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It has recently been proposed that light-front field theory provides a powerful tool for the analysis
of relativistic bound states when one makes a Tamm-Dancoff' truncation. Such a truncation intro-
duces nonlocalities that require an unfamiliar nonlocal renormalization procedure, in which coun-
terterms are allowed to depend on the sectors of Fock space within which or between which they
act. In this paper we illustrate the simplest features of the light-front Tamm-Dancoff' approach us-
ing the Yukawa model in 1+ 1 dimensions.

I. INTRODUCTION

Since the inception of relativistic field theory, physi-
cists have sought nonperturbative tools for its study. Ul-
traviolet infinities plagued attempts to borrow Hamiltoni-
an and other methods developed for the study of nonrela-
tivistic quantum mechanics, and little progress was made
outside of perturbation theory until the 1970s. With the
recognition that gauge theories are asymptotically free
and the development of lattice gauge theory, it was hoped
that rapid progress might be made in understanding ha-
dronic physics using a fundamental theory, quantum
chromodynamics (QCD). Although progress has been
made, lattice calculations are still far from able to pro-
vide accurate information about light-quark bound states,
and the possibility of doing nuclear physics on the lattice
is not foreseeable. One must either wait for more power-
ful computers, resort to phenomenological approxima-
tions to QCD, or seek alternatives to lattice gauge
theory. ' The light-front Tamm-Dancof (LFTD) approxi-
mation has been proposed both as a promising alterna-
tive to the lattice and as a fertile ground for the develop-
ment of phenomenology.

The purpose of this article is to illustrate some of the
principal features of the LFTD approximation, in partic-
ular, the simplest features of the new renormalization
program required by this approach. Little work has ad-
dressed renormalization in light-front field theory, and
most of it is devoted to establishing a connection with co-
variant perturbation theory. Tang is the only author
who has discussed renormalization after a Tamm-Dancoff
truncation. Although renormalization of time-ordered
perturbation theory in the infinite-momentum frame, '

or in covariant perturbation theory using light-front coor-
dinates, ' is related to direct renormalization in light-
front perturbation theory, there are important
diffeI ences.

The Tamm-Dancoff approximation was originally pro-
posed by Tamm' in 1945, and independently discovered
by Dancoff' in 1950. Simply stated, one tries to solve a
second-quantized relativistic Schrodinger equation in a
truncated Fock space. Tamm and Dancoff considered

the possibility of studying the deuteron by keeping only
states with up to one pion added to a neutron and proton.
By making severe approximations they showed that, in
the nonrelativistic limit, this approach leads to a nonrela-
tivistic Schrodinger equation with a Yukawa potential.
Unfortunately, further study in the 1950s (for a historical
review, see Ref. 15) led to the conclusion that ultraviolet
problems prevent this method from being of any practical

6-20 The ultraviolet problems are of two types.
First, there are divergences associated with the vacuum.
Second, the truncation of Fock space seriously violates
Lorentz invariance and, in particular, boost invariance.
This, in turn, leads to nested noncovariant divergences
which, at the time, were believed to be insurmountable.
The use of momentum cutoffs further violates Lorentz in-
variance.

The LFTD approximation, in its simplest form, is just
the Tamm-Dancoff approximation applied to light-front
field theory instead of equal-time (i.e., instant-form) field
theory. Light-front field theory originated from the work
of Dirac ' on the forms of relativistic dynamics. It is
most familiar from its use in the parton model, where it
allows one to utilize intuitive constituent pictures that
cannot be justified in instant-form field theory. In his
pioneering work on the infinite-momentum frame, Wein-
berg recognized the potential of such an approach and
the possible need for a Tamm-Dancoff truncation. Since
that time many physicists have recognized the virtues of
the infinite-momentum frame and/or the light-front
field theory but only a small fraction of work in this area
has dealt with problems beyond the tree level of field
theory.

The use of light-front field theory apparently removes
the most severe problems of the onginal Tamm-Dancoff
approximation. As has long been recognized, ' the free
vacuum is an eigenstate of the full light-front Hamiltoni-
an; therefore, the vacuum divergences that plagued the
original program seem to disappear. Furthermore, the
light-front boost operators do not contain interac-
tions, ' ' so the truncation of Fock space according to
particle number will only violate rotational invariance.

After making a Tamm-Dancoff truncation, there are
only a finite number of degrees of freedom; however,

43 1991 The American Physical Society



ROBERT J. PERRY AND AVAROTH HARINDRANATH 43

there are still an infinite number of momentum scales.
Large transverse-momentum scales lead to ultraviolet
divergences, while small longitudinal momenta lead to a
new class of "spurious" infrared divergences. " These
divergences must be regulated in some fashion. There are
a number of methods on the market, and we will briefly
discuss the use of Pauli-Villars regularization, dimen-
sional regularization, and momentum cutoffs. Clearly
when no other considerations exist, one would like to re-
gulate the theory in a manner that preserves all sym-
metries. Unfortunately, in the LFTD approach the aim
is to employ Hamiltonian diagonalization on a computer,
and this introduces practical constraints that favor the
use of cutoffs. Even when one employs Pauli-Villars or
dimensional regularization, an additional truncation of
the few-body Hilbert space is required to generate a
finite-dimensional Hamiltonian matrix. This additional
truncation is inevitably equivalent to the introduction of
momentum cutoffs, although there are a large number of
ways that such cutoffs can be introduced. It is possible to
introduce cutoffs after using Pauli-Villars or dimensional
regularization, and this might minimize the effects from
symmetry breaking introduced by the cutoffs. However,
in the Pauli-Villars method one must introduce extra de-
grees of freedom and imaginary coupling constants, and
in dimensional regularization one must compute Hamil-
tonian matrix elements in a noninteger number of dimen-
sions. We believe that the numerical costs associated
with these complications outweigh any advantage initial-
ly gained by their employment. Certainly the study of
these regularization schemes should be pursued, especial-
ly for problems where the counterterms they yield can be
cataloged and included by hand, as in quantum electro-
dynamics (QED). However, throughout this paper we
will use cutoffs on the invariant mass of states to provide
regularization.

There are obviously many possible momentum cutoffs
that can be employed. One is free to cut off longitudinal
and transverse momenta separately, and to employ unre-
lated cutoffs in different sectors of Fock space. If feasi-
ble, one wants to employ cutoffs that violate a minimal
number of symmetries. Lorentz invariance is of particu-
lar importance in the renormalization program and will
occupy most of our attention. It is easy to select cutoffs
that preserve Lorentz symmetries associated with kine-
matic generators of the Poincare group. ' ' This is ac-
complished by choosing cutoffs that are functions of in-
variant momentum variables. All Poincare generators
except the Hamiltonian are kinematic in 1+1 dimen-
sions, so it is easy to find cutoffs that maintain Lorentz
invariance. While we believe there may be good reasons
to employ noncovariant cutoffs even in 1+ 1 dimensions,
the considerations leading us to this conclusion are
beyond the scope of this article; therefore, we will employ
a covariant cutoff throughout this work. In 3+1 dimen-
sions there are boost-invariant cutoffs, but there is no co-
variant cutoff because the Poincare generators of macro-
scopic rotations about transverse axes contain interac-
tions. In particular, one can easily see that the covariant
cutoff on the invariant mass of intermediate states,
which we employ here, violates rotational invariance

even though it preserves boost invariance. This is most
easily seen by looking at a process such as Compton
scattering where one can readily find examples in which
observers in frames related by a rotation about a trans-
verse axis do not agree on whether the cutoff removes
scattering for a given set of external momenta. On the
other hand, when one considers only those states which
contain a single particle, such as isolated stable bound
states, the equations of motion are completely indepen-
dent of the total momentum when one uses this cutoff.

The goal of nonperturbative renormalization is to iden-
tify counterterms that allow the truncated Hamiltonian
to yield Correct results. If the Tamm-Dancoff truncation
or the additional cutoffs spoil locality and covariance, the
counterterms must be nonlocal and noncovariant to re-
store these properties to observables.

The LFTD approach closely resembles an approach
advocated by Susskind and his collaborators, and also
discretized light-cone quantization (DLCQ). DLCQ was
originally applied to the study of the Yukawa model in
1+ 1 dimensions by Pauli and Brodsky and has subse-
quently been employed to study the Schwinger mod-
el, ' (1+1)-dimensional (QCD) (Refs. 39 and 40) and
QED3+, . While a Tamm-Dancoff truncation is not em-
ployed in the original work on the (1+1)-dimensional
Yukawa model, it is almost inevitably employed in all
work on gauge theories. Gauge particles in the light-
cone gauge in 1+1 dimensions are not dynamical, so the
Tamm-Dancoff truncation affects only fermion-
antifermion pairs. There are no divergences in these
theories, and it has been shown that composite ground-
state wave functions are dominated by the lowest Fock-
space component. ' As a result, there has been little
need to discuss many aspects of renormalization in these
works. In QED3+ f Tang has studied the lowest-order
Tamm-Dancoff approximation. He computes the
electron-mass counterterm required at this order using
the DLCQ approach in the charge-one sector, and
discusses the corresponding counterterm in bound-state
calculations. Many of the general principles involved in
nonperturbative renormalization, including several exam-
ples of the effects of renormalization on wave functions,
are given by Lepage, Brodsky, Huang, and Mackenzie.

Let us turn to an outline of the paper. We have
relegated details concerning light-front variables, quanti-
zation, the (1+1)-dimensional Yukawa Hamiltonian, etc. ,
to Appendix A. In order to set the stage for the LFTD
approach, we compute the second- and fourth-order
shifts in the mass of the fermion (ignoring antifermions)
in the second section. The natural equation to solve on
the light front is Einstein's equation P =2P+P =M .
Stationary-state perturbation theory is better suited to
the problems in which we are interested than X+-ordered
perturbation theory is, and we utilize both the light-front
version of Brillouin-Wigner (LFBW) perturbation theory
and the light-front version of Rayleigh-Schrodinger
(LFRS), or standard, perturbation theory. The instant-
form version of the (1+1)-dimensional Yukawa model in-
dicates that it should be possible to avoid all divergences
in quenched perturbation theory, but we encounter
several divergences in the light-front version of the
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theory. We show that these "spurious" divergences are
removed by the proper treatment of the fermion self-
inertia and various instantaneous interactions. The need
for nonlocal counterterms whose action depends on the
sector of Fock space becomes clear at this point.

