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Particle fields at finite temperature from string field theory
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An investigation is made into the finite-temperature behavior of a class of scalar field theories de-
rived from string field theory. The fields P are the lowest-order fields in a level truncation of the
open bosonic string and have momentum-dependent couplings. Expressions for the one-loop
effective potential for P' and P theories are derived, and the finite-temperature mass corrections
are examined for indications of a second-order phase transition. Questions concerning the stability
of the vacuum, the number of degrees of freedom, and the Hagedorn temperature are addressed.

I. INTRODUCTION

One of the primary areas in which string theory is of
relevance and should be able to make predictions that go
beyond those of particle field theories is in the study of
the early Universe. According to classical general rela-
tivity, there is a singularity at the initial big bang and a
breakdown in the ability to make physical predictions.
Since string theory is a candidate for a consistent theory
of quantum gravity, it is important to study what effects
the extended nature of strings would have on the evolu-
tion of the early Universe and in particular how strings
behave at high temperature. The effects of temperature
on string theory have been examined quite extensively in
the context of first-quantized string theory in an ideal-gas
approximation. ' One of the striking features is the ex-
istence of a maximum temperature, or Hagedorn temper-
ature, at which the canonical ensemble picture of a
string gas breaks down. To address properly questions
such as what happens near or above the Hagedorn tem-
perature, one clearly must go beyond the ideal-gas ap-
proximation and take into account string interactions.

While the thermodynamics of interacting strings have
not been formulated in a Hamiltonian formulation, be-
cause of the nonlocal nature of the interactions, a pertur-
bative expansion for the thermal partition function has
been shown to exist, and the effects of interactions have
been shown to imply the existence of a first-order phase
transition near the Hagedorn temperature. This phase
transition is brought about by certain winding modes in
the theory becoming tachyonic, and the divergence of the
thermal partition function then arises because the pertur-
bative expansion is being carried out around the wrong
vacuum. It was argued in Ref. 7 that in the string phase
above the Hagedorn temperature, when the fields are
shifted to a stable vacuum, strings will have far fewer de-
grees of freedom than for any known relativistic quantum
field theory.

These results are reminiscent of the results found in
Refs. 8—10 for the open bosonic string in the case of zero
temperature. The bosonic string has a tachyon in its
spectrum, and the canonical 26-dimensional vacuum of
the string is unstable. The fact that there is a tachyon in
the spectrum indicates that the wrong vacuum for the

theory has been chosen. In Refs. 8 —10 a candidate non-
perturbative vacuum was found and analyzed. It was
shown to be perturbatively stable and that the mass spec-
trum of states is quite different in the new vacuum —in
particular, the number of degrees of freedom in the non-
perturbative vacuum is smaller than in the canonical vac-
uum, and the tachyon disappears. Furthermore, it was
shown that the coupling in momentum space includes a
factor exp[ —2a'p ln(3+3/4)], due to the extended na-
ture of the string, which smears interactions over the
scale &a'. Thus the string coupling runs even at the tree
level, and the theory is asymptotically free.

A natural question to ask is whether this behavior
holds in the finite-temperature case as well. Does the
nonperturbative vacuum remain stable at high tempera-
ture, or is there a phase transition back to the nonstable
canonical vacuum? Does the tachyon field reappear at
finite temperature and acquire a negative mass squared,
or do all the states retain positive masses even at high
temperatures?

The approach used to study the structure of the vacu-
um in Refs. 8-10 was with functional methods and string
field theory. Starting from the covariant field theory for
the open bosonic string, " an expansion of the string field
4 was obtained in terms of ordinary particle fields. A
truncation scheme was used in which the Fock-space ex-
pansion of the string field is terminated at a particular
level, and this method was shown to be systematic in that
successive orders approach a point of convergence. Nu-
merical calculations were then performed on the effective
potential that permitted the identification of a candidate
nonperturbative vacuum.

The aim of the present work is to begin examining the
finite-temperature behavior of the particle fields coming
from string field theory. To lowest order in the expan-
sion of 4, we obtain a scalar field theory with a
momentum-dependent cubic interaction, which we
denote as P theory. The full effective potential for P in
the string theory would involve integrating out all the
other fields in the infinite expansion of O'. This is too
complicated an expression for us to generalize to finite
temperature. Instead, we will work at the level where the
theory has been truncated completely to the tachyon
field. Thus the only field in the truncated P model is a
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scalar field with m (0 and a momentum-dependent in-
teraction. It is for this model that we find an expression
for the effective potential. We then explore the vacuum
structure of this model and see what effect turning on a
nonzero temperature has. In particular, we will look at
the mass terms and determine whether there is a phase
transition coming from m changing sign.

Our aim here is not so much to obtain concrete results
for string theory, but rather to investigate a new kind of
scalar field theory that is derived as the lowest-order par-
ticle field in interacting bosonic string theory. The P
theory can serve as a toy model, and its behavior may ul-
timately have implications for string theory. Since the
coupling in this model has an unusual momentum depen-
dence, the calculations involved will be fundamentally
different from those of conventional finite-temperature
field theory. Because the Hagedorn temperature in a free
string theory is a consequence of there being an infinite
number of degrees of freedom, we do not expect to see
any indications of a Hagedorn temperature in a theory
that has been truncated to just one field. Nonetheless,
the P model does exhibit vacuum structure, and the pres-
ence of a negative-mass-squared state indicates that we
are initially in the wrong vacuum. We investigate the
vacuum structure of the P theory to see if there is a criti-
cal temperature at which a phase transition takes place.

String field theory at finite temperature has been previ-
ously examined and tachyon amplitudes have been calcu-
lated for T &0. ' While these results take into account
the full spectrum of states in string theory, they do not
account for the vacuum structure of the theory —the per-
turbative calculations are performed about the unstable
canonical vacuum. The hope of the present work is to
gain insight into how nonperturbative calculations might
be performed at finite temperature. One way would be to
include additional fields in the truncation scheme and to
look for a better approximation to the effective potential.
As another approach, since the off-shell extensions of the
X-point tachyon amplitudes in Witten s covariant string
field theory have been obtained, ' ' one could try to
derive an