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Wormbhole solutions are found in the 1/N expansion scheme of quantum gravity, where the loop
corrections of the large number (N) of matter fields are included in the action. Two types of
wormbhole solutions are seen depending on N and the renormalized parameter. It is also pointed out
that the wormhole induced by the axion field found by Giddings and Strominger could survive in a
modified form even if the large loop corrections were present.

I. INTRODUCTION

Recently, important quantum effects caused by the
wormhole instanton configuration have been studied by
many authors. The most novel point is that many
universes, if they exist, can interact with each other via
wormhole instantons. It has been pointed out' that this
interaction between universes could control the parame-
ters in the field theory of our Universe. In particular, the
smallness of the cosmological constant in our Universe
could be explained as the wormhole effect. After this im-
portant indication, several authors’> have proceeded to
determine other parameters according to this framework,
called the big fix.

The wormhole effect is quantum tunneling from a big
universe to a big universe accompanying a baby universe
and vice versa. The size of the baby universe is of the or-
der of the Planck size, where quantum fluctuation of
gravitation is of course not small and must be included in
the calculation of wormhole effects. In the calculation of
the tunneling amplitude, the quantum fluctuations
around the wormhole solution usually should be taken
into account. The same thing is needed in the big fix
around the de Sitter background. However, we do not
know any consistent method or theory to calculate the
effects of the gravitational quantum fluctuations around
some background metric. Nevertheless, several effective
theories have been proposed to perform the loop expan-
sion around some background manifold. Among them,
the 1/N expansion scheme proposed by Tomboulis®
which is renormalizable, seems to be useful and guaran-
tees unitarity order by order at least in the perturbation.
In this scheme, the loop correction of a large number (N)
of matter fields and the higher-derivative terms are in-
cluded in the effective action. A wormhole solution has
been found previously* in higher-derivative gravity, in
which the loop corrections of matter are not included.
On the other hand, it has previously been shown® in the
two-dimensional CP" ~! model that the instanton disap-
pears in the presence of the large number of loop correc-
tions. Witten® suggested that such a washing out of the
instanton due to the loop corrections of the other fields
would occur. It is therefore meaningful to see whether
the wormhole configurations still remain in the solutions
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of the Einstein equation in the 1/N expansion scheme. If
they exist, what kind of wormhole can we see? The same
problem is considered also for other wormhole solu-
tions.®7 These solutions were obtained by adding the
matter field, which condenses to the nontrivial classical
configuration and 1is responsible for the resulting
wormhole configuration of the metric.

The purpose of this paper is to search for wormhole
solutions in the 1/N expansion scheme. It is shown here
that wormhole solutions continue to exist even if a large
number of loop corrections are included in the action.
Rather, these correction terms are responsible for the ex-
istence of the wormhole solutions. Wormhole solutions
found in this way are induced by quantum correction of
matter fields, and so they are different from those induced
by the classical configuration of a special matter field. It
can be shown that wormholes in the latter case coexist
with the former in spite of the presence of extra gravita-
tional terms in the Lagrangian. So we can expect that
several types of wormholes are realized, and their effect is
also important in the 1/N expansion scheme.

In Sec. II the effective action of the 1/N expansion
scheme in quantum gravity is given. In this scheme the
equation of motion can be written in terms of local field
operators only. This is because of the conformal-
invariant coupling of matter fields with gravity. Another
reason is that the background classical metric is assumed
to be the conformal flat metric. In Sec. III the equation
of the motion is written for the Robertson-Walker metric.
This is further simplified through an ansatz for the solu-
tion. Using this simplified equation, the characteristic
features of wormhole solutions are examined. The possi-
ble wormhole solutions are classified by their asymptotic
behavior at a large and small radius of S3. These asymp-
totic types of behavior are given analytically. In Sec. IV
numerical analyses are given. The distribution maps of
the two types of typical solutions are given for the three
parameter planes in the four-dimensional parameter
space of our theory. From each map we can see the
characteristic property of the loop corrections of each
type of matter. Several wormhole solutions are also
shown. It is also assured that the wormhole induced by
the axion field survives in a modified form. In Sec. VI the
problem of the cosmological constant is examined, and its
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smallness is obtained if the Coleman mechanism works.
The conclusion is given in Sec. VII.

