the left
in their original order. Continue this procedure, always
moving annihilation parts of fields to the right, possibly
generating contraction terms, and, where possible, anni-
hilating the vacuum on the left with creation parts until
all creation parts of untranslated fields have annihilated
the vacuum on the left or have contracted with annihila-
tion parts. The sums of products of two-point functions
generated in this way are precisely those which would
occur in calculating the vacuum matrix element of the
untranslated fields and this entire sum will multiply the
vacuum matrix element of the translated fields. The re-
maining 2n-point vacuum matrix element consists of the
annihilation parts of the untranslated fields in their orig-
inal order and the translated fields, also in their original
order. Because A&+l(z; —z~) ~ 0, for z; belonging to an
untranslated field and z& belonging to a translated field
(as remarked above), any contractions of the annihila-
tion parts of the untranslated fields with the translated
fields will vanish in the spacelike limit, so this remaining
2n-point matrix element will vanish in the limit. Thus
clustering holds. This property is important, since it is
necessary and su%cient for the vacuum of the theory to
be unique.

As mentioned above, Wick's theorem holds for quon
fields, provided proper powers of q are supplied for the
terms. The normal-ordered terms have all creation op-
erators to the right and all annihilation operators to the
left, just as in the usual case; however, for quon fields the
original relative order of the creation operators (and sep-
arately, of the annihilation operators) among themselves
must be preserved. For a term with no contractions, the
power of q is the inversion number of the permutation
from the original order to the normal-ordered form. For
a term with contractions, the power of q associated with
a given contraction is the inversion number of the permu-
tation which brings the contracted pair next to each other
(with the annihilation operator to the left of the creation
operator). The contracted pair is then removed from the
product and the procedure is iterated. The power of q
associated with contraction of a given pair depends on
the order in which the pairs are contracted; however the
total power of q in the normal-ordered expansion does
not depend on the order in which the contractions are

carried out.
It is straightforward to generalize these results about

the TCP theorem, clustering, and Wick's theorem to a
collection of fields of arbitrary spin.

The reader may wonder what happens to some of the
theorems of local relativistic quantum field theory. Many
of these theorems are evaded, because the quon fields are
neither local or antilocal at spacelike separation. For ex-
ample, the theorem of Federbush and Johnson, 3 Jost, a

and Schroer s(see also Refs. 40 and 41) that if a field has
a Kallen-Lehmann weight concentrated at a single mass
(in other words, if the field has a free two-point function),
then this field is a free field of that mass, requires that
the field be local or antilocal. Thus this theorem does
not, hold for quon fields.

VIII. EXPERIMENTS

The simplest way to detect small violations of statis-
tics is to find a state which either Fermi or Bose statistics
would not allow. For Fermi (Bose) statistics, this would
be a state in which identical particles are not totally
antisymmetric (symmetric). The path-breaking high-
precision experiment of Ramberg and Snow42 searches
for transitions to a state in which the electrons of the
copper atom are not totally antisymmetric. The failure
to detect such transitions (above background) leads to
the following upper bound on violation of the exclusion
principle:

p2
—2(1 —p)p, +~p p, , 2p &17x10 (41)

p2 is the two-electron density matrix, p, ~, ~
is the anti-

symmetric (symmetric) two-electron density matrix. For
two electrons in difFerent states p2 can be expressed in
terms of q of the q mutator as

12 = —,'(1 —~)c" + —,'(1+ ~)~.

so the Ramberg-Snow bound is

0 & (1+q)/2 & 1.7 x 10

(42)

