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Lattice U(1) gauge model in 3+ 1 dimensions
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The stochastic truncation method has been used to calculate the ground-state energy and string
tension for the compact lattice U(1) gauge model in 3+1 dimensions. Finite-size behavior charac-
teristic of a line of fixed points at weak coupling is clearly evident. No sign is seen of a first-order
transition at the end point of the critical line: the data seem most consistent with a normal second-
order transition.

I. INTRODUCTION

The phase structure of compact lattice U(1) gauge
theory is well known. ' At large couplings g the system
is in a confining phase, because of the effect of unbound
magnetic monopoles (or monopole loops) which produce
a dual Meissner effect, confining the electric field lines to
very thin "Aux tubes. " For small couplings, on the other
hand, the monopoles are tightly bound together, and the
system is in a Coulombic phase with massless photons,
giving rise to a line of fixed points. The existence of these
two phases has been rigorously proven; ' and the crucial
importance of the monopoles has been nicely demonstrat-
ed by Barber, Schrock, and Schrader, who showed that
if the monopoles are eliminated there is no sign of any
phase transition.

The nature of the transition between the weak-coupling
and strong-coupling phases has been much less well es-
tablished. It was originally thought that it might be a
Kosterlitz-Thouless transition, by analogy with the 0(2)
spin model in two dimensions, where topological vortices
play a similar role to that of the monopoles above. A
number of early Monte Carlo studies ' claimed, how-
ever, that the simple model with a Wilson action in fact
undergoes an ordinary second-order transition. Jersak
and co-workers' ' then observed a small, sharp hys-
teresis effect in the "mean plaquette value, " indicating a
weak first-order transition, instead —although the
discontinuity {if any) in the string tension was too small
to measure. Gupta, Novotny, and Cordery' and Grosch
et al. ' cast some doubt on this result, noting the pres-
ence of monopole loops which span the finite lattice, and
may explain the hysteresis as a finite-size effect. Subse-
quently, there have been several Monte Carlo
renormalization-group studies. Burkitt' and Lang'
seem to lean towards a second-order transition; while
Hasenfratz, using a new interpretation of the expected
behavior near a first-order transition, finds the transition
is first order. Finally, a precision study by Azcoiti, Di-
Carlo, and Grillo ' finds that the finite-size scaling behav-
ior of the specific heat looks most consistent with a
second-order transition. The question has hardly been
settled conclusively, even yet.

Studies of the Hamiltonian version of the model have

been few and far between. Kogut, Sinclair, and
Susskind obtained the first strong-coupling series, and
noted evidence of a phase transition. A real-space
renormalization-group study by Hamber, and a varia-
tional analysis by Heys and Stump, also saw a phase
transition but could not determine its order. Monte Car-
lo calculations have been done by Heys and Stump, and
by Chin, Negele, and Koonin and Koonin, Umland,
and Zirnbauer used a guided random walk Monte Carlo
method to estimate the ground-state energy and its first
derivative. Irving and Hamer extended the strong-
coupling series, and generated "exact linked cluster ex-
pansions" (ELCE's) which seemed to indicate a second-
order transition. Some estimates of the ground-state en-
ergy have also been obtained by Choe, Duncan, and
Roskies using a very interesting Lanczos variational
technique, but unfortunately those results are too deep in
the weak-coupling regime to be relevant here.

In the present work we apply the stochastic truncation
Monte Carlo technique ' ' to the Hamiltonian model,
and determine the ground-state energy and the string ten-
sion. The string tension results seem quite reliable, and
match nicely to the asymptotic values expected in the
weak-coupling limit. There is clear evidence of the ex-
pected fixed-point behavior at weak couplings. There is
no evidence for a first-order phase transition at the end
point of the critical line, and the data seem quite con-
sistent with an ordinary second-order transition, with pa-
rameters

x*=0.675+0.025 @=0.4+0. 1 .

II. METHOD

The quantum Hamiltonian of the compact U(1) lattice
gauge theory can be taken as ' (ignoring an overall
multiplicative constant)

(2.1)

where l denotes links and p denotes plaquettes of the
three-dimensional spatial lattice, and the strong-coupling
parameter x =1/g, where g is the bare electric charge.
We shall work in a strong-coupling basis in which the
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electric Aux operator L& on each link is diagonal, and has
the usual integer spectrum of eigenvalues:

large system. ' ' This is implemented in an unbiased
fashion by a similarity transformation

I i ~i ) =ni ~i ), ni =0,+1,+2, . . . . (2.2) (2.1 1)

The magnetic or plaquette operator Z then raises or
lowers the electric Aux on the four links of the plaquette p
by one unit, by virtue of its commutation relations with
the LI.