II. EQUATION OF MOTION
IN THE 1/N EXPANSION SCHEME

We consider here three kinds of matter fields: scalar,
spinor, and vector. These types of matter are restricted
such that their coupling with gravity is conformally in-
variant and there is no self-coupling. Then the Lagrang-
ian used in the 1/N expansion is written as

Ja*x L= [d*x Lyp+ S W;, (1)
j

Wj‘—‘iNjUjTrln(Dj) , (2)

where N; (D;) denotes the number (the quadratic opera-
tor) of the jth kind of matter field (j=1, 2, and 3 for sca-
lar, spinor, and vector, respectively). o; is 1 (—1) if the
Jjth field is the boson (fermion). The D; are glven as
D,=(1/Vg )a#\/gg’“’av-i—%R, 'y"(a +1oy, b0 b)s
and DYY=g"'D’D_,—D" D" for j—l 2, and 3 respec-
tively, where wff’ is the spin connection and
04 =5[74>7s)- Here W, is the renormalized one. The
ultraviolet divergences were subtracted in terms of the
counterterms in .Lyp, and its renormalized form is

Lyp=Vg [K’R +a(R, R*"—IR)+1BR*+A], (3)

which is the most general form of higher-derivative gravi-

ty.
Then the Einstein equation is given as

—Kk%R v~ 38 R) T 1g,, A

_‘%2 TLV—_;'B[%'gvaZ
7
+2(g,,O0R—D,D,R —RR, )]+ -+, (4)

where the ellipsis represents the part coming from the
conformal part in Lyp, R, R*"—{R 2, which does not
contribute to the classical equation of motion considered
hereafter; so we drop it. D, denotes the covariant deriva-
tive. The terms from the matter loops T , are obtained

from W' as follows:

=2 SWi
"V 8
Here we used the conventions Rfg, =3gl%, — ,
R,,=R},,, and the signature is given by (— + + + )

Here the wormhole solutions are examined in terms of
the Robertson-Walker metric [Eq. (7)], which is confor-
mally flat. In this case T , can be written in terms of the
local field operators for each matter field, which couple
to the gravity in a conformally invariant way, as follows:

1 a—

T e

S (LY H D) +28HY)) (5a)

where ' and &' are given® in Table I, and

H,)=2D,D ,R—2g, 0OR—1g, R*+2RR,, , (5b)

TABLE 1. Coefficients ¢’ and &' in Eq. (5a). Note that only
the case of i=3 (spin= 1, vector) has a negative y".

i Spin Y &'
| —
1 0 20 360
i i _an
2 3 0 720
_ 3 _ 31
3 1 20 180

H)=R}R,,—2RR,,—1R;,R ‘g, iR 84y - (50

The term coming from the loop correction T;W consists
of the two terms. It can be seen from Egs. (4) and (5a)
that to add the first term H if‘ is equivalent to modifying
the parameter 3 in Eq. (4) as follows:

B'=B+ 3 Ny'/96m . (6)

The second term H ﬁfv), however, cannot be obtained
through a functional derivative of some higher-derivative
term. So this term is the newly appeared one due to the
loop corrections.

A wormhole solution has previously been found* for
higher-derivative gravity with the Lagrangian Lyp,
where the parameter 3 was restricted to be positive. This
restriction was imposed because of the convergence of the
Euclidean path integral.

In spite of the existence of H| 3)in Eq. (4), we can see
the wormbhole solution, which has been seen in higher-
derivative gravity as far as 8'>0. For 3' <0, but >0,
we can see another type of solution which was seen in
higher-derivative gravity with negative 3. This is seen for
the i=3 case because of the negative value of > (see

Table I). Then we can say that the values of &, the
coefficients of H ifv), do not affect the qualitative features

of the solutions.