A sequence of approximations for the physical fermion
in which an increasing number of virtual bosons are al-
lowed is used to illustrate the LFTD approach. We start
in Sec. III with the first Tamm-Dancoff approximation
and demonstrate Hamiltonian diagonalization, which is
equivalent to solving a set of coupled integral equa-
tions. ' ' Mass renormalization is implemented by fixing
scattering thresholds, and clarified by the relation be-
tween divergences in the LFTD approach and perturba-
tion theory. The LFTD equation for the physical fer-
mion state is used to compute the first fermion mass
counterterm. In Sec. IV we turn to the problem of two
fermions of different flavor interacting via the exchange
of one boson. We derive the LFTD integral equations,
and show that the boson exchange is accompanied by the
"dressing" of the fermions. We show that the counter-
terms computed in the charge-one sector remove spuri-
ous divergences and properly fix the two-fermion scatter-
ing threshold below the boson production threshold when
the cutoff is taken to its limit. After removing cutoffs we
obtain finite, covariant, unitary equations for two-
fermion —one-boson scattering, and for the two-fermion
scattering, or bound-state, problem. In Appendix C we
show how one can take the nonrelativistic limit of such
equations, in particular, demonstrating that when the fer-
mions become infinitely massive, the two-fermion prob-
lem reduces to a Schrodinger equation for a nonrelativis-
tic particle moving in a Yukawa potential.

In Sec. V we return to the charge-one sector of the
theory and allow up to two virtual bosons to dress the
fermion. This is the first point at which one begins to see
the complete nonperturbative nature of the LFTD
theory. Renormalization of the one-fermion —two-boson
sector is trivial, and renormalization of the one-
fermion —one-boson sector is accomplished by the mass
counterterm originally discovered in Sec. III and now
ported to a new sector of Fock space. It is not possible to
eliminate both sectors containing bosons and write a sim-
ple equation for the physical fermion because such an
elimination requires the inversion of several integral
operators. However, we are able to demonstrate that all
spurious divergences are canceled and that the final ei-
genvalue equation is finite and covariant after cutoffs are
removed.

Section VI contains our conclusions. We speculate
without proof that the above procedure can be general-
ized to any order of the LFTD approach. In each new
order, additional sectors of Fock space are added, and
counterterms computed in lower orders are moved into
new "descendant'* sectors. After this first step, one com-
putes a new set of counterterms in the lowest sectors of
Fock space by satisfying a specified set of renormalization
conditions. After these steps are completed, the LFTD
Hamiltonian is completely specified and one can proceed
to compute additional eigenvalues and eigenstates. We
do not discuss how additional counterterms (e.g., cou-

pling constant renormalization) come into play, although
it should be clear that it is necessary to allow such coun-
terterms to depend on the sectors of Fock space within
which or between which they act. A complete local, co-
variant field theory is recovered by a double limiting pro-
cedure in which one includes additional particles and re-
moves cutoffs. In most of this paper we act as if such
limits are going to be taken directly, but a nonperturba-
tive calculation will require us to "condition" these limits
by using renormalization-group techniques.

II. FERMION MASS IN PERTURBATION THEORY

Consider the quantized version of Einstein's equation
for states with charge one:

(2.1)

Here P+ is the momentum operator and we have separat-
ed the free part of the Hamiltonian P~ from the interac-
tions PI . If we work with momentum eigenstates we can
always replace the momentum operator by its expectation
value P. Unless otherwise specified, we will do this
throughout the rest of the paper. It is relatively straight-
forward to develop the LFBW perturbation theory for
this equation. We begin with the LFBW theory rather
than the LFRS expansion in the coupling constant be-
cause the LFBW theory is close to what naturally arises
in the Hamiltonian matrix diagonalization. We can easi-
ly switch to the LFRS theory at any point by making a
second expansion of each term in the LFBW expansion.
As a specific example, we will consider the charge-one
sector, although the only state in this sector directly
amenable to analysis with the LFBW theory is the physi-
cal fermion. All other states are scattering states that re-
quire a Lippmann-Schwinger treatment. It should be
straightforward to develop such a treatment but, for our
present purposes, we will need only scattering thresholds.

Following a standard textbook derivation one finds
that

2 2mF mFp

o 2 PI 2 P
=p mF 2PPM

(2.2)

The physical fermion mass is mF while the bare value is

m~o. At this point it is assumed that there is a single fer-
mion mass counterterm, so that it is sufficient to specify
mFp. The fermion is assumed to have a momentum P.
The approximate eigenstate will be that of a free bare fer-
mion ~%p), and the projection operator Q projects onto
states orthogonal to ~4p). At any order in the sum one
can derive the perturbative result by inserting a complete
set of free states (i.e., eigenstates of P+ and PM ) between
every interaction operator PI . This is equivalent to
drawing all X+-ordered diagrams that begin and end
with a single bare fermion line, but do not contain a lone
fermion line in any intermediate state. A complete set of
diagrammatic rules is listed in Appendix B.
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The problem we want to address is how a fermion
dresses itself with bosons in the quenched (i.e., no antifer-
mions) approximation. Although this is a nonperturba-
tive problem, we can begin by looking at second-order
perturbation theory. The only diagrams that occur to
this order are shown in Fig. 1. The first diagram
represents a self-inertia, which we have chosen to single
out as an interaction rather than include in the fermion
propagator for reasons that will become obvious. In ear-
lier work" we evaluated these diagrams using cutoffs that
restrict fermion momenta to lie between eF and AF, while
boson momenta lie between eB and AB. This type of
cutoff is perfectly adequate in 1+1 dimensions, but in
3+ 1 dimensions a cutoff on the invariant mass of inter-
mediate states has practical advantages, so we adopt
this cutoff here. The resultant regularized expression in
the LFBW theory is

dx 1
17lF l71FP —A, P

e 471X 1 X

+A'm' f " 1+
O 4~x

'2

2
mFO

X mF—
1 —x

2

X O(A' 1 x'x ) (2.3)

where

O~(A'1 x'x ) —8 A
2mF 2PlB

(2.4)

rr

l
l

I

(b)

FIG. 1. Contributions to fermion mass in second-order per-
turbation theory.

We use p to denote the Cauchy principal value. We will
usually write all momenta as fractions of the total
momentum. As discussed in the erst section, this cutoff
is Lorentz invariant, as is any cutoff in 1+ 1 dimensions
that depends only on momentum fractions. Since all mo-
menta are positive and conserved, the momentum of the
state under study automatically imposes upper cutoffs on
the momenta of intermediate states, in particular,
preventing any momentum fraction from becoming
greater than one. The further constituents of a virtual
particle have their momentum even more narrowly con-
strained to be less than the parental momentum, and so
on. Since PM =m l(2P ), the energy of successive lay-
ers of virtual particles climbs. This suppresses ampli-
tudes with large numbers of virtual particles, in competi-
tion with the transition strength of the interactions.
These statements should be clear from an examination of

1+—
2

2(m~+ mF ) (mq —mF )
2 2 2 2 2 1/2

A
+

A4
(2.5)

The dynamical cutoffs provided by momentum conser-
vation are not sufficient to regulate even the (1+1)-
dimensional Yukawa model, as can be seen from the fact
that both integrals in Eq. (2.3) would diverge without fur-
ther cutoffs. The first integral represents the self-inertia,
and we are free to regulate it in any fashion we please. In
fact, we can simply replace the integral with whatever
function of P, A, , and mF we want to use. The point is
that this is a term in the Hamiltonian, and we are free to
choose the Hamiltonian. For example, a particularly use-
ful choice for calculations in 3+1 dimensions is to allow
the self-inertia to exactly cancel the lowest-order self-
energy diagram "on shell" (i.e., when M =mF). Here we
have chosen to retain the functional form of the self-
inertia resulting from normal ordering the Hamiltonian,
and have regulated it with a cutoff on the boson momen-
tum. We can adjust e to obtain the Feynman result for
the second-order mass shift. In the second integral the
function 8(A;1 —x;x) cuts off the lower momentum of
the boson when x =0 and the lower momentum of the
fermion when x =1.

There are well-known problems with nonrelativistic
Brillouin-Wigner perturbation theory, and they remain in
the LFBW theory. They are manifest in this calculation
through the presence of both m„and mFo in the propaga-
tor of states containing fermions. The problem is very
clear in 3+1 dimensions, where mFO is forced to diverge
to keep mF finite. This problem is normally averted by
switching to the LFRS theory, which, to second order, al-
lows one to replace mF0 with mF in the propagators. In
higher orders one can use the perturbative relationship
between mFo and mF to eliminate either mass in all prop-
agators. In general, one wants to eliminate the bare mass
in favor of the physical mass. This step has no effect, but
one is then able to make a second perturbative expansion
of the resultant propagators and drop all terms beyond
the order of the original LFBW calculation. The first
term resulting from this expansion of propagators is the
same as the original LFBW expression, but with mFo re-
placed by mF in every propagator. The remaining terms
in the expansion are "counterterms, " and only those
counterterms required at the given order are retained,
while the counterterms dropped appear in higher-order
calculations. The reason that we belabor these well-
known points is that it is necessary to somehow achieve
such a nesting of counterterms in the full Tamm-Dancoff
approximation in order to recover perturbative results
when physical couplings are small but bare parameters
diverge. We will see below how nonlocal counterterms
allow one to replace bare masses by physical masses in
propagators, without abandoning the nonperturbative ad-
vantages of the LFBW theory. For now we simply turn

Eq. (2.2). The step function regulator imposes the limits
of integration:

2 2
B mFX+= +
2A
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to the LFRS theory by noting that, to zeroth order in the
coupling constant, mFo and IF are the same; therefore,
to second order in the coupling we find

dX2

II1F IFP — P I
(2—x) mF

(2.6)
4~ — l X X 2~F2+

rrrJ r
I l

~ I \
~ ~

r
r

I
I

)
I I

$

I I
I I
I

r
I

I
I I
I ~ I

%'e choose to regulate the self-inertia by setting

(2.7)
(a)

The divergences in both integrals now exactly cancel one
another and, as A approaches infinity, one finds

I —m = ln2 2
F FO

2PlF
2

P

I
l

I
1 Ir

I
L I

rr

4mF —m~2 2

dX
2 24~ p x mF+(1 —x)m~

(2.8)

r

I

which is identical to the result one obtains in covariant
perturbation theory.

What is the significance of this result? It provides us
with a relationship between mFo and mF. The bare mass
has no physical interpretation, so we must regard it as a
free parameter and determine its value by fitting an ob-
servable. The most natural observable to fit in this model
is the physical fermion mass. This is exactly what one
does in instant-form, covariant perturbation theory. The
diA'erence is that the diagrams confronted to second or-
der require only the lowest sector of Fock space and the
one-fermion —one-boson sector. In instant-form perturba-
tion theory one also encounters a Z diagram, and without
this diagram the result is not covariant. In fact, in 3+1
dimensions the second-order result is both noncovariant
and linearly divergent (rather than logarithmically diver-
gent) if one drops antifermions in the instant-form calcu-
lation, whereas the light-front result exactly reproduces
the covariant result when properly regulated.