(43)
A high-precision experiment to detect or bound viola-
tions of the exclusion principle for electrons in helium is
being conducted by Kelleher et a/. The analysis of the
search for P decays to nuclear states which violate the ex-
clusion principle as providing bounds on violations of the
exclusion principle seems to assume violation of conser-
vation statistics (as remarked in Ref. 29). The absence of
A = 5 nuclei provides evidence for the validity of the ex-
clusion principle for nucleons. For bosons, one looks for
transitions to states in which the bosons are not totally
symmetric. For pions, the decay K& —+ 7t.+x which is
usually interpreted as due to CP violation could occur
without CP violation if there is a small violation of gen-
eralized Bose statistics for the pions. 5 The assumption
that CP violation in K decay comes from violation of
statistics implies (1 —q~)/2 & 0.5 x 10 . All the exper-
imental bounds on violation of statistics given in Ref. 5
translate into bounds on q: for small violations of Fermi
statistics,
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Pz/2 = (1+ q)/2; (44) IX. SUMMARY AND OUTLOOK

for small violations of Bose statistics,

&a/2 = (1 —~~)/2.

I conclude this brief discussion of experimental bounds
on small violations of statistics by remarking that there
are three types of such experiments: (1) to detect an
accumulation of particles in anomalous states, (2) to de-
tect transitions to anomalous states, and (3) to detect
deviations from the usual statistical properties of many-
particle systems. Here and in Ref. 5 type (2) experiments
are discussed, because they allow detection of single tran-
sitions to anomalous states. Type (1) experiments re-
quire detection of a small concentration of anomalous
states in a macroscopic system; for that reason they are
generally less sensitive than type (2) experiments. I have
not analyzed type (3) experiments; however it seems
likely that they will fail to provide high-precision tests
for the same reason that type (1) experiments fail: it
will be dificult to detect the modification of the statis-
tical properties of a macroscopic sample due to a small
concentration of anomalous states.

Quantum field theory based on q-mutators in the range
—1 ( q & 1 is the first theory that allows small violations
of the exclusion principle (i.e. , of Fermi statistics) or of
Bose statistics. This theory is a valid nonrelativistic field
theory. The theory can have relativistic kinematics and
at least the free field theories obey the TCP theorem and

clustering; however the theory is not local in the sense
that the observables are pointlike functionals of the fields
and that they obey spacelike commutativity. Thus its
status as a relativistic field theory is in doubt.

ACKNOWLEDGMENTS

I thank Don B. Zagier for stimulating discussions and
for informing me of his results prior to publication. I have
benefited from conversations with I. Bakas, D.I. Fivel,
P.G.O. Freund, R.N. Mohapatra, S. Nussinov, Y. Shamir,
G.A. Snow, J. Sucher, L.J. Swank, and C.-H. Woo. The
author was supported in part by the National Science
Foundation.

'Electronic address: greenbergOumdhep. bitnet.
A.Yu. Ignatiev and V.A. Kuzmin, Yad. Fiz. 46, 786 (1987)
[Sov. 3. Nucl. Phys. 46, 444 (1987)].
O.W. Greenberg and R.N. Mohapatra, Phys. Rev. Lett. 59,
2507 (1987); 61, 1432(E) (1988).
O.W. Greenberg and R.N. Mohapatra, Phys. Rev. D 39,
2032 (1989).
A.B. Govorkov, Phys. Lett. A 137, 7 (1989).
O.W. Greenberg and R.N. Mohapatra, Phys. Rev. Lett. 62,
712 (1989).
O.W. Greenberg, in Spacetirne Symmetries, Proceedings,
College Park, Maryland, 1988, edited by Y. S. Kim and W.
W. Zachary [Nucl. Phys. B (Proc. Suppl. ) 6, 83 (1989)].