III. WORMHOLE SOLUTION

We search for the Euclidean solution of Eq. (4) by re-
stricting the metric to the form

ds’=d*+a*(7r)dQ?, (7)

where d Q3 denotes the metric of S® and 7 is Euclidean
time. Here we define the function f(a)* as f(a)=a’—1,
and the higher derivatives of a(7) with respect to 7 are
replaced by the derivatives of f(a) with respect to a.
This corresponds to rewriting the Einstein equation from
the equation of a(7) with the variable 7 to the one of f (a)
with the variable a. The latter is written by the second-
order differential equation, which is more tractable than
the original higher-order differential equation of a (7).
This is the reason to use f (a) instead of a (7).

For the metric Eq. (7), the time-time component of Eq.
(4) is written in terms of f (a) as
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2
3 ¥
f—fo=3 l;] [—H(f+Ltaf ) (f—Laf")
i=0
+(1+£)f —Laf' —La?f")
+e,f?], (8)

where f'=df /da and f"=d*f /da®. f, is the solution,
which is given below by Eq. (9a), in the absence of the
right-hand side of Eq. (8). In the right-hand side of Eq.
(8), the terms of i=0 are those coming from %BRZ in
Lyp- Other terms corresponding to i=1-3 represent
T}, The parameters r; and c;, which are the rescaled
values of y; and §;, are given in the Table II.

The criterion for f(a) as a wormhole solution is that f
crosses —1 twice at large and small values of a, say, a,,
and a, (a,, >>a,), and f(= —1) varies smoothly between
a,, and a,. The typical form is seen in Fig. 2. Since a(7)
is real, f(a) is meaningful in the range a, <a =<a,
[f(a)= —1]. And this is just the Euclidean configuration
connecting a baby universe (with a size of the Planck
length ~a,) and a large mother universe (with a size of
a,).

mIn the absence of the right-hand side of the Eq. (8), the
solution is f = f,, which is given here as

ag
a

H>=—, (9b)

4

+(Ha)* |, (9a)

where the first term of (9a) could be added if the axion
field were included in the Lagrangian given by Eq. (1) and
the ansatz, which is used by Giddings and Strominger®
for the axion configuration, were imposed. For ay7O0,
(9a) is the typical wormhole solution, which crosses —1
twice at a ~a, and a ~H ~'. H ! is the radius of the de
Sitter mother universe, and a is the radius of the baby
universe. In the absence of the axion (a;=0), (9a)
denotes the usual Euclidean de Sitter solution, and this
fact means that there is no wormhole solution in the case
of the pure Einstein terms V'g (k’R +A).

Next, we consider the case where the right-hand side of
Eq. (8) is present. As a special case, we have previously
found a wormhole solution in higher-derivative gravity*
[the case of i=0 in Eq. (8)] even if the axion field were ab-
sent. Here we consider the general case, in which Eq. (8)
is rewritten as

2
f—fo= [ef?+ f5laf)

r
a

+(1+ff —Laf'—L1a’f")], (8)

where

TABLE II. Coefficients ¢; and r? in Eq. (8) in which
A=1/28807".
i 0 1 2 3
o« 0 -3 3 4
r? 8B/ 24/ 6 A /K’ —36A4/k?

Equation (8') is equivalent to the equation of higher-
derivative gravity if c=—1. Then the point to be exam-
ined here is whether the wormhole solution found for
¢ = —1 remains if ¢ deviates from —4. Another point is
how the axionic instanton was modified if it were surviv-
ing in spite of the presence of the right-hand side of Eq.
(8). Although another type of nonaxionic wormhole solu-
tions was found®” by adding other matter fields, we study
here only the two cases a;=0 and a@y70 (with and
without axion) to clear the effects of the loop corrections
of the matter.

Before giving the numerical analysis, we study the
characteristic property of the solution of Eq. (8) by using
Eq. (8'). The asymptotic behavior of f(a) at large and
small values of a is examined by assuming the power-
series expansion

fla)=a?3 ca’, (10)

where i=0 to — o (0 to o) for large (small) a. The re-
sults are as follows.