In the fourth order of the LFBW theory one en-
counters the diagrams shown in Fig. 2. Although the di-
agrams containing a fermion loop are easily evaluated, we
will not study them here. Once again, if one were to drop
antifermions in instant-form field theory, it would not be
possible to recover a covariant result. Here we will find
that the instantaneous terms provide exactly the portion
of the instant-form Z diagrams required by covariance,
without requiring us to retain explicit antifermions. This
does not happen in 3+ 1 dimensions, where renormaliza-
tion of the coupling constant is not covariant if antifer-
mions are dropped. We have divided the fourth-order di-
agrams into four categories that depend on the Fock-
space content of intermediate states and/or the topology
of the diagram, and we begin with a discussion of the dia-
grams in Fig. 2(a). In ordinary perturbation theory we
obtain the corresponding fourth-order diagrams simply
by replacing IFo with mF in the intermediate propaga-
tors, just as we did above. We list the resultant value of
each diagram separately:

1
I

r

W

r
I

rr

I I
I

(e)

FIG. 2. Contributions to fermion mass in fourth-order per-
turbation theory.
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& dy [1+1/(1—y)]
o 4~y [m~ —mF/(1 —y) —m~/y]

X 8(A;1 —y —z;y, z),f &
—x dz [1/(1 —y)+1/(1 —y —z)]

4~z m~ —mF /( 1 —y —z )
—m~ /y —m~ /z

(2.9)

d
a2 F

g4 2 ' dy
m, 3

— mF

[1+1/(1 —y )] ~ dz 1

[mg —mF/(1 —y) —m~/y] & ~z~ 4vrz 1 —y —z
OA;1 —y;y p

[1/(1 —y )][1+1/(1 —y ) ]
mF —mF /1 —y —m~ /y

(2.10)

5m.'4 ——5m.',

X O(A;1 —y —z y, z),&
—p dz 1/(1 —y)+1/(1 —y —z)

4~z mF —mF /( 1 —y —z ) —m~ /y —mz /z
(2. 1 1)

(2.12)

&
—y dz 1

O(A;1 —y —z;y, z) .
o 4m'z m~ mF /(1 ——y —z )

—m~ /y —m~ /z
(2.13)

We have introduced a regulator for the one-
fermion —two-boson sector:

O(A;1 —y —z;y, z)=8 A—
2mF

1 y z

2
mg

(2.14)

The lower limit of integration in the self-inertia z (y)
is defined as the smaller of two roots satisfying

2mF

y

2

=0.
z

(2.15)

2 2mF mg
1 —y — (z(

A A
2 2mF mg

1 —
2 (y(

A A

(2.16)

(2.17)

We are free to employ this simpler type of cutoff at all or-
ders of perturbation theory in the (1+1)-dimensional Yu-
kawa model, because this theory lacks severe divergences.

After completing the inner-loop integrations analyti-
cally, any remaining divergences occur as poles in the

This is equal to the lower limit of integration for the nest-
ed loop in Eq. (2.9), which is a root of the argument of
O(A;1 —y —z;y, z), and with this choice the nested diver-
gence in Eq. (2.9) is canceled by the nested divergence in
Eq. (2.10).

Although we will not display further manipulations of
these expressions, we will outline the steps required to
show that their sum is finite. As noted, 5m„+5m, 2 is
free of divergences from the inner-loop integration, and it
is clear from inspection that the inner loops of the
remaining terms are finite. It is easy to analytically com-
plete all of the inner-loop integrations and substitute the
limits of integration appropriate when A~oo. If the
final result is finite, we only need to keep the leading
terms in an expansion in powers of A '. This leads to
the cutoffs

outer-loop integration. With the above cutofFs, the
remaining integrand diverges only logarithmically, so
that no divergences remain after integration. Thus, one
finds a finite result when A —+ ~. We conclude that when
cutoffs are removed, 5m, is both finite and covariant.
We note that if one places arbitrary cutoffs on the lower
range of boson and fermion momenta that are not related
to their masses as in Eqs. (2.16) and (2.17), divergences
will remain in 5m, .

Before proceeding, we want to note several points
whose significance might not be obvious. All "spurious"
divergences appear as poles in momentum fraction in-
tegrations. These poles occur in phase-space factors, but
in this form are usually canceled by companion poles in
propagators. However, further poles appear in instan-
taneous interactions, and the removal of "spurious"
divergences is performed by properly pairing instantane-
ous interactions with other terms.

Instantaneous interactions involve the instantaneous
"exchange" of fermions, so the Fock-space content of the
"intermediate" state is ambiguous. Since we intend to
make a Tamm-Dancoff approximation, some choice must
be made, so we use perturbation theory as a guide. The
example we are about to encounter is shown in Fig. 8(e)
of Appendix B. The instantaneous interaction contrib-
utes a factor A, p 1/(x

&

—
y& ). We split it into two pieces,

acting as if the intermediate state is a fermion when
x& —y, &0 and an antifermion when x&

—y, &0, corre-
sponding to the last two diagrams in Fig. 8(e). Further-
more, we link the limiting procedure associated with the
principal value with our cutoff limiting procedure. With
the above division of the instantaneous interaction, which
puts part of it in 5mb and part in 5m„5m& and 5m, are
separately finite. Again, this is not true in 3+1 dimen-
sions where the ultraviolet divergence associated with
coupling-constant renormalization is split between these
two pieces of the fourth-order self-mass correction.

We will not list the individual expressions for the dia-
grams in Fig. 2(b). When combined, some manipulation
leads to
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1

y+z
X [(16—Sy —8z+yz)yzmF —(8y+Sz —5y —5z —Syz+y z+yz }ms mF+(1 —y —z )ms ]

5mb= —A,J I [y mz+(1 —y)m~] '[yzmF+(1 —y —z}ms] '[z mF+(1 —z)m~]

XO(A;1 —y;y)O(A;1 —y —z;y, z)O(A;1 —z;z) . (2.18)

No poles remain in this expression, so 5mb is manifestly
finite.

The only other fourth-order diagrams encountered if
one ignores antifermions are shown in Fig. 2(d), and it is
easy to show that both are finite when A~00. The first
two diagrams in Fig. 2(c) can be analyzed exactly as
above, and their sum is finite. The last two diagrams in
Fig. 2(c) are more interesting because they contain the
only "true" perturbative divergence found in the (1+1)-
dimensional Yukawa model. The second-order shift in
the boson mass is infinite and requires a mass counter-
term. This counterterm leads to the diagram in Fig. 2(e),
and the sum of this with the last two diagrams in Fig. 2(c)
is also finite.

III. FIRST TAMM-DANCOFF APPROXIMATION
FOR A SINGLE FKRMION

In the LFTD approximation we again want to solve
the quantized version of Einstein s equation (2.1); howev-
er, now we want to solve the equation "exactly" in a
truncated Pock space. There are two types of truncation

to consider. First, the Tamm-Dancoff truncation elimi-
nates sectors of Pock space according to particle number,
and second, within the remaining sectors, momentum
cutoffs are used. In 1+1 dimensions, the above perturba-
tive analysis leads one to suspect that spurious infrared
divergences must first be removed by infrared cutoffs be-
fore finite calculations can be performed.

We want to study the charge-one sector of the (1+1)-
dimensional Yukawa model, beginning with the most
drastic Tamm-Dancoff truncation we can make and still
have an interesting problem. We wi11 retain only the sec-
tors of Fock space with one fermion and with a fermion-
boson pair. We expect that there will be a physical fer-
mion and a complete set of fermion-boson scattering
states. The physical fermion will be dressed, whereas the
asymptotic fermion in the scattering states will not be
dressed. We will begin by assuming that renormalization
involves only the adjustment of parameters occurring in
the original Hamiltonian, and return to this issue when
we face the problem of satisfying renormalization condi-
tions. Any eigenstate within this approximation can be
written

I+(P)&= bt(P)i0&+ J" P I" 5(P—p —k)8
co(P)
&2m.P o v'2' o U'2~k 2P

2mF

2p

m
c, (p;k}b (p)at(k)~0& . (3.1)

(p'~M' —2' ~e &
= (p'~2'; [q &, (3 2)

(3.3)

where

bt(p )l0&,&2np'

lp', k'
&=, , b (p')a t(k') ~0 & .

1 1

2mp' 4mk'

(3.4)

(3.5)

It is convenient to re~rite all momenta as fractions of the
total momentum P and to redistribute this momentum
through Einstein's equation. We represent these equa-
tions diagrammatically in Fig. 3, where boxes are used to
represent matrix elements involving the eigenstate. At

The step function cutoff in the last integral is the result of
our constraint that the invariant mass be less than A.

The first LFTD approximation results from putting
this eigenstate into Eq. (2.1), and then projecting the
resultant equation onto noninteracting one-fermion and
one-fermion —one-boson states. This leads to

this point we simply drop the last two instantaneous in-
teractions on the right-hand side of Fig. 3(b). The choice
to keep or drop such interactions in the highest sectors of
Fock space is completely arbitrary, as long as they are
eventually included in every sector of Fock space so that
the effective Hamiltonian becomes local in the limit
where Fock space is filled. At this point we keep the fer-
mion self-inertia in the one-fermion —one-boson sector.
This term is divergent, and we wi11 soon see that it must
be canceled; however, it is instructive to see how one can
use renormalization conditions to eliminate such terms.
Note that the manner in which this term is drawn is sug-
gestive, since it involves an intermediate state containing
two bosons.

Before writing out the full expressions, let us discuss
the physical content of the diagrams. At later stages the
LFTD equations become sufficiently complicated that
simple underlying physics can become obscured, so our
discussion relies heavily on the use of diagrams. The first
diagram, Fig. 3(a), relates the amplitude for finding only a
bare fermion in either a physical fermion or a scattering
state to the amplitude for producing a boson and finding
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1 dx=A,mF «4mx 1+
1 —x

XO(A; I —x;x )c,(1—x;x ), (3.6)

the resultant fermion-boson pair in the physical state.
Figure 3(b) represents the Hermitian-conjugate process in
which a boson is absorbed. The solution of the second
equation corresponds to replacing the two-particle ampli-
tude by an operator (in this case a simple operator) acting
on the one-particle amplitude, and substituting the result
back into the first diagrammatic equation. After the
self-inertia in Fig. 3(b) is canceled, we will see that the re-
sult is a single diagram, found in Fig. 3(c). As suggested
by the diagram, the lowest-order LFTD equation for the
fermion mass corresponds to the second-order LFRS
equation. In higher-order approximations, we will be
forced to invert integral operators that lead to infinite
sums of diagrams conveniently summarized by Dyson
equations.