H'= UHU-',

where we choose

(2.12)

(2.13)
Z if l is link 1 or 2 of p,

[I.&, Z ]= —Z„ if l is link 3 or 4 of p,
0 otherwise .

(2.3)

The stochastic truncation method which we have used
to treat this model has been discussed in detail else-
where, ' ' ' and we shall give no more than a sum-
mary here. It is a Monte Carlo version of the simple
power method for finding the dominant eigenvalue and
eigenvector of a matrix. At the mth iteration, the (un-
normalized) approximate eigenvector is represented by a
superposition of basis states: 0)E, X,„, , (2.14)

which corresponds to an exponential cutoff on the "un-
perturbed" energy E, , i.e., the eigenvalue of the electric
field term in (2.1) for the basis state ~i ). The eigenvalues
are unchanged by this procedure, but the accuracy of the
Monte Carlo estimates may be much improved.

Next, one must arrange for the ground state to be the
dominant eigenvector. For the U(1) model, which has an
infinite spectrum, this necessitates a cutoff: we chose to
discard all basis states such that

~q™)=y n ~$) (2.4)

where the amplitudes or "occupation numbers" n, ' ' are
integers. Define also an "ensemble size"

~(m) ~ (m) (2.5)

and a "score" S' ' which approximates the eigenvalue;
then the trial vector at the next iteration is defined by the
rules

n (m +1)
(m)

S(m)
(2.6)

gT(m +1)S'-+"=" S'm
~(m) (2.7)

where R (x) is a "rounding function" which rounds x ei-
ther up or down to the next integer value by a Monte
Carlo process such that on average

R (x)=x . (2.8)

where ck is the basis-state amplitude in the exact eigen-
vector, and

(s&=E, , (2.10)

the corresponding dominant eigenvalue which we are in-
terested in.

Some form of variational guidance is essential in a

Each iteration thus corresponds to a further application
of the Hamiltonian matrix to the previous trial vector.
When the system reaches equilibrium, a comparison of
Eq. (2.6) with the eigenvalue equation shows that, on
average,

(2.9)

where X,„, is an arbitrary cutoff value, and then define

H'=N, „,—H . (2.15)

The ground state of H should then be the dominant
eigenstate (with largest eigenvalue) of H', and further-
more the matrix H' has all elements positive semidefinite.
The cutoff (2.14) introduces a systematic error into the re-
sult, but N,„, was taken sufficiently high (N,„,=250 for
the 5 X 5 lattice) that any such error appeared to be negli-
gible in comparison with the random errors.

The basis states were coded allowing five bits for the
electric Aux on each link, or a total of 75 words for each
complete state on the 5X5 lattice. The computational
processing of each state was kept as simple as possible to
save processor time. The trial vector was treated as an
"ensemble" of X' ' states, each of which was evolved in-
dependently; no "gathering" of identical states was per-
formed, nor any symmetrization. The off-diagonal ma-
trix elements were treated by an efficient procedure dis-
cussed previously, ' and all operations were vectorized
where possible, so that CPU processing speeds of 10p
sec/state/iteration were achieved for the 5 X 5 lattice on a
Fujitsu VP 100 machine.

At each value of the coupling x, a few trial runs were
made to select the best value of the variational parameter
c, giving as far as possible a stable value for the eigenval-
ue, with minimum error. Production runs were then car-
ried out of 10 iterations, with an initial ensemble size
N' '=6X10; the first 10 iterations were discarded, to
allow time for equilibration. In the range 0.6~x ~0.65,
longer runs of 2X10 iterations, with X' '=1.2X10,
were carried out. The statistical error in the result was
estimated by "blocking" the data, up to block sizes of
256 iterations, or 1025 iterations for the longer runs. Ei-
genvalues have been calculated for lattices of M sites
with M=2, 3, 4, and 5, assuming periodic boundary con-
ditions.
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TABLE I. Table of values for the ground-state energy per site —Eo/M as a function of coupling x
and lattice size M. Also listed are the resulting estimates of the bulk limit, M~ ~; and estimates from
the [2/2] Fade, approximant to the strong-coupling series of Irving and Hamer (Ref. 28).