At large a, p=2 and the asymptotic solution is
f«<—a? for A#0. This means that all the nontrivial
solutions approach the de Sitter solution, which is given
by f= —7a? with some appropriate constant 7, at large
a. It can be seen that there are two ways f(a) ap-
proaches the de Sitter space at large a. To see this, we
consider the case of a,=0 and at the limit A—0, where
the de Sitter radius is infinite or 7—0 in f=—%a> So f
is very small. Then Eq. (8’) can be approximated by the
linearized one with respect to f as follows:

2

f= (f—Ltaf'—Lta’f"), (11)

r
a

where f, is neglected because H ~0. This is further
rewritten as follows for 72> 0:

s 1= =0, (12)
p

where x =2a/r, f'=df /dx, and f"=d>f/dx* Equa-
tion (12) is Bessel’s differential equation of second order,
and its general solution is given as

f=yJ2(x)+y,N,(x), (13)

where 7 and ¥, are the small arbitrary constants because
f must be small.

The second case is obtained for 7> <0. In this case the
solution of Eq. (11) is given as follows by the absolute
value of x:

F=8,1,(Ix])+8,K,(|x|), (14)
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where I,(|x|) and K,(|x|) are the modified Bessel func-
tions. Since I,(|x|) diverges at large |x|, we must choose
8,=0 and a small value of 8, because of the consistency
with the approximation that f is small.

From Table II it can be expected that the asymptotic
solution Eq. (13), which oscillates around f ~ —¥a? with
an amplitude v, ,/Va, could be obtained for the scalar
and the spinor cases i=1 and 2. On the other hand, the
behavior represented by Eq. (14) will be seen in the case
of the inclusion of the vector loop correction (the case of
i=3).

On the other hand, the asymptotic behavior of f at
small a can be classified by the exponent p, which must be
an integer to get a consistent solution in the form of Eq.
(10), as follows. (i) p>0. The allowed value is p=4 or 2;
the latter case corresponds to the de Sitter solution. (ii)
p=—2. This is realized only for the i=0 case (higher-
derivative gravity). (ii) p=—4[(1+¢)/3]"%? < —=3. (iv)
f=—1/(1+c)=const. This might be a wormhole solu-
tion if ¢ <0 (f < —1). (v) p=—1, which is realized only
for a,70, and this solution corresponds to the axionic
wormhole solutions modified by the presence of higher-
derivative terms.

The analyses given above are based on the form of
f(a), which is restricted to the polynomial type [Eq.
(10)]. We should consider a more general form of f (a) to
examine the properties of the solution. However, the
analysis given here is enough to assure the existence of
several types of wormhole solutions of Eq. (8).

After all, the wormhole solutions would be character-
ized by the asymptotic types of behavior at small a [(ii),
(iii), (iv), and (v) given above] and large a [Egs. (13) and
(14)]. They are given explicitly in Sec. IV by numerical
analysis, and the solutions are classified in terms of the
combinations of the asymptotic behavior at small and
large a.

IV. NUMERICAL ANALYSIS
AND THE TYPICAL SOLUTION

We could not give the analytic form of the expected
wormhole solutions in the full range of a, but we can
show its existence by solving numerically the differential
equation (8). Here the Runge-Kutta-Gill method was
used to solve this equation.

Our procedure to find the wormhole solution is as fol-
lows. At first, consider the case of a;=0. In this case
the de Sitter solution (f =—%a? is the exact solution
even if the right-hand side of Eq. (8) is present. This solu-
tion corresponds to the flat solution (f=0) for the case of
A=0. However, 7 is slightly different from H? except
for the i=0 case, and it depends on the parameters in the
right-hand side. It is given as ¥p=[—1+(1
+4a’H*)'?]1/2a’ and o’'=r*(c +1) for Eq. (8'). For
enough small H, 7 ~H?. So we first find the de Sitter
solution f = —%a? for small H. This is equivalent to giv-
ing the value of ¥. Then we choose slightly different
values for f and f’ from those of this de Sitter solution at
some large a as the initial condition in order to get anoth-
er solution numerically. This solution will deviate from
the de Sitter solution, and it varies with ¢ according to

the asymptotic behavior at small and large a given above.
In this way we have found the expected wormhole solu-
tions. Although the de Sitter solution f=—%a? is not
the exact solution for a(7=0, it is still a good approxima-
tion at large a. So we performed the same procedure as
in the case of a; =0 to find the wormhole solution.