It is straightforward to work through all contractions
and convert Eqs. (3.2) and (3.3) into coupled integral
equations for the amplitudes co and c1. The result is

2

M —m — P(I) c,2 2
FO

M—2 1

1 x m~, + P(1—x)
4~

2
mg

c, (1—x;x)

A,mF 11+ co
&4mx

(3.7)

We have rewritten momenta as fractions of total momen-
tum, and used the cutoff function defined in the preceding
section. There is no dependence on the total momentum
P because of the choice to use a covariant cutoff. We are
allowing the fermion mass to depend on the sector of
Pock space, with the mass appearing in PM being mFo in
the lowest sector and mF, in the sector containing a bo-
son. The eigenvalue M is left arbitrary because these
equations are valid for the physical fermion and for
fermion-boson scattering states.

For scattering states we expect c, to have a 5-function
part, corresponding to outgoing plane-wave fermions and
bosons. For this to be a solution of Eq. (3.7), the
coefFicient of c1 must vanish where the 6 function has
support. This condition allows us to determine the
scattering threshold, which should be (m~+m~) . If
mF, is a finite constant, the coeScient of c, is divergent
because of the presence of f3(1—x). To remove this
divergence and to obtain the correct scattering threshold,
we require

2 2
(M —~Fp) i) = '

- i)

c, (1—x;x)

m„, + P(1—x)=m~ .

Using this result, Eq. (3.7) becomes

m2
M 8

(3.8)

(a)

kmF

&4~x
11+ co . (3.9)

2 2
m~~ m~
1-x

o +

1-z-p
1-z+

z
1-z

I

z
1-z

As indicated above, one can use this equation as a
starting point to investigate scattering states; however,
we will concentrate on the physical fermion. In this case,
M =m~, and the coefficient of c, in Eq. (3.9) cannot van-
ish. This allows us to simply invert the equation and re-
place c, in Eq. (3.6), leading to

2 2
2

mF —
mFO

— P(1) co

& dx [I+I/(I —x)]=A, mF
o 4~x m~ m~ /( ( —x ) —m~ /x—
XO(A;I —x;x)co . (3.10)

2 2
(M —~rg) .) +

(c)

FIG. 3. First LFTD approximation for single fermion.

Both P(1) and the integral on the right-hand side of
Eq. (3.10) diverge; however, the divergences cancel pre-
cisely as they did in perturbation theory. In fact, this ei-
genvalue condition is exactly the same as Eq. (2.6) ob-
tained in the LFRS theory and we can see that our use of
different masses in each sector takes us from the LFBW
to the LFRS results. co must be determined using a nor-
malization condition. As discussed in the preceding sec-
tion, we can now adjust mFo to obtain the correct physi-
cal mass mF.2
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IV. FIRST TAMM-DANCOFF APPROXIMATION
FOR TWO FERMIONS

Most interesting relativistic bound-state problems in-
volve two or more fermions interacting via boson ex-
change. Probably the simplest example of such a system
is provided by the (1+1)-dimensional Yukawa model.
This example will provide us with some insight into the
light-front bound-state problem, and it will also illustrate
the effect of "spectators" on renormalization. In this
context we note that several authors ' have previously

discussed the two-body bound-state equation in the erst
LFTD approximation (without self-energy corrections)
and its nonrelativistic limit in the context of the Wick-
Cutkosky model.

To avoid the need for antisymmetric wave functions,
we choose to consider fermions of two different "flavors. "
To delineate the two flavors we will use upper-case letters
for the creation operators and parameters of one Aavor
and lower-case letters for the other. Again for simplicity
we truncate Fock space by excluding all antifermions and
by allowing only one virtual or real boson. With these re-
strictions we can write an arbitrary eigenstate as

i%'( )) = f Y(A;x&, xz)co(x&, x2)B (x&)b (x2)i0)
2|rx ) 21rx 2

dx
&

dxz dy
Y( A; x), xq', y)c(( x), x~;y)B (x, )b (x~)a (y) 0) .

2mx, 2rrx, 4~y
(4.1)

We have introduced the functions Y( A; x &,
'x z ) and

Y(A;x„x2,y ) both to enforce the constraint that the in-

variant mass be less than the cutoff A and to enforce
momentum conservation. In other words,

Y(A;x )', xq ) =O(A;x ),x2)5(1 —x )
—xq ),

Y(A;x &', xz', y ) =8(A;x &', x2;y )5(1—x, —xz —y ),
where

(4.2)

(4.3)

MF
O(A'x 'x )=8 A

2mF
(4.4)

MF
O(A;x, ;x2,y ) =8 A—

2mF
2

mg
(4.5)

Note that we are free to choose different cutoffs in
different sectors of Fock space. For convenience, we will
occasionally assume that these cutoffs are implied by the
amplitudes co and e& themselves, and will not always ex-
plicitly show them below.

The LFTD equations are derived exactly as they were
in the preceding section, by projecting Einstein s equa-
tions for this state onto a complete set of free states
within the truncated Fock space. Solving the resultant
coupled integral equations is equivalent to diagonalizing
the charge-two block of the Hamiltonian. We drop the
same instantaneous interactions here that were dropped
in the one-boson sector of the charge-one problem, lead-
ing to equations diagrammatically represented in Fig. 4.
Note that we have already dropped the fermion self-
inertia in Fig. 4(b). Here again one can view this as the
result of choosing the fermion-mass counterterms in the
sector containing a boson, M~, and mz&, to reproduce the
correct three-body scattering threshold. An examination
of the equations below will reveal that this threshold is
(Mz+ mz+ ms ) after this cancellation. Before writing
out these equations, let us again use the diagrams to illus-
trate the physical content of the LFTD theory at this or-

der. When we are below the three-body or boson produc-
tion threshold, we can eliminate the three-body ampli-
tude simply by replacing it with the diagrams on the
right-hand side of Fig. 4(b). In the process we generate
internal lines that correspond to propagators, which are
simply the inverse of the factor multiplying the three-
body amplitude on the left-hand side of Fig. 4(b). The re-
sult is a set of six diagrams shown in Fig. 5. When we
eliminate the sector with a boson we obtain separate self-
energy corrections for each fermion, each of which seems
to correspond to the mass shift studied in the charge-one
problem, and we obtain a one-boson-exchange interac-
tion.

To be more precise, let us turn to the equations them-
selves. After some simple operator algebra the LFTD
equations are found to be

2 2
Mpg ~Fp )I-x

x-y
~8

1-x
r

I-x-y

(a)

2
Mp

1-x-y

2
mF
x

mg) y

x+y

1-x-y

FIG. 4. First LFTD approximation for two-fermion states
with the neglect of instantaneous interactions.



ROBERT J. PERRY AND AVAROTH HARINDRANATH

MF2o+(A, /47r)p(1 —x )

1 x
m~o + ( A /4~) p(x )

x co(1—x;x)

=A.MF I 1 + c, (1—x —y;x;y )+AmF1 ~ dy 1 1+
1 —x 1 —x —y

F ov'4~y x x —y
c,(1—x;x —y;y),

(4.6)

2mF 2
mg MF 1c, (1—x —y;x;y)= v'4' 1 —x —y

+ co(1—x;x)1

1 —x

kmF+ —+ co(1—x —y;x+y) . (4.7)
v'4~y x x +y

We have already substituted the physical masses for MF, and mF, after canceling the appropriate self-inertias. It
should be clear from Eq. (4.7) that the three-body scattering threshold is correct after these renormalizations.

When the invariant mass is below the boson production threshold, the second LFTD equation is easily inverted. In
the diagrammatic analysis the elimination of the three-body amplitude led to Fig. 5, which is now seen to be

M~o+(A, /4~)P(1 —x )M—
1 x

m~o+(A /4n )p(x )
co(1—x;x )

A, MF [1+1/(1 —z ) ] O(A (1—x)(1—z);x;(1—x)z)co(1 —x;x)
1 —x o 4m.z (1—x)(M2 mg /x) —Mz/(1 ——z) —m~/z

& dz [1+1/(1—z)]+ O(A; 1 —x;x (1—z );xz )co(1—x;x )x o 4vrz x[M —MF/(1 —x)]—m~/(1 —z) —ms/z
&
—~ dy [1/(1 —x )+1/(1 —x —y)][1/x+1/(x+y)]+A, MFmF

4~y M M~/(1 —x——y ) —mF /x —ms /y

X 8(A; 1 —x —y;x;y )co(1—x —y;x+y )

z yx dy [1/x+1/(x —y )][1/(1—x )+1/(1 —x+y )]
o 4~y M M~/(1 —x—) —mF/(x —y) —ms/y

XO(A;1 —x;x —y;y)co(1 —x+y;x —y) . (4.8)

2 2
0

1-x

,:) +
X

1-x ,;) +

Although this equation is rather long, its structure is fair-
ly simple. The first two terms on the right-hand side of
this equation correspond to self-energy diagrams, and we
have made a change of variables in each of them to facili-
tate comparison with the single fermion result in Eq.
(3.10). Both of these terms should be moved to the left-

hand side of the equation and regrouped with the indivi-
dual fermion-mass terms. The final two terms corre-
spond to the two X orderings of single-boson exchange.
It is not obvious that these terms lead to the Fourier
transform of a Yukawa potential in the nonrelativistic
limit, but this is shown to be the case in Appendix C.

The final step in developing an equation for two-
fermion scattering and bound states is to complete the
mass renormalization by specifying the bare masses in the
lowest sector of Fock space, MFo and mFO. We again use
the renormalization condition that above the scattering
threshold, the free asymptotic fermions should propagate
with their physical masses; i.e., that the two-fermion
scattering threshold should be correctly reproduced.
This threshold is given by the zeros of the complete
coefficient of co(1—x;x ) using the fact that above thresh-
old we should have

FIG. 5. Two-fermion bound-state equation in the first LFTD
approximation after the elimination of the three-body ampli-
tude, ~ith the neglect of instantaneous interactions.

MF mF2 2

M = +
1 —X X

(4.9)

Here y determines how the total momentum is shared be-
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tween the asymptotic fermions.
To find the necessary counterterms, adjust MF0 and

mFo so that the eigenvalue in Eq. (4.9) is a solution to Eq.
(4.8). This leads to

MFO =MF — P(1 —y)

When A is finite, we can obtain the correct scattering
threshold exactly only if we allow the mass counterterms
to depend on the fermion momentum fraction. To under-
stand the nature of this dependence, consider the cutoff
function that occurs in Eq. (4.10):

&z z i dz [1+1/(1—z)]
0 4~z MF —MF /( 1 —z )

—m~ /z

XO(A;( I —y)(1 —z );y;( I —y)z),

8(A;( I —g)(1—z);g;( I —g)z )

2mF=8 (1—y) A—
x

MF2

1 —z

2
m&

(4.12)

mFzo =m„— p(y)

(4.10)
Comparing this with the cutoff found in the charge-one
sector, Eq. (2.4), we see that we obtain the correct result
if we change the cutoff used in the charge-one sector:

i dz [1+1/(1—z)]
0 4&z mF —mF 1 z my z

2

A —&(I —y) A—
x

(4.13)

X O(A; 1 —y;y(1 —z );yz ) . (4.1 1)

It is important to note that, in these expressions, the
cutoff used to regulate P depends on the momentum frac-
tion of the fermion line y. As always, this cutoff should
be adjusted to equal the lower zero of the relevant O. If
we compare these counterterms with the mass counter-
term found in the charge-one sector, Eq. (3.10), we see
that the only difference comes from the dependence of
the cutoffs on g. Furthermore, since g occurs only in the
cutoffs, it is easy to see that this difference disappears
when A~ao. If we use the mass counterterm from the
charge-one sector in the charge-two sector, we obtain the
correct two-fermion scattering threshold when the cutoff
is taken to its limit.