0.2
0.4
0.5
0.6
0.625
0.65
0.7
0.75
0.8

0.0605(4)
0.255(1)
0.421(1)
0.656(1)
0.725(1)
0.795(1)
0.945(1)
1.103(1)
1.271(1)

0.0597(3)
0.2411(3)
0.377(1)
O.557(1)
0.609(1)
0.668(1)
0.804(1)
0.953(1)
1.110(1)

0.0600(3)
0.2406(5)
0.377(1)
0.551(1)
0.598(1)
0.652(2)
O.783(2)
0.932(1)
1.087(1)

0.0600(3)
0.2398(5)
0.375(1)
0.531(3)
0.574(3)
0.636(2)
0.776(2)
0.923(2)
1.078(1)

(est. )

0.0599(3)
0.2400(5)
0.376(1)
O.54(1)
O.58(1)
0.63(1)
O.77(1)
O.92(1)
1.08(1)

Series

0.05999
0.241(1)
0.379(4)
0.55(1)

0.77(4)

1.03(7)

III. RKSUI.TS

Eo/M' —6x +4.755x '/' —0.535, (3.1)

where the third (constant) term has been adjusted to fit
the data. It can be seen that the Monte Carlo results con-
verge very well to the series estimates in the strong-
coupling region; while at weaker couplings (larger x) they
appear to be matching on quite well to the asymptotic
curve (3.1). Koonin, Umland, and Zirnbauer obtained a
result for the 4 lattice at x =0.6 corresponding to
Eo/M = —0.546(6) in our terms, which is in excellent
agreement with the result in Table I.

The slope of the ground-state energy,

0,5

Values for the ground-state energy per site Eo/M are
given in Table I and Fig. 1. For comparison, the [2/2]
Pade approximant to the strong-coupling series of Irving
and Hamer is also shown, together with the weak-
coupling asymptotic series (see Appendix A):

T= (E, —Eo),1
(3.2)

where E, is the energy of the lowest state in the "string"
sector, with a string of unit electric Aux along one axis.

(1/M )(dEo/dx), is shown in Fig. 2. This can be found
as a ground-state expectation value, using the Feynman-
Hellmann theorem, or else by simply taking the slope be-
tween neighboring values in Table I. The latter technique
seems more accurate, in fact, and was the method we
adopted. Here one sees a small steplike structure build-
ing up around x =-0.65, which indicates a probable phase
transition; but it is impossible to tell from these data
whether the bulk derivative will be continuous, as in a
second-order transition, or develop a small step discon-
tinuity (i.e., a "latent heat") as in a first-order transition.
Chin, Negele, and Koonin also saw a kink in this
derivative, but at somewhat higher value of x, around
x =—0.95. Perhaps this was due to some variational bias in
their calculation.

Finally, results for the axial string tension are shown in
Table II and Fig. 3, obtained via the formula

E
M3

0.5 1.0

-1
1 dEO

M3 dx

3—

Ci

M=4
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FIG. 1. The ground-state energy per site, Eo/M as a func-
tion of x. Monte Carlo results are shown for lattice sizes M=2,
3, 4, and 5. The solid line is the [2/2] Pade approximant to the
strong-coupling series (Ref. 28), and the dashed line is the
weak-coupling series approximation (Ref. 37).

FIG. 2. The derivative of the ground-state energy per site,
(1/M')(dEO/dx), as a function of x. Monte Carlo results are
shown as in Fig. 1. The solid line is the strong-coupling Fade
approximant, and the dashed line is the weak-coupling series.
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TABLE II. Table of values for the axial string tension T, as a function of coupling x and lattice size
M. Also listed are the resulting estimates of the bulk limit M~ Do together with estimates from the
[2/2] Pade approximant to the strong-coupling series (Ref. 28).