Since four parameters 3 and N; (i =1-3) are contained
in Eq. (8), we should examine this equation in four-
dimensional parameter space. However, the numerical
analysis was performed here in the following restricted
three parameter planes: (a) B—7;, (b) B—T7,, and (c)
B—7;, where F,=(rk)?/2, F,=(r,x)*/6, and
73=—(r3x)*/36. This restriction is economical and is
suited to our purpose to see the characteristic property of
each loop correction separately.

The solutions found here numerically are classified by
the following combinations of the asymptotic types of be-
havior at small a [three types (ii), (iii), and (v) given in
Sec. III] and at large a [Eqgs. (13) and (14)]; (A) (ii) Eq.
(13), (B) (iii) Eq. (14), and (C) (v) Eq. (13). Other types of
wormhole solutions could exist, but we could not find
them.

The distribution of A-type (B-type) solutions are shown
in Fig. 1 by the squares and dots (triangles) for a special
boundary conditions, f=—0.26 and f'=—0.0500839
at a=10.02 for A=0.015«? and «k*=2.0. From Fig. 1 it
is seen clearly as mentioned in Sec. II that the distribu-
tions of the two types of solutions are separated by the
critical line B'=0, where 3’ corresponds to 3 in the
higher-derivative gravity and is given by Eq. (6) above.
For each parameter plane S—F; these lines are explicitly
given as B=—17,, B=—1F,, and B=3F; for Figs.
1(a)-1(c), respectively. For the cases of Figs. 1(a), the
scalar, and 1(b), the spinor, the gradients of the 3'=0 line
are negative; then the region of the A-type solution is ex-
tended to the space of negative 5. On the other hand,
Fig. 1(c) shows that a B-type solution exists even if 3 is
positive for the vector case.

The typical solutions chosen from the point in the dis-
tribution maps (Fig. 1) are shown for the three cases in
Fig. 2(a)-2(c). The solutions given at the top of Figs.
2(a)-2(c) are the wormhole solutions chosen from the
points above the =0 line in Figs. 1(a)-1(c), respective-
ly. The corresponding points are (7,3 =(4.0,1.0),
(0.5,1.5), and (0.25,2.5) for i=1-3, respectively. Other
parameters are the same as those given in Fig. 1. The
lower two solutions of each part of Fig. 2 are those which
were obtained by slightly changing the initial value of f
at a =10.05 as f=—0.30 and —0.35 for the middle and
bottom graphs, respectively, and the other parameters
and the value of f’ are the same as those at the top of
each figure.

From these results we can see clearly that A-type solu-
tions oscillate around de Sitter space at large a according
to Eq. (13). Figure 2(d) is the one for higher-derivative
gravity (7;,8)=(0.0,1.5). The parameters are assigned as
in the case of Figs. 2(a)-2(c) for the top and lower two
solutions. It can be seen that they all show similar behav-
ior in the whole range of a as in the 7,50 cases.

Under the critical lines 3’ <0 B-type solutions appear
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in all the parameter spaces [Figs. 1(a)-1(c)]. Typical
solutions are shown in Fig. 3. The asymptotic behavior
at large a of these solutions is characterized by Eq. (14),
and they do not oscillate. The behavior at small a is
characterized by the power index p (= —3) defined in Eq.
(10). This solution is classified as the category (iii) in Sec.
III — o <p < —3. The solutions of p =—3 and —4 are
obtained on the lines /; and m; (i=1-3), respectively.
These lines are shown in Fig. 1. It should be noted that
the line of the solutions for p=—c approaches the

"=( line. However, no wormhole solution exists just on
this line 8'=0, where we obtain the de Sitter solution

02

f=- (1—(1—4c,;r}H?)'?] .

2

i

2¢;r

B,
( 1.0 2.0 3.0 4.0 5,0
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So we will obtain the solution of p=(large negative in-
teger) just under this critical line. Then this solution will
rapidly change with a. In fact, we can see from Fig. 3(c,)
that B-type solutions obtained near this critical line vary
rapidly. These B-type solutions, Fig. 3(a;)-3(c,) are
essentially equivalent to those shown in Figs. 3(d;) and
3(d,), the solutions of higher-derivative gravity for 5 <0.