In other words, the cutoff on the invariant mass of the
single fermion must be decreased because the spectator
carries part of the total invariant mass and part of the
momentum. Except when y=O or 1, if A is large, one
makes a small error in the scattering threshold by using a
constant-mass counterterm.

Having determined a counterterm that cancels self-
energy corrections on mass shell, we have not completely
eliminated the corrections. The cancellation we have
been discussing occurs only when Eq. (4.9) is satisfied and
x =g. These conditions are never met in a bound state.
The remaining corrections would form part of the Lamb
shift in hydrogen. The final renormalized two-fermion
equation is

MFM—
1 x

mF' z'MF', dz [1+1/(1 —z ) ] [1+1/( 1 —z ) ]
x 1 —x o 4' (1—x)(M2 —mF2/x) MF/(1 —z) ——m&/z MF —MF/(1 —z) —mii/z

XO(A;(1 —x )(1—z);x;(1—x )z)

~ mF i dz [1+1/(1—z)]
x M' —MF' 1 —x —MF 1-z —m~ z

[1+1/(1 —z) ]
mF —m F /( 1 —z )—mii /z

XO(A;1 —x;x(1—z);xz) co(1—x;x )

i —x dy [1/(1 —x )+1/(1 —x —y )][1/x+1/(x+y )]=A, MFmF 0 A;1 —x —y;x;y co 1 —x —y;x+y
4~y M —MF /( 1 —x —y )

—m F /x —m~ /y

x dy [1/x+1/(x —y)][1/(1 —x)+1/(1 —x+y)]+x2mFMF
2 2 2

0 A;1 —x;x —y;y co 1 —x+y;x —y . 4.14
o 4~y M —MF /(1 —x ) —mF /(x —y ) —mii /y

We are not interested in solving this equation in this
paper, but we want to mention some of its properties.
We also study its nonrelativistic limit in Appendix C in
order to begin the process of building physical intuition
in terms of light-front variables and the LFTD theory.
In the limit that A —+ oo, Eq. (4.14) is a finite, covariant,
unitary, two-fermion equation of motion. It is valid both

for bound and scattering states below the boson produc-
tion threshold. Since this equation has a well-defined lim-
it when A~~, it is tempting to simply remove the
cutoff. This is no doubt the first thing that should be
done in any numerical study of Eq. (4.14); however, more
complicated problems will not allow us the luxury of easi-
ly removing cutoffs, so the study of cutoff effects in this
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simple example is worthwhile.
This is a convenient point to mention numerical prob-

lems posed by the LFTD theory. The first step required
by numerical computation is the discretization of the
above equations. This can be accomplished by expanding
the amplitudes in Eq. (4.1) using basis functions or finite
element methods. After this is done, the functions
co(xi,xz) and c,(x„xz,y) are replaced by a finite num-
ber of coefficients, and the coupled integral equations
(4.6) and (4.7) become a single matrix equation. The diag-
onalization of this matrix can be accomplished by first el-
iminating the coefficients found in the expansion of c&, al-
though this is not necessarily the best procedure. For
purposes of discussion, we will act as if diagonalization is
accomplished in this manner. The elimination of these
coefficients generates a nonlinear matrix equation corre-
sponding to Eq. (4.8). En the process, divergent self-
energies are generated that cancel the divergent self-
inertias which occur as matrix elements of the original
Hamiltonian. Just as mass counterterms depend on
cutoffs, they must now depend on the set of basis func-
tions chosen to discretize the problem if one insists that
the physical fermion masses and scattering thresholds be
correctly reproduced for all relevant momenta. It be-
comes a question of numerical efficiency whether it is best
to use large cutoffs and simple counterterms, or best to
use smaller cutoffs and fewer basis functions with a more
complicated Hamiltonian to achieve a given level of accu-
racy.

The two-fermion problem has served to illustrate some
of the renormalization problems associated with cutoffs
imposed after a Tamm-Dancoff truncation. We now turn
to problems associated with the Tamm-Dancoff trunca-
tion itself.

2 2
mFo&

1-y-z

Z
y

1-y-z

(a)

2 2m11 m~
~ 1 y . i i 1 y

1-z

z
I-z

I

z
W W 'W

1-y-z

(b)

2
(M2 mF

1-y -z

+ t )J

2 2 W

1llg mg )
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V. SECOND TAMM-DANCOFF
APPROXIMATION FOR A SINGLE FERMION

A single example will be used to illustrate some of the
issues that arise when one considers higher-order LFTD
approximations. We return to the problem of a single
fermion, and simply allow up to two virtual bosons. Al-
lowed eigenstates are then of the form

zw~ a a a r
1-z

(c)

FIG. 6. Second LFTD approximation for a single fermion.

b (1)10)+f f "
&(1 x y)O(A;x—;y—)c,(x;y)bt(x)at(y)~0)2' 2rrx o 27Ty

+ f' "" f' "' f' "' |(1—x —y —z)8(A;x;y, z)cz(x;y, z)b (x)at(y)at(z)~0).
2' x o 2my o 2' (5.1)

We have chosen to immediately write all momenta as fractions of the fixed total momentum Beyond this the only
change from Sec. III is the presence of the last term. The two cutoff functions are defined in close analogy with those in
previous sections.

Figure 6 shows the diagrammatic LFTD equations for this system. These are complicated both by the extra sector
and the fact that we must include instantaneous interactions. It is convenient to define a simple notation to delineate
various Fock-space sectors. We use I1,0I for the one-fermion —zero-boson sector, I 1, 1I for the one-fermion —one-
boson sector, etc. We have again dropped instantaneous interactions and the fermion self-inertia in the highest allowed
sector of Fock space, I1,2I, as indicated in Fig. 6(c). All of these terms are retained in the I 1, 1 I sector to obtain a
finite limit when cutoff's are removed, as is seen in Fig. 6(b). To understand this necessity, consider the diagrams gen-
erated when one solves these equations perturbatively. All of the fourth-order diagrams discussed in Sec. II are gen-
erated with this Hamiltonian. Dropping any instantaneous interaction in the I1,1I sector eliminates one of the dia-
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grams containing an instantaneous interaction, all of which diverge. This leads to an uncanceled divergence in the
remaining diagrams. This argument should be clarified below when we eliminate the amplitudes containing bosons and
generate the perturbative diagrams in the process.

To simplify the LFTD equations, we will again allow the amplitudes to imply the cutoffs, so that these need not be

separately listed. The LFTD equations corresponding to Fig. 6 are then found to be

M —m~o — P(1) co = A,m~2 2 1 dy

4~ o 4~y
1+ c, (1—y;y )

1

1 —y

+&ex'
o V4my o &4'

1
c2(1—y —z;y, z),

1 —y
(5.2)

M—2 1

1

g2 PZB ~mF 1
mz&+ P(1 —y) — c&(1—y;y)= 1+ co

47T y V4~y 1 —y

dz
v'4~y o V4mz

1+ 8(A;1 —y —z;y, z)
1 —y —z

+&2k,m~ +
&4~z 1 —y 1 —y —z

2PlF

1 —y —z

2
Ply

2
PPZg 1 1

cz(1 —
y —z;y, z ) =

&2 Y4vry &4mz

Xc2(l —y —z;y, z),
1 1+ Cp

1 —y 1 —z

(5.3)

1 1

V4~z 1 —y —z
+ c, (1 —y;y)

1

1 —y

+ 1

&4my 1 —y —z
+ c, (1—z;z)1

1 —z
(5.4)

In several places we have used the fact that c2 is sym-
metric under the exchange of boson momenta to combine
terms. The path followed in previous sections begins
with the analytic elimination of the highest amplitude.
In the case at hand we can use Eq. (5.4) to eliminate cz,
but it is extremely tedious to follow the results in detail.
We prefer to perform this and subsequent steps diagram-
matically and with a simplified algebraic notation. When
c2 is eliminated below the three-body threshold, the
resultant equations are shown diagrammatically in Fig. 7.

It is easy to see that the elimination of the I 1,2I sector
has generated both self-energies and effective interactions
in each of the remaining sectors. The renormalization-
group approach to the Tamm-Dancoff truncation in-
volves cataloging such induced terms and determining
which are relevant. Here we will simply retain every-
thing and show how spurious divergences generated in
the diagonalization procedure cancel against self-inertias
and instantaneous interactions. Figure 7 has been drawn
to emphasize the intermediate cancellations. The com-
plete set of cancellations cannot be seen until one elimi-
nates the I 1, 1 I sector also. First, consider the diagrams
of Fig. 7(a). The self-energy diagrams are the self-inertia
and a subset of the fourth-order diagrams discussed in
Sec. II. Every one of these diverges, and none of them
are directly canceled. Cancellations must involve the
two-particle amplitudes on the right-hand side of the
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FIG. 7. Diagrams in the second LFTD approximation for a
single fermion that illustrate the intermediate cancellation of
divergences after the elimination of one-fermion —two-boson in-

termediate states.
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equation.
In Fig. 7(b) we see that the self-inertia in the [ 1, 1 I sec-

tor has become paired with the second-order self-energy.
The result is not the same as the mass shift studied in Sec.
II, because of the spectator boson which shifts the energy
denominators. However, the divergences in the two dia-
grams cancel one another. Furthermore, if we use the
mass counterterm found in the first Tamm-Dancoff ap-
proxirnation of Sec. III, we obtain the correct fermion-
boson scattering threshold. The demonstration of this
proceeds exactly as the discussion of the two-fermion

I

scattering threshold in Sec. IV. In summary, the left-
hand side of Fig. 7(b) is finite and with the proper choice
of mF, it displays the correct scattering thresholds even
with a finite cutoff. The right-hand side of the diagram-
matic equation in Eq. 7(b) shows that the coupling be-
tween the [1,1I and [1,0I sectors is modified by two-
particle irreducible (2PI) vertex pieces. To see that these
vertex corrections are 2PI, remember that it is not possi-
ble to cut through instantaneous fermion lines, because
they do not correspond to particles. The full effective
vertex connecting these sectors is

A, Nl F 1
vl p(y) = 1+

14~y 1 —y

+ ~F i p dz [1/(1 —y)+1/(1 —y —z)][1/(1—y)+1/(1 —z)j S(A;1—y —z;y;z) .
v'4~y p 4mz M2 re~~/(

—I —y —z) —mii/y rn~/—z
(5.5)

The cutoff function in the last integral is inherited from
the [ 1,2 ) sector. The vertex depends not only on how
the momentum is shared between the boson and fermion,
but also on the eigenvalue itself.