0.2
0.4
0.5
0.6
0.625
0.65
0.7
0.75
0.8

0.901(3)
0.634(7)
o.458(7)
0.348(3)
0.325(3)
0.310(3)
0.30(1)
0.28(1)
O.28(1)

0.956(5)
0.79(1)
0.61(1)
0.36(1)
0.27(1)
0.20(1)
0.14(1)
0.12(1)
0.11(2)

0.97(1)
O.83(2)
0.68(2)
0.44(3)
0.31(3)
0.22(3)
0.08(4)
O. 11(2)
0.05(3)

0.98(1)
0.87(2)
0.74(4)
0.48(7)
O. 12(7)
0.02(5)
0.12(6)
0.08(6)

—0.02(4)

(est. )

0.98(1)
0.86(3)
0.78(5)
0.6(1)

Series

0.9723
0.87(1)
0.75(5)

By taking a difference between two large numbers in Eq.
(3.2) one inevitably incurs a substantial error, but we
know of no more accurate procedure. Also shown for
comparison is the [2/2] Pade approximant to the strong-
coupling series. The axial string tension is known
to undergo a "roughening" transition at xz =—0.56, how-
ever, and the series is of no use beyond that point. It can
be seen that the Monte Carlo results seem to converge to
the series estimates, within errors, for x ~ 0.5.

The finite-size behavior of the Monte Carlo results in
Fig. 3 shows two interesting features:

(a) Beyond x =0.7, the string tension appears to be lev-
eling off at a constant value for each lattice size M, with
the constant value scaling rapidly down toward zero as M
increases. A weak-coupling analysis given in Appendix
A shows that in fact the finite-lattice values have the

asymptotic behavior

T(x,M)
1

~-~ M

which is in excellent agreement with the numerical re-
sults. Now a finite-size scaling behavior T(x,M) o- l/M
for the string tension is characteristic of a critical point
(see Ref. 28 and Appendix B); so the finite-size behavior
discussed above is evidence of the expected line of fixed
points, running from x -=0.7 to ~ . A very similar
phenomenon occurs ' for the mass gap of the O(2)
Heisenberg spin model in 1+ 1 dimensions.

A further demonstration of the line of fixed points is
given in Fig. 4, which plots the "scaled string tension ra-
tio"

4

o M=2
o M=3

0.5—
o M=2
o M=3

M=4
M=S

pl, v

V Q o

I

0.5
0

0
I

0.5

FICs. 3. The axial string tension as a function of x. Monte
Carlo results for M=2, 3, and 4 are connected by dashed lines
to guide the eye. The solid line is the [2/2] Pade approximant
to the strong-coupling series (Ref. 28). No error bars are shown.

FIG. 4. The scaled string tension ratios RM as functions of x.
Only results for M=2 and 3 are shown. The critical value
RM =1 is marked with a solid line; the dashed lines are merely
to guide the eye.
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M T(x,M)
(M —1) T(x,M —1)

(3.4)

as a function of x for M=2 and 3. At a critical point, we
expect RM ~1. It can be seen that R~(x) tends very rap-
idly to the critical value RM=1 for x ~0.7. The values
for M=4 and 5 are not accurate enough to be worth plot-
ting, but are entirely consistent with this conclusion.

(b) At smaller x, the string tensions show a "crossover"
pattern, scaling upwards to their asymptotic limit at
small x, and downwards at large x. At first sight, one

might expect this to lead to the development of a step
discontinuity in the bulk limit, characteristic of a first-
order transition. But a counterexample to this scenario is
provided by the Zz gauge model in 2+1 dimensions
which is dual to the Ising model and undergoes a
second-order transition, and yet displays a similar "cross-
over" pattern in the finite-lattice results.

To obtain further information on the phase transition,
we have calculated the Roomany-Wyld approximant to
the Callan-Symanzik I3 function for the string tension,
defined by

p(g) ln[RM (x ) ]
2 1 —x ln[T(x, M)T(x, M —1)]

g ln(M/M —1) Bx (3.5)

(see Appendix B). Near a second-order critical point, the
P function behaves as

P(g) x "—x
x~x* 2px

(3.6)

so that the slope of the P function at the critical point
gives the critical index p. Some results for the smaller
lattice sizes, estimated from the values in Table II, are
graphed in Fig. 5. We make the following remarks.

(i) As usual for the Roornany-Wyld estimates, which
have already incorporated some finite-size scaling, the
convergence as M increases is swift. This is illustrated by
the closeness of the M= 3 results and some representative
M=4 points. The M=5 results are consistent with this

x *=0.675+0.025 (3.7)

with index

p=0.4+0. 1 . (3.8)

statement, but are not accurate enough to be worth plot-
ting.

(ii) There is no evidence that the 13 function will get
steeper and steeper near the transition point, and eventu-
ally come in vertically, as in a first-order phase transition
("p =0").