Another feature of the B-type solution is that it has a
large wormhole radius a,, the smaller value of a where
f=—1, and a, is comparable to the one of the mother
universe a,,. Although the size of a;, decreases with in-
creasing 7, it does not shrink to the Planck size as the
A-type solution. It can be also seen that the value of
Z,=exp(—Sjg) for the B-type wormhole solution is very

BA}

3.0 1 1 1

0.0 4
4

(S ITIINTYY

—2.04

B=0

0,75 1.0
i 1

3.0 L

2.0

0.0

m;

PEPRESPDPPOORPOPODE DBOD!

—1,0-4

PODERBPODRRDD ROOPOIROLDIPORODD
T TN ] T L AN LA

DPROBPOOPPIPEIODD  PRDM

—2.0

(c)

POPP  DEBDERPEDODOIIPREPOERPPIRDERORIIEE BB ot =

FIG. 1. Distribution of the wormhole solutions found under the special boundary condition (f,f’)=(—0.26, —0.0500839) at
a=10.02, for k¥*=2.0 and A=0.015«% (a) The spinor case (spin=%), (b) the scalar case (spin=0), and (c) the vector case (spin=1).
The dots and squares represent the A-type wormholes, and the triangles represent the B-type wormholes. Here 7, = 1«’r}, 7, = 1i%r3,

and 7, = — LK’}

The critical lines of 8'=0 are shown in each figure.
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FIG. 2. Typical A-type wormholes are shown. All graphs have the same value of f'= —0.050083 9 at ¢=10.02. The values of
/(10.02) are assigned for the top, middle, and bottom graphs of (a), (b), and (c) as follows: f= —0.26, —0.30, and —0.35, respectively.
Other parameters are as follows: (a) 7, =2.0, B=1.5 for the scalar, (b) r,=0.5, = 1.8 for the spinor, (c) r;=0.1, = 1.4 for the vec-

tor, and (d) »; =0, B=1.5 for the pure higher-derivative terms only.

small compared to the one of the A-type solution. For
example, we obtain the ratio Zg /Z 4! =exp(—25900) for
the solution represented in Fig. 2(d;) [Fig. 3(d,)] as the
A-type (B-type) one. So it is questionable to consider that
the B-type solution is responsible for the effective quan-
tum tunneling between the universes with different topo-
logies.

Both A- and B-type solutions mentioned above were
obtained in the absence of the axion (a;,=0). The next
problem is to see whether the wormhole induced by the
axion field could survive when the right-hand side of Eq.
(8) is present. This is seen by searching for wormhole
solutions for some nonzero value of @,. As a result of our
analysis, we can say that the axion-induced wormhole is
not washed out as the instanton in QCD, and it remains
in a modified form. This is assigned as the C-type
wormhole solution. This solution is clearly seen above
the critical line where the A-type solution is absent oc-
casionally. When the A-type solution exists, the effect of
the axion field is small and masked, and so we cannot see
it. Typical solutions are shown in Fig. 4

In Figs. 4(a)—4(c) we show the combinations of the two
solutions taken from the three-parameter spaces

1(a)-1(c). The upper solution of each combination is the
nonwormhole solution with a;=0, and the lower is the
wormhole solution with the same parameters except for
the value of a,, which is taken as 0.5. In this way we can
find the C-type wormhole solution if we switch on g, to
the nonzero value in the region, where the A-type solu-
tion is not realized. This means that the C-type
wormhole solution was produced by the axion field con-
densation. The asymptotic form of the C-type solution is
given as f<a ! at small @ and Eq. (13) at large a, as
mentioned above.