The fourth diagram on the right-hand side of the equa-
tion in Fig. 7(b) is always finite because the momentum
Aowing through the instantaneous fermion line is always
equal to the total momentum and the diagram is propor-
tional to the inverse of this momentum. On the other
hand, the momentum fiowing through the instantaneous
fermion in the fifth diagram and the intermediate fermion
in the sixth diagram on the right-hand side of Fig. 7(b)
can vanish, and each of these terms generates a divergent
interaction. However, the sum of these diagrams is al-
ways finite and no spurious divergences occur as long as
they are properly paired. This fact plays an essential role

in the cancellation of infinities in the fourth-order dia-
grams in Fig. 2(b). Thus, the last three diagrams in Fig.
7(b) do not introduce any spurious divergences and the
whole equation is finite. These last three diagrams
prevent one from eliminating the [ 1, 1 I amplitude analyt-
ically because they introduce momentum-dependent self-
interactions in this sector. (It is possible to solve the
equation analytically if the last two diagrams are dropped
but the fourth is retained. )

In order to facilitate further discussion, we will intro-
duce drastically simplified algebraic notation to represent
the amplitudes, propagators, and integral operators
occurring in the LFTD equations. Before detailing the
notation, we rewrite Eqs. (5.2) —(5.4) in the new notation.
They become

(M m~ 5—mF'p)—cp=AVp i(y)ci(y)+A, Vp2(y z)cp(y, z)+A, Vp2(y z)c2(z y) (5.6)

c, (y) =A V, p(y)cp+A, V»(y, z)c, (z)+A V, z(y, z )SC2(y, z )+A V, 2(y, z )c2(z, y ),5mF, (y )
G, '(y)—

1

G2 '(y, z)c2(y, z)=A, V2p(y, z)cp+A, V2 p(z, y)cp+XV2, (y,z)c, (y)+AV2, (z,y)cglc, (z) .

(5.7)

(5.8)

The new equations resemble tensors equations, with both interactions and amplitudes represented by tensors and in-
tegral equations resulting from tensor multiplication. The "bare" propagators in each sector are represented by 6, with
a subscript indicating the number of bosons. We have defined new mass counterterrns that contain the self-inertias, so
that

6 '(y, z, . . . )=M—
2PlF

Z1

2 2Pl g Ply
(5.9)

Note that only physical masses occur in these propagators. The subscript on the interactions show the sectors between
which they act, and we have separated the coupling constant for later convenience. This notation takes advantage of
the fact that we only consider sectors of Fock space with one fermion and no antiferrnions, and a more general notation
would probably be far more cumbersome. We have also suppressed the fermion momentum argument in the ampli-
tudes, since this momentum is fixed by momentum conservation.

The algebraic solution of Eq. (5.8) below the three-body scattering threshold is simple, leading to the equations
represented by Fig. 7:
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[M —mF —5mFp 2A V02(y z)G2(y Z)V2, 0(y Z) 2A, V0, 2(y z)SG2(y z)V20(z y)]C0

= [A Vp 1(y)+2k, Vp z(y, z)G2(y, z)Vz 1(y,z)+2k Vp z(z, y)1362(y, z)V21(y, z)]ci(y), (5.10)

5mF, (y)
G 1 '(y) — —2A, Vi z(y, z )S62(y, z )Vz 1(y,z ) Ci(y)

= [A Vi 0(y)+2k, Vi z(y, z ) G2(y, z )V2 0(y, z )+2k, Vi z(y, z ) G2(y, z)V2 p(z, y ) ]cp

+[A, V, 1(y,z)+2k. Vi z(y z)Gz(y z)Vz 1(z y)]ci(z) (5.11)

We have written these equations to closely correspond to Fig. 7 so that the reader can readily follow our notation. The
symmetry of G2 under exchange of boson momenta has been used to combine terms.

Equation (5.10) contains several uncanceled divergences, but all terms in Eq. (5.11) remain finite when the cutoff ap-
proaches infinity. We will not perform a rigorous analysis of the existence of a solution to Eq. (5.11). Instead, we as-
sume a solution exists and again simplify our notation to rewrite Eq. (5.11) as

Gi c, —(AV, 0+A, Vi 0)cp+A, V11I3tc, .

This equation defines V, 0 and Vi 1. The solution of Eq. (5.12) below boson production threshold can be written

(5.12)

C, = g (A, G, V, , )" G, (AV, 0+X V, 0)C0 .
n=0

(5.13)

When this solution is used in a notationaly simplified version of Eq. (5.10), we obtain

(M mF 5mFp 2A Vp pG2V2 p . 2A V0262V2 0)C0=(AV0 1+I Vp 1) g (I G1V1 1) Gi(AV1 0+1 Vi 0)Cp
n=p

(5.14)

This last equation is actually a finite eigenvalue equation for the physical fermion mass, but this is not obvious be-
cause we have not yet paired all divergent terms to make cancellations between them obvious. This can be done by first
determining how and where the divergences arise in this equation, a task that is simplified by considering the relation-
ship between this equation and perturbation theory. All divergences arise either from a self-inertia that is not properly
paired with a second-order self-energy, or from the fact that denominators arising from instantaneous terms can vanish
and must be properly paired with products of vertex operators. This latter task has been accomplished in Vi 1, which
has no poles remaining. The problems occur because the second- and fourth-order self-energy corrections have not
been isolated. After some simple algebraic manipulation, we rewrite Eq. (5.14) as

~F ™Fp ~ Vp, 1 1V1,0 ~ V0, 1G1V1,0 ~ V0, 1G1V1,0 ~ V0, 1G1V1,1G1V1,0

2~ V0, 2G2V2, 0 2~ V0, 2G2V2, 0 (Vp, 1+VO, IG1V1,1) X (~ G1V1 1) Gl(V1 0+Vi 1G1V1 0)
n=p

(5.15)

The right-hand side of this equation begins at sixth order
in the coupling constant, with all second- and fourth-
order terms that occur in this order of the LFTD theory
explicitly isolated and moved to the left-hand side. With
some work, the reader should be able to convince herself
that the second-order term is exactly the second-order
self-energy evaluated in Sec. II when M =mz. 5m'
contains the second-order self-inertia, the second-order
contribution to the finite part of the mass counterterm,
and a new term which is adjusted to exactly satisfy Eq.
(5.15) when M =mF. This means that every piece of the
second-order mass shift studied in Sec. II is present, and
the sum of these terms has been shown to be finite.
Furthermore, the fourth-order terms in Eq. (5.15) are ex-
actly those terms represented in Figs. 2(a), 2(b), and 2(d).
As claimed above, all fourth-order diagrams with inter-

mediate states that are members of the Fock subspace re-
tained in this order of the LFTD theory are generated in
the process of Hamiltonian diagonalization.

Perturbation theory is sufficient to show that all terms
on the left-hand side of Eq. (5.15) are finite when A~ oo.
The right-hand side of the equation is nonperturbative,
and we will only argue that it is finite when the coupling
constant is sufficiently small that the sum converges.
When the sum converges it is sufficient to show that each
term is finite, which is done by again noting that, in 1+1
dimensions, all divergences arise as poles in a momentum
fraction. For every momentum fraction in a diagram,
there is at least one pole in a propagator, 6&. Since this
pole occurs in a denominator, a divergence will occur
only if a second-order pole arises in another part of the
diagram. In our simplified notation, we have absorbed
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phase-space factors associated with bosons into the V's.
There is one pole associated with each phase-space fac-
tor, and these are exactly canceled by the poles in the
propagators. The only other poles occur in self-inertias
and instantaneous interactions. These types of poles can
be seen in the fourth-order diagrams analyzed in Sec. II,
and in all orders their cancellation is of the same origin.
The self-inertias in Eqs. (5.15) occur inside of V», where
they are paired with a second-order self-energy that con-
tains an identical pole of opposite sign. Both instantane-
ous interactions are also found in Vi i. As mentioned
above, one instantaneous term does not give rise to any
poles, while the second is paired with a second-order in-
teraction that contains an identical pole of opposite sign.
Thus, all poles are identically canceled in every term in
Eq. (5.15).

We will not provide any estimate of the magnitude of
the terms in Eq. (5.15), although it should be fairly easy
to see that, for small coupling (i.e., A, « m~, A, && m~), the
sum converges and perturbation theory through fourth
order is accurate. This is a drastically simpler situation
than found in 3+1 dimensions. Our main intention is to
show that higher orders of the LFTD theory are finite if
interactions are properly paired to allow the exact cancel-
lation of a11 spurious divergences. It is also important to
note that such divergences are canceled as soon as they
arise in our simplified diagonalization procedure. Nested
divergences can pose dificult numerical problems if they
remain uncanceled through a high order in perturbation
theory.

Analyses of the type presented in this section are prob-
ably more complicated than actual numerical calcula-
tions, and become rapidly impossible as the number of al-
lowed intermediate particles grows beyond three. How-
ever, the numerical analysis, which proceeds with a
discretized version of the initia1 integral equations does
not grow rapidly in algebraic complexity. There the chief
problem is to find suitable discretization procedures in
constrained multidimensional spaces.

VI. CONCLUSION

The basis of the LFTD theory is Hamiltonian diago-
nalization, with the Tamm-Dancoff truncation of Fock
space and the employment of light-front coordinates be-
ing forced upon us as computational necessities. We
have provided several simple examples of the equations of
motion resulting from Hamiltonian diagonalization
within severely truncated Fock spaces, and derived non-
local (i.e., projected onto a single sector of Fock space)
counterterms that effect mass renormalization. This pro-
cedure is required if one insists on maintaining both the
physical masses of the fundamental particles and the
thresholds of states containing only fundamental particles
in asymptotic scattering states.

There are two limits involved in filling Fock space, and
there is considerable freedom in the manner in which
these limits are taken. The number of constituent parti-
cles must be taken to infinity (Tamm-Dancoff limit), and
each constituent must be allowed to have any momentum
(cutoff limit). In covariant perturbation theory, only the

latter limiting procedure is of interest, so little experience
exists in examining the former. Although these limiting
procedures can be connected, as they are in DLCQ, we
believe it is profitable to decouple them.