(iii) Fitting an approximate straight line to the data in
the range 0.4~x ~0.6 would indicate a second-order
phase transition at

p(g)
g

0.5—

M=2
a M=3

+=4

This position is consistent with the value x*=0.72+0.08
obtained by Irving and Hamer from their EI.CE
analysis, but the index is somewhat lower than their value
p=0. 65+0.12, or the Euclidean estimates @=0.56(4) by
DeGrand and Toussaint, " 0.78(10) by Bhanot, ' and
0.75(3) by Caldi. ' This discrepancy might easily be ex-
plained if the critical point were a little further out, and
the P function flattened out a little at the foot beyond
x =0.6.

(iv) We cannot rule out the possibility that the P func-
tion may suddenly Aatten out right at the foot to an alge-
braic zero, P(g)/g —(x*—x )'+, as in a Kosterlitz-
Thouless transition, but there is no particular indication
of that in the data.

It would be useful (as always) to have more accurate
data, for larger lattices, in the vicinity of the critical point
in order to resolve some of these issues with more certain-
ty.

IV. SUMMARY
0
0

I

0.2
I

0.4
X

I

0.8

FICx. 5. Cxraph of the Roomany-Wyld 13 function P(g)/g for
the string tension. Results are shown for M=2 and 3, together
with a few points for M=4. Dashed lines are merely to guide
the eye. No error bars are shown.

The stochastic truncation method has been used to ob-
tain finite-lattice estimates of the ground-state energy and
string tension for the compact U(1) gauge theory in 3+ 1

dimensions. This represents the first time that reliable
Monte Carlo estimates have been obtained for the string
tension in the Hamiltonian model, as far as we are aware.
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The results show very clearly the finite-size scaling behav-
ior characteristic of a line of fixed points beyond x =—0.7,
and match on very nicely to the analytic values expected
in the weak-coupling limit.

There is no sign of a first-order phase transition. The
finite-lattice string tensions follow a "crossover" pattern,
but this seems to be typical of the axial string tension in
any model, ' ' and does not necessarily indicate a first-
order transition. The Roomany-Wyld P function appears
to vanish linearly as in a normal second-order phase tran-
sition, with parameters

x *=0.675+0.025 p =0.4+0. 1 . (4.1)

This estimate of the critical point is consistent with the
ELCE result x'=0.72(8), but the index value is some-
what lower than other estimates (p, =0.7).

Of course, one cannot rule out with certainty the possi-
bility of a first-order transition on the one hand, or a
Kosterlitz-Thouless transition on the other, because the
string tension might always undergo a very small discon-
tinuity, or else a Aattening out, very near the foot where
data of finite accuracy cannot distinguish it. The data
obtained here, however, seem most consistent with an or-
dinary second-order transition. In any case, the stochas-
tic truncation method seems to have given reasonably re-
liable and unbiased results, and we hope to apply it to
other models.

b, „(m,n)=5 +~„—5 Zl, (m, n) =5 „—5

8(m, i)=, +8(k, i)exp(2~ik m), (Aga)

8(k, i)=, g 8(m, i)exp( —2vrik m),~ 1/2 (Agb)

where N is the number of lattice sites, and then diagonal-
izing in the subspace of directions i. The result in three
space dimensions is

TrD' =2 g '2 g (1—cos2m. k;)
' '~2 (A9)

(A5)
are finite-difference operators. Equation (A2) is the Ham-
iltonian of a generalized simple harmonic oscillator.

The ground-state wave function is a Gaussian
1/2

) 8TD 1/28 (A6)

involving a matrix quadratic form in the link angle vari-
ables. The corresponding asymptotic expansion for the
ground-state energy is

Eo 2xN—+x'~ Tr(D'~ ) . (A7)
+ —+ 00

The matrix D may be diagonalized by first performing a
Fourier transform,
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2 I d p '2g (1—cosp;)
N ~ co ( 2~ )

—vr
1

=4.755N

(A10)

(A 1 1)

APPENDIX A: WEAK-COUPLING ANALYSIS

In this appendix, we shall analyze the weak-coupling
behavior of the ground-state energy and string tension
following Drell et al. , Hofsass and Horsley, and Ha-
mer and Barber.