There will be another type of solution which ap-
proaches the constant less than —1 at a=0. This solu-
tion could become a new type of wormhole solution.
However, the parameter region, where this solution is al-
lowed, is wide but restricted. The forbidden region of
these wormhole solutions in each parameter plane is
given as —3<B/F<—%, —Y<B/F<—2, and
— %2 <B/F3 <3 for the parameter spaces (a), (b), and (c),
respectively. Then both above and under the critical line
B’ =0 they are allowed. However, we cannot reproduce
this type of wormhole solution numerically. This is be-
cause of the difficulty of finding a precise initial condition
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FIG. 3. B-type wormholes, which were denoted by the triangles in Figs. 1(a)-1(c). (a) For scalar at (3,7;)=(a,) (—1.0,2.0) and (a,)
(—2.0,7.0); (b) for the spinor at (3,7,)=(b;) (—1.5,1.0) and (b,) (—2.0,2.0); (c) for the vector at (3,7;)=(c,) (1.0,0.5), (c,) (—1.0,0.5),
(c3) (—1.0,0.125), and (c,) (1.664,0.375); and (d) for higher-derivative gravity at 8=(d,)— 1.0 and (d,)—2.0.

to arrive at an accurate value of f at a=0. Another
difficulty of the accurate calculation is not to forget the
initial condition in spite of the accumulation of error dur-
ing the process of computer work.

In any case several types of wormhole solutions are
really found in the 1/N expansion scheme. The region
where the wormhole exists will extend to a wider region
than the one given in Fig. 1 if the solutions were searched
for by using a more extended initial condition. If we fur-
ther add the distribution of C-type solutions in Fig. 1,
then the map will be filled by wormhole solutions of vari-
ous types. Then we can say that the wormhole
configurations must be taken into account in any calcula-
tion in the 1/N expansion scheme even if the axion field
were not included in the theory.

V. VALUE OF S

The next problem is to estimate the value of the Eu-
clidean action S E(gffv), where g;’V represents the
wormhole configurations given above. Since g;’V depends
on only the Euclidean time 7 through a(7), S; can be
written as

SE=2772dea(T)3L(a(T))
a(r)
V1+f£(a)

where L(a(7)) is the Lagrangian given by Eq. (1). We
can show that Sy is finite as follows.
The factor 1/V 1+ f(a) diverges at a =a,, and a, be-

=272 [ da La(n), (15)



43 WORMHOLE SOLUTION IN 1/N EXPANSION SCHEME OF . . . 417

cause f=—1 at these values of a. This divergence is,
however, canceled by the integral measure da. In order
to see this, it is determined how f (a) approaches —1 by
assuming the following form for f (a):

fla)=—14+(a —ay)[ A+ A,(a —ay)
+A4y(@a—ay)*+ -1, (16)

where a, denotes a,, or a,. By substituting this form

f
103
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0.0 L L ' —
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_"“A 5.0 10,0 15,0 20,0
0,0 1 L . —
| \ a
— 104
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FIG. 4. Solutions with (a,=0.5) or without (a;,=0.0) the ax-
ion are shown. The upper graphs of (a)-(c) represent the solu-
tion without the axion, and the lower ones are the C-type
wormhole with the axion. (a) For scalar at (3,7,)=(0.5,1.0), (b)
for the spinor at (B,7,)=(0.5,0.5), and (c) for the vector at
(B,73)=(2.0,0.25). The initial condition and other parameters
are the same as those of Fig. 1.

into Eq. (8), we can determine g, A, and other
coefficients. It can be shown that g is equal to 1 in order
to obtain a consistent solution in the form of Eq. (16). In
this case we obtain, near a R a,,

172
1

sin’6

1
da——————
ax/l+f(a)

ap
2 A, do, (17)

where A, is positive and the integral variable a is
changed to 6 as @a =a, /sin’0, where § S7/2. This mea-
sure does not diverge at a ~a,. For a Sa,, we obtain, by
the replacement a =a,, sin’6 with 6 S 7 /2,

172

1 sin0dé , (18)

da——
Vit

~2 m
| 4ol

where we can see 4, <0. From Eqgs. (17) and (18) it can
be said that the measure part is finite at f = —1.