If one imposes a cutoff on the invariant mass of inter-
mediate states and then starts to take the Tamm-Dancoff
limit, the cutoff will eventually constrain the number of
possible constituents in any massive theory. This is sim-

ply because the minimum invariant mass in any sector is
the sum of the constituent masses. In this article we have
discussed the alternative procedure of imposing a
Tamm-Dancoff truncation and then taking the cutoff lim-
it within the sectors of Fock space remaining. We al-
ready know that, in a superrenormalizable theory, the
cutoff limit is trivial in any order of perturbation theory,
and we expect from the analysis of Sec. V that a similar
result will hold for the cutoff limit after a Tamm-Dancoff
truncation; however, performing a power-counting
analysis to show that no naive divergences result in the
cutoff limit is not sufticient. The Tamm-Dancoff approxi-
mation gives rise to all perturbative diagrams up to a
given order, and to an additional infinite class of dia-
grams. These diagrams result generically from inverting
integral operators, and such inverses need not exist even
when every term in their Taylor-series expansion exists.
We have no intention of pursuing this issue in any de-
tailed fashion here, but it is important to realize that re-
normalization of the LFTD theory requires us to address
this type of problem.

At several points we have mentioned that a naive pro-
cedure in which one simply projects a local Hamiltonian
onto a truncated Pock space, introduces a few counter-
terms motivated by perturbation theory, and then direct-
ly takes the Tamm-Dancoff and cutoff limits, may not
converge rapidly or at all. We expect that such a pro-
cedure will fail in a11 but the simplest cases; in particular,
it will almost certainly fail whenever a coupling constant
becomes large. In this case a more sophisticated ap-
proach is required in which the limits are somehow con-
ditioned; e.g. , by resumming a particular set of diagrams
to all orders. This leads to a renormalization-group ap-
proach to the problem, where one seeks to anticipate the
most important effects arising in the two limits and tries
to modify the effective Hamiltonian so that these effects
already occur early in a modified limiting procedure.

One of the chief advantages of models in 1+ 1 dimen-
sions is that they should allow us to focus on the unfami-
liar (within the context of relativistic field theory)
Tamm-Dancoff limiting procedure. The lack of any seri-
ous divergences in the cutoff limit makes it possible to
simply impose "large" cutoffs and make small errors even
in nonperturbative calculations, because we can study
problems where the coupling constant is kept small. In
3+ 1 dimensions, the coupling constant is forced to run
and every problem is potentially a nonperturbative,
strong-coupling problem. When coupling constants be-
come sufficiently large, there is every reason to expect
that bare and dressed particles have very different proper-
ties and interactions, and that new dynamical degrees of
freedom arise. While it may be possible to study such
effects in the few-body sectors of Fock space, it can be ex-
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tremely difficult to accurately represent such effects in the
many-body sectors whose "elimination" generates the in-
teractions in the few-many sectors, and it is highly im-
probable that one can build such effects into the many-
body sectors by naively eliminating even higher sectors of
Fock space. In this article we have ignored all interac-
tions in the highest sector of Fock space except those
which arise through mixing with lower sectors; however,
this is clearly inconsistent with the resultant picture of
the one-body and two-body sectors where interactions are
generated by particle exchange. Ideally one wants to put
interactions into the highest sectors of Fock space by
hand that are consistent with the interactions that then
result from eliminating these highest sectors to compute
the effective Hamiltonian governing the few-body sectors.

As the Tamm-Dancoff limit is taken, the number of
nonlocal interactions grows rapidly, and the renormaliza-
tion procedure may become impractical unless one has
some method of relating new counterterms at each order
with counterterms computed in lower orders. We have
suggested that counterterms are computed in the lowest
relevant sector (e.g., the single bare fermion sector for the
fermion mass counterterm) at each order, and moved to
immediate descendants at the next order. What is actual-
ly moved are parameters governing the strength of local
interactions, whose matrix elements are separately com-
puted in each sector of Fock space. We have allowed the
possibility that these parameters depend on momentum
cutoffs, although there may be little need for this freedom
in 1+1 dimensions. A choice relating the cutoff depen-
dence in the parent sector at a given order of the LFTD
theory to the cutoff dependence in the descendant at the
next order must be made. Since descendants contain ad-
ditional degrees of freedom, this relationship can be
somewhat complicated, as we have discussed in Sec. III.
In particular we have allowed this relationship to depend
explicitly on spectator momenta and energies. This in-
heritance scheme is fairly rich but it still severely limits
possible counterterms, and it is suggested by a
renormalization-group approach to the problem. The
Tamm-Dancoff and cutoff limits will only exist if the
few-body effective Hamiltonian reach a fixed point. If a
fixed point is reached, the counterterms will cease to
evolve. In our scheme, when the effective Hamiltonian
ceases to change in the lowest sector, the counterterms in
immediate descendants both cease to evolve and ap-
proach the counterterm in the lowest sector. This is
reasonable because locality prevents us from arbitrarily
varying the strength of counterterms throughout Fock
space, and we expect to explicitly recover locality when
the Tamm-Dancoff limit is reached. The renormalization
scheme we have chosen conditions the Tamm-Dancoff
limit to produce local Hamiltonians.

We have provided little discussion of the numerical is-
sues facing the LFTD theory. At any order of a calcula-
tion, one is faced with a set of coupled multidimensional
integral equations. The integrals are regulated in the
cutoff limiting procedure, and must be discretized for nu-
merical analysis. This discretization can be accomplished
in several schemes, and a principal criterion will be the
possibility of using the scheme in multidimensional

ACKNO%'LEDGMENTS

We want to thank Ken Wilson both for motivating this
work and for providing many of the basic ideas developed
here. We also acknowledge useful discussions with Stan
Brodsky, Matthias Burkardt, Charlotte Elster, Stan
Glazek, Kent Hornbostel, Daniel Mustaki, Steve Pinsky,
Junko Shigemitsu, and Jim Vary. This work was sup-
ported in part by the National Science Foundation under
Grant No. PHY-8719526 and the Presidential Young In-
vestigator program through Grant No. PHY-8858250
(R.J.P.), and by a grant from Cray Research, Inc.

APPENDIX A: LIGHT-FRONT VARIABLES,
FIELDS, AND HAMILTONIAN

There are two commonly used definitions of light-front
"space" and "time. " We use the conventions of Bjorken
and Drell for all equal-time quantities, unless otherwise
stated. We choose the light-front time variable to be

x+= —(x +x'),1

v'2

and the light-front space variable to be

(Al)

x = —(x —x).0 1

v'2

With these definitions, the scalar product becomes

x.y=x'y' —x'y'=x+y +x y+,

(A2)

so that x =2x +x . The light-front metric tensor g"
with these conventions is

spaces. The use of nonorthogonal basis functions (e.g.,
Gaussians) and/or finite element methods is suggested. A
well-known problem with finding convenient bases is that
momentum conservation produces boundaries within
many-body phase space that are not easily maintained.
Any serious discussion of these issues must await actual
numerical work.

In closing, we believe that the LFTD approach to the
difficult nonperturbative problems of field theory is quite
promising. The approach is far more complicated than
perturbation theory, of course, but it seems highly unlike-
ly that any simple procedure will be adequate. The ques-
tion of whether the LFTD theory is able to solve any out-
standing physical problem is still far from being
answered. We believe that all important conceptual
problems facing the study of "weakly" interacting
theories in 1+ 1 dimensions have been solved, and any
further progress requires numerical work. Possible con-
ceptual problems facing the study of "strongly" interact-
ing theories have been outlined, but there is much work
left to be done on this issue even in 1+1 dimensions.
This work will benefit from initial work on weak cou-
pling, and it will be important to carefully study the re-
sults of slowly increasing the coupling strength in simple
models such as the (1+1)-dimensional Yukawa model.
Many of the most interesting challenges facing the LFTD
theory are only encountered in 3+ 1 dimensions, and fu-
ture work must rapidly begin to face these challenges.
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The light-front temporal and spatial derivatives are, re-
spectively,

0 0
=-,'X+r =

0

and the fields

(A12)

a =a = 8+=08
Bx Bx

(A3) g+ =A+/, g =A (A13)

The light-front momentum" and "energy" variables are With these definitions the free fermion equations of
motion are

o

2
' &2

-(u'+~'» s = -(s' —s'). (A4) iy+8 P+ =mFP (A14)

As a result, the mass-shell condition for free particles is
given by

and

iy d+f =mF1(+ . (A15)

+ ,'cj„gd"P —,'m~P —
—A,QfP .— (A5)

We will list the quantization conditions without deriva-
tion. The reader is referred to the work of Chang, Root,
and Yan to see how these conditions are derived with
the use of Schwinger s action principle. Using this prin-
ciple, the light-front equal-time (i.e., equal x+) scalar
field commutation relation is found to be

[P(x,x ),8+/(x+, y )] =—5(x —y ) . (A6)

If we define the antisym metric step function as
e(x) =8(x)—8( —x ), we also have

[P(x,x ), P(x+,y )] = e(x —y ) . (A7)

For the spin- —, fermion field we begin by specifying our
choice of y matrices. Here it is algebraically convenient
to depart from the conventions of Bjorken and Drell and
use a chiral representation for the y matrices

p =m:2p p

The Lagrangian density for the (1+1)-dimensional Yu-
kawa model is given by

Since the second equation does not involve a time deriva-
tive, g is a constrained variable and cannot be quan-
tized. We can use the equation of constraint to eliminate
it from the energy-momentum tensor when we want to
express this tensor entirely in terms of second-quantized
field variables. -

Finally, we have the commutation relations for f+:
A+p

I 1(j+(y ), (P& )"(x ) I
= —5(y —x )

2
(A16)

[1'+(y ), gp (x )[+=0 . (A17)

In order to derive the light-front momentum and ener-
gy operators, one begins with the energy-momentum ten-
sor which, for the (1+1)-dimensional Yukawa model, is

r& =a&ya 0+ 'q1 &a q—'any"—y—g"'Z, — (Als)
2 2

where X is the Lagrangian. This immediately yields the
light-front momentum density

&+= &++=d+4 d+0+ A'+d+0 —(d+4)r "—0—
(A19)

and the light-front Hamiltonian density

0 1

1 0

0 —1
'V =

(AS)

P = T+ = ,'m~P +—(m~+AP)PP Qy——

+—(~+4))' 4.
After some tedious algebra, one obtains

P =—'m~ P'
2

(A20)

The light-front y matrices are then

0 0+
( 0+ 1) (A9)

0 &2
Y 1 0 0 (A 10)

From these definitions it follows that y+y =0 and

y y =0. We also define the projection operators

+&2i [(e )'-'8+0 ——[-,'a+(e -)']e-]+XVey
+&2i I (ri ) —,'8 g —[—,'8+(g )"]g I . (A21)

-=1 1

l2
and defined

(A22)

The light-front Hamiltonian is simply P = fdx P
We have formally written

g+ 1 y
— + 1 0

0 0 (A11) 1 1 ~A'+0+ . (A23)
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It is necessary to provide a definition of the inverse of 0+.
We do so with the commonly accepted principal-value
prescription. The issue is not as severe here as it is in
gauge theories, where one encounters ( I/3+ ) .