"A.Yu. Ignatiev and V.A. Kuzmin, Pis'ma Zh. Eksp. Teor.
Fiz. 47, 6 (1988) [3ETP Lett. 47, 4 (1988)].
V.N. Gavrin, A.Yu. Ignatiev, and V.A. Kuzmin, Phys. Lett.
B 206, 343 (1988).
L.C. Biedenharn, P. Truini, and H. van Dam, j. Phys. A
22, L67 (1989).
A.Yu. Ignatiev, Kyoto report, 1990 (unpublished).
H. S. Green, Phys. Rev. 90, 270 (1953).
D.V. Volkov, Zh. Eksp. Teor. Fiz. 36, 1560 (1959) [Sov.
Phys. lETP 9, 1107 (1959);38, 518 (1960) [ll, 375 (1960)].
Quantum Groups Workshop, Proceedings, Argonne, Illi-
nois, 1990, edited by T. Curtright, D. Fairlie, and C. Zachos
(World Scientific, Singapore, 1991).
O.W. Greenberg, Bull. Am. Phys. Soc. 35, 981 (1990).
O.W. Greenberg, Phys. Rev. Lett. 64, 705 (1990).
R.N. Mohapatra, Phys. Lett. B 242, 407 (1990).
D.B. Zagier (private communication) quoted in Ref. 18.
M. Bozejko and R. Speicher, Heidelberg reports, 1990 (un-
published).
D.I. Fivel, Phys. Rev. Lett. 65, 3361 (1990).

O.W. Greenberg, Quantum Groups Workshop (Ref 13), p. .
166.

'L.B. Okun, Pis'ma Zh. Eksp. Teor. Fiz. 46, 420 (1987)
[JETP Lett. 46, 529 (1987)];L.B.Okun, Yad. Fiz. 47, 1192
(1988) [Sov. 1. Nucl. Phys. 47, 752 (1986)]; L.B. Okun, in
Festival Festschrift —for Val Telegdi, edited by K. Winter
(Elsevier, New York, 1988), p. 201. L.B. Okun, Comments
Nucl. Part. Phys. 19, 99 (1989).
V. Rahal and A. Campa, Phys. Rev. A 38, 3728 (1988).
R. Ramanathan, University of Delhi report, 1990 (unpub-
lished).
G. Gentile, Nuovo Cimento 17, 493 (1940).
O.W. Greenberg and A.M.L. Messiah, J. Math. Phys. 6,
500 (1965).
O.W. Greenberg and A.M.L. Messiah, Phys. Rev. 138,
B1155 (1965), discuss the selection rules for parafields in
detail.

2r A.B.Govorkov, Dubna report, 1990 (unpublished), has also
considered a quantization scheme which leads to infinite
statistics.
3. Cuntz, Commun. Math. Phys. 57, 173 (1977), discussed
a closely related algebra earlier. I thank R. Speicher for
bringing this reference to my attention.
T. Sudbery, Nature (London) 348, 193 (1990), remarked on
the implication of conservation of statistics for the interpre-
tation by I&ekez et al. (Ref. 30) of experiments searching
for p rays as setting bounds of violation of the exclusion
principle for nucleons.
D. Kekez, A. Ljubicic, and B.A. Logan, Nature (London)
348, 224 (1990).
P.G.O. Freund and Y. Nambu (private communication)
quoted in Ref. 17.
S. Chaturvedi et al. , Hyderabad report, 1990 (unpub-
lished).



4120 O. W. GREENBERG 43

R.W. Gray and C.A. Nelson, I. Phys. A 23, L945 (1990).
R.P. Stanley, Enumerative Cornbinatorics (Wadsworth and
Brooks/Cole, Belmont, 1986), Vol. 1, p. 21.
I&. Fredenhagen, Commun. Math. Phys. 79, 141 (1981).
R. Iost, Helv. Phys. Acta 30, 409 (1957).
P.G. Federbush and I&.A. Johnson, Phys. Rev. 120, 1926
(1960).
R. Jost, in lectures on Field Theory and the Many Body
Problem, edited by E.R. Caianiello (Academic, New York,

1961), pp. 127—145.
B. Schroer (unpublished).
O.W. Greenberg, J. Math. Phys. 3, 859 (1962).

'D.W. Robinson, Helv. Phys. Acta 35, 403 (1962).
E. Ramberg and G.A. Snow, Phys. Lett. B 238, 438 (1990).
D. Kelleher, National Bureau of Standards [now National
Institute of Standards and Technology (NIST)] Internal
Memo (1988). 3.D. Gillaspy of NIST has made a, list of
experiments relevant to bounds on violations of statistics.