Next, we see that L(a) is finite in the range
a, =a =a,,. The higher-derivative part .Lyp(a) is explic-
itly written as
2
(f +1af )+ (f +Laf'

a*Lypla)=6xk%a -;19

+(Ha)* | . (19)

This is not singular for the wormhole solutions given here
in the range a,, <a <a,. So [da(a*/V1+f)Lyp is
finite. Since the second term in Eq. (1) is the loop correc-
tion of the conformal invariant matter field, it can be
rewritten through the conformal transformation of the
background metric (the wormhole solution), g5, =Q%g,,,,
where g v is the metric of S* with a unit radius, as

W:—éTrln[(,U«Q)zD(gp.v)] ’ (20)

where p is an appropriate mass scale. This is estimated
by separating it into two parts. One is Tr{ln[D (g ,,)]},
which is regularized and can be considered as a part of
the cosmological constant in Lyp. The other part is
written as

— L Trin(u =7 [dn Q4n(uQ )
5 p I
= [ 9 30 (pa 2 @1
a

where 7 is Euclidean time in the metric g, and it is re-
lated to a(7) as 77=frd7"/a(7"). And Q(n)=a(7r). It
can be seen that Eq. (21) is also finite for an appropriately
chosen scale factor u. Then we can say that Sy is finite
for the wormhole configurations. The numerical estima-
tion of S; for some wormhole solution obtained here is
not given, but we can say that the more the wormhole
solution departs from the de Sitter solution, the larger the
value of S.

VI. COSMOLOGICAL CONSTANT

According to Coleman,! we can estimate the partition
function under the de Sitter background S* with a radius
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L =\/6K2/A, and we obtain the weight factor Z to fix the
parameters contained in the theory:
K 4

A 3P

Z =exp {exp 487

+ %WZ[CO—NCIIH(L,LL)]

] , (22)

where we assumed that wormhole instantons exist and
the Coleman mechanism works. ¢ is given by Grinstein
and Hill,2 and it is positive for all spin states if their in-
teractions with gravity are conformally invariant. For
nonzero ¢, the In(A) term is present as a result of the V-
matter-field loop corrections. But this term does not
change the sharp peak of Z at A=0. So the statement
that A vanishes due to the wormhole survives also in this
scheme.

VII. CONCLUSION

The existence of wormhole solutions are shown here by
numerical analyses for the 1/N expansion scheme of
gravitational theory, where loop corrections of the large
number N matter fields are included. These types of
matter couple to gravity in a conformally invariant way.
Here the scalar, spinor, and vector are considered as
matter fields. For each case we found two typical solu-
tions which are classified as A- and B-type solutions. The
A-type solution is the same kind of solution as the one
which has been obtained in higher-derivative gravity.
The B-type solution was also found in higher-derivative
theory with the parameter <0, where the Euclidean
path integral would not give a finite value of the partition
function. However, this solution exists in the presence of
the N vector loop correction in spite of positive 3. This is
because of the fact that B8’ <0, which corresponds to a 3
of higher-derivative gravity effectively, even if 8 is posi-
tive.

The map of the distribution of these two types of solu-
tions are given for the three planes of parameter space to
see the effect of each matter loop correction. The distri-
butions of the A- and B-type solutions are clearly separat-
ed by the critical line =0, above (under) which the A-
type (B-type) solutions appear. Just on this line there is
no wormbhole, however, and we find a de Sitter solution.

If we add the axion field to our theory, C-type
wormhole solutions are found above the critical line
B'=0. This is easily found at the point in the parameter
space where the A-type solution was not found. This
solution is considered as a modified axion-induced
wormhole given by Giddings and Strominger. Then we
can say that the large loop correction cannot wash out
the instanton solution, which existed when the loop
corrections were not included. The washing out of the
instantons expected in QCD (Ref. 5) does not occur in
gravitational theory for wormhole solutions.

We considered here three types of matter fields which
couple to gravity in a conformal invariant way. The loop
corrections of these fields give the same qualitative con-
tribution to the propagator of the graviton.” However,
these corrections give different coefficients for the trace
anomaly, which causes a qualitative difference of the dis-
tribution of the two types of wormhole solutions. For the
case of the vector, the sign of y is different from that of
the scalar and spinor, and this is the reason why B-type
solutions appear in the region of 8>0. On the contrary,
the A-type solution appears for <0 in the case of the
scalar and spinor.

In any case it is assured that there are some kinds of
wormhole solutions in the 1/N expansion scheme, and
they should be taken into account in quantum gravity.
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