The next step towards writing the light-front Hamil-
tonian in second-quantized form is to provide expansions
of the dynamical field operators in terms of a free-particle
basis. The boson field is expanded as

with

[b(k+),b(k'+)t]+ = Id(k+)d(k'+)t]+

=2vrk +5(k+ —k' +
) . (A33)

Again, it is a straightforward matter to demonstrate that
this leads to the original commutation relations. Now,

P(x )=f [a(k+)e '" " +a(k+)te' ]
o 2m2k

(A24)

with

[a(k+),a(k'+)] =0, [a(k ),a(k'+) ] =0, (A2S)

f [b(I +) (k+) —ik x2'" ~ 2~k+

+d(k+) U(k+)e' ] . (A34)

[a(k+),a(k'+)t] =21r2k+5(k+ —k'+) . (A26) We now have the required elements to write the light-
front Hamiltonian

With these definitions one can readily verify that the
original commutation relations are satisfied.

The fermion free spinor u ( k +
) obeys

P P~+P~ +P~ +P~ (A35)

(y k++y+k mF)u(—k+) =0,
so that

&ok+
mF

(A27)
We have followed the conventions of Pauli and Brod-
sky, splitting the Hamiltonian. into four pieces. The
first piece is

dk I a (k, )a(k, ) m21+ a(k, )
2~2k,+ 4~

where A'is a normalization factor. Choosing the normal-
ization factor so that uu =2mF, we have

dk,+ 1 i2+f b (k+ )b(k+ ) '+ P(k+ )2k+ 4~

so that

1

21/4( k + )1/2
&ok+

mF
(A29)

+ f + d (kl+)d(kl+) mF+ y(kl+)

u+= 1

21/4(k+ )1/2

'&ok+ '

0 (A30)

with

(A36)

By charge conjugation we find that the antifermion spi-
nor is a(k 1+ ) = p f dk2+ (A37)

1

k) +k2+

&Zk+
21/4( k + )1/2 —m~

(A31)

p( k+1)=p fdk2+
k2+ k)+ —k2+

(A38)

Thus, U+ =u+. Finally, the fermion field operator can be
written as

(x )= 1

k~+
k )= dk k+ k +k2 1 2

(A39)

X f [b(k+ )
—ik+x

2~(k+)'"

+d(k+ )t ik x ] (A32)

The terms arising from normal ordering, a, P, and y, are
called "self-induced inertias. " In each of these, p indi-
cates the "principal value. " These terms diverge and we
regulate them with cutoffs in all calculations. If one
drops these "mass" terms after normal ordering the
Hamiltonian, perturbation theory produces noncovariant
divergences.
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dki+ dk2+ dk3+

+b ( k 3+ )b ( k &+ )a t( k +
)u ( k 3+ )u ( k &+ )5( k i+ —k 2+ —k 3+ )

—d "(k3+ )d(k,+ )a(kz+ )u(k &+ )u(k3+ )5(k &+ +k2+ —k3+ )

—d ( k i+ )d (k,+ )a (k,+ )V(k,+ )v ( k,+ )5(k,+ +k,+ —k,+ )

+b'(k,+ )d'(k,+ )a(k,+ )u(k,+ )u(k,+ )5(k++k+ —k+ )

—b ( k,+ )d (k 3+ )a (k 2 )u (k 3+ )u ( k &+ )5( k &+ +k 3+ —k z+ ) ] .

Note that Pv changes particle number by one.

dk2+ dk3+ dk4+

(A40)

5(k3++k~+ —ki++k2+ )
X bt(k,+ )b(k4+ )a(k2+ )a(k3+ )u(k,+ )y+u(k4+ )

5(k3++k4+ —k i++k~+ )
+b~(k4+ )b(k,+ )a~(k3+ )a~(k2+ )u(k~+ )y+u(k&+ )

5(k~+ —k3+ —k,+ —k2+ )+d (k4+ )d(k,+ )a(k2+ )a(k3+ )u(k i )y+u(k4+ )

5(k4+ —k3+ —k i+ —k2+ )+d (k&+ )d(k4+ )a (k3+ )at(k2+ )v(k&+ )y+v(ki+ )

5(k,"+k,+ —k++k+ )
+b (k,+ )d (k4+ )a (k~+ )a(k2+ )u(k,+ )y+u(k4+ )

5(k3 +k~+ —k++k+ )+b ( k i+ )d (k 4+ )a (k 3+ )a (k 2+ )u (k i+ )y+ v (k ~+ )

+ 5(k3++k4+ —k2++ki+ }—b(k&+ )d(k4+ )a (k2+ )a(k3+ )u(k&+ )y+u(k|+ )

5(k3+ +kq+ —k2+ +k,+ )—b(k
&

)d(k4+ )a (k,+ )a(k,+ )v(k,+ )y+u(k,+ )

Pz changes particle number by two.

dk i dk2+
P

X I J bt(k,+ )b(k4 )at(k2+ )a(k3+ )u(k,+ )y+u(k4+ )

(A41)

5(k2+ —k4+ —k3+ +k,+ )+bt(k,+ )b(k4+ )at(k2+ )a(k, )u(k,+ )y+u(k4+ )

5(k~+ —k3 —k,+ +k2+ )
+dt(k~+ )d(k, )a~(k2+ )a(k3+ )v(k,+ )y+u(k4+ )

5(k~+ —k3+ —k i++k~+ )
+dt(k„+ )d(k,+ )a (kz+ )a(k3+ )u(k,+ )y+v(k4 )

5(k+ —k+ —k++k,+ )
+b~(k,+ )d~(k4+ )a(k2+ )a(k3+ )u(k,+ )y+u(k4+ )

5( k 3+ —k ~+ —k,+ +k 2+ )
+d(k~ )b(k,+ )at(k3+ )a (kz+ )u(k4+ )y+u(k,+ )

(A42)
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Pz changes particle number by zero.

APPENDIX B: LIGHT-FRONT PERTURBATION
THEORY RULES FOR THE EVALUATION OF M /I'+

k2

k3

In this appendix we list the rules for the evaluation of
M /P+ in perturbation theory for the (1+1)-
dimensional Yukawa model.

(1) Draw all topologically distinct diagrams with begin-
ning and ending fermion (or boson) line(s), where the ini-
tial state does not appear as an intermediate state.

(2) Assign a "momentum" to each line.
(3) To each intermediate state, assign an "energy"

denominator

r
k s

1 I k k. a
I I

(c)

kg = ---- k3

kg kg----

k4

u(k, )u(k3)
&4~ Qk, Qk, Qk,

To change fermion lines into antifermion lines replace
u ~ v and/or u ~—v.

(b) Fermion self-inertia:

k2 1

4m. k,
dk2 k)

k2 k, —k2

1

initial intermediate )

where P;„„, ,d;„,=g;m; /2k; and the sum is over the
particles in the intermediate state.

(4) The interaction vertices are shown in Fig. 8 and
correspond to the following.

(a) Trilinear vertex:

FIG. 8. Diagrams illustrating the vertices of the (1+1)-
dimensional Yukawa model in light-front perturbation theory.

Now, to change ferrnion lines into antifermion lines re-
place u ~v, and/or u —+ —v and change the sign of the
corresponding fermion momentum in the denominator.
To change any outgoing boson line into an incoming bo-
son line, change the sign of the corresponding boson
momentum in the denominator.

(5) Conserve momentum at each vertex.
(6) Integrate over independent momenta.
(7) Multiply by ( —1)",where n is the number of closed

fermion loops.
We note useful relations:

QQ = UU =2mF

(c) Antifermion self-inertia:

I dk~ k,
4+k, k k+k

(d) Boson self-inertia:

u(k)u(k)=k+mF, v(k)u(k)=k mF, —

k, +k2
u(k, )u (k2) = —v(k, )v(k2) =mF

k, k~

k, —k2
u(ki)v(k2)= —v(k, )u(k2)= —m~

1

4~ k&
' ki —k2

(e) Instantaneous vertex:

1

k, +k2 u(k, )y u(k2)=v(ki)y+v(k2)=V 2ktV 2k'

u(k, )y+v(k2)=v(ki)y u(k2)=V 2ktv 2k2

1 g2 u(k, )y+u(k, )

Qk, Qk, Qk, Qk4
APPENDIX C: A NONRELATIVISTIC LIMIT
FOR THE TWO-FERMION LFTD EQUATION

X [8(k, —k, )+e(k, —k, )]

with the separate pieces illustrated in Fig. 8(e).
To see how the remaining instantaneous interactions

can be derived from this expression, first rewrite the
denominator in a symmetrized form:

k, —k3-+ —'(k, —k3+k4 —k2) .
2

We start from the renormalized light-front bound-state
equation for two ferrnions (of different fiavor) in the first
Tamm-Dancoff approximation given by Eq. (4.14). For
simplicity we assume that the fermion masses are equal.
Further, we let A~~. We can ignore the self-energy
corrections when studying the nonrelativistic limit of Eq.
(4.14), as is easily justified a posteriori. Using the vari-
ables 1 —x =x&, x =x2, 1 —x —y =y&, x+y =y2, we
have
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2mF 1 1 1 2co(x„xz)= mF dy&dyz5(1 —
y&

—y2) + + &(xi yi'xz yz™)co(yl y2)0 1~ 2 4 F 1 2 1
X1 P1 X2

where

0(1—y, —x2) 1

M —mF /y, —m~/x2 —mz /(1 —xz —y &
)

8(1—x, —y2) 1

M —mF/x, —mF/y2 —mz/(1 —x, —y2)

(C 1)

(C2)

Introduce the variable q so that

where

&
—

(q 2+ m 2 )1/2

and

P(q)= 4

X1X2
co(x ),xp )

Then the bound-state equation is

dq' +(q')
q +mF — P(q)= mz4~ ~(q ) (q —q') +m~+R(q, q';M2)

4e(q )e(q') 1 1 q q'

mg 2 4 e(q) e(q')

2

(C4)

where

2

R(q, q'M )
— qq' ~—

e(q )E(q')

M+ e(q) +e(q')—
2

x
~(q ) ~(q') (C5)

Defining B =8 —B /4mF, where B=2mF —M, in the

2
A,

2 1+B P(q ) = Idq'P(q')
mF (q —q') +m~

(C6)

For nonrelativistic systems we expect B &&mF, and we
expect the constituents in the nonrelativistic system to
have their momentum fraction strongly peaked about
x =

—,'. In this limit it is easy to convince oneself that the
self-energy corrections are negligible.

I

limit where mF is much greater than q and q', we recover
the Schrodinger equation with a Yukawa potential:.
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