The U(1) model Hamiltonian can be written

H = g LI 2x g cosg—
I P

(A 1)

a'H= —g 2xN +x+8-
g2 p

I

(A2)

where 0 is the "plaquette angle" variable associated with
each plaquette of the lattice. In the weak-coupling region
let LI~ i 0/'dg&, a—nd approximate

according to Hofsass and Horsley. Thus from (A7),

Eo/M —6x+4 755x ' (A12)

In the weak-coupling limit x ~~, the oscillator wells
become very deep, and the ground-state wave function
develops sharp Gaussian peaks like 5 functions at the
bottom of the wells. This "local" structure will be the
same for the lowest states in both the vacuum sector and
the axial string sectors. The difFerence in energy will
come from their dependence on the zero momentum -an-

gular variables 8(O, i). There is no "potential well" in
these variables, and the wave function remains an eigen-
function of L-,. (0)= —8 /Bg(O, i) at all couplings x.

Referring back to the strong-coupling limit, then, we
see that, at x=0,

where Xz is the number of plaquettes. The last term can
be written as a quadratic form in the "link angles" 8(n, i),
where we now denote each link by its origin n and direc-
tion i:

~ Po) = 1,L-,. (0)—=0 in the vacuum sector;

whereas

(A13)

M

~g, ) =exp i g 8(ni, i), L-, (0)=1/M(A3)

n =1
+ 8 = g 8(m, i)D;.(m, n)8(n, j):8D8—

m, n, i, j
where

(A14)

D, (m, n)=b, ;bj.—5~J g &I,&I,
k

(A4) in the axial string sector with a unit Aux string in the i
direction. Hence the string tension in the weak-coupling
limit is
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T= (E, —Eo)
1 1

M
(A15)

behavior characteristic of a critical point. This behavior
is exactly analogous to that of the 0(2) Heisenberg spin
model in 1+1 dimensions, where the mass gap scales
like 1/M in the weak-coupling liniit.

g H
2a

(81)

where a is a lattice spacing and H is the dimensionless
Hamiltonian of Eq. (21). Following Roomany and
Wyld, we imagine the theory to be defined in a box of
side L =Ma, with periodic boundary conditions, where
the length L is fixed. We demand that the physics be the
same at each lattice spacing a; and in particular we
demand that for two systems with M and M' sites on a
side, the string tension, or energy per unit length be the
same, i.e.,

APPENDIX 8: LATTICE RENORMALIZATION

Here we derive the form of the Roomany-Wyld ap-
proximant for the P function associated with the string
tension. The physical Hamiltonian H for the model is
actually

where T~ (g, M) is the physical energy per link at coupling
g. Since T (g, M)=(g /2a)T(g, M)=(g M/2L)T(g, M),
where T(g, M) is the dimensionless string tension of Eq.
(3.2), the relation (82) is equivalent to

g M T(g, M)=g M T(g', M') . (83)

This defines an effective renormalization-group transfor-
mation g'=R (g). Note that at a critical point or fixed
point g'=g =g, (83) implies the standard finite-size
scaling behavior

const
(84)

The Callan-Symanzik P function is defined by

P(g) =a Bg

P
MT =const

(85)

aT BT
T +M — dM +M dg =0

aM
(86)

With L fixed, changes of a are related to changes in
M, da/a = —dM/M. Setting MT =const we find

T (g, M)= T (g', M'), (82)
and hence

T +M( ) BT

g ~ BM

aT
Bg

(86a)

8 ln(MT ) 8 lnT

8 lnM 8 lng

8 ln[M T ] B ln[Mg T]
0 lnM 8 lng

ln[M T(g, M')/M T(g, M)]
ln(M'/M)

2+ —g ln[ T(g, M) T(g, M') ]
1 a
2 Bg

(86b)

(86c)

(86d)

where (86d) is obtained by approximating the derivative in lnM by a finite difference. In terms of the variable x = 1/g,

P(g) ln[M T(x,M')/M T(x,M)) (j
ln(M'/M) Bx

Essentially this result was first obtained by Irving and Hamer, but the detailed derivation was not given there.
The bulk limit of the P function when M, M'~ oo, T(x,M)~ T(x), is

(87)

Pg
1 —2x lnTa

X

(88)

so that in the case of a second-order phase transition

T(x) (x*—x )~, (89)

the /3 function behaves as

P(g) x*—x
g x~x* 2p&

where p is the critical index, which can thus be found from the slope of the P function at the critical point.

(810)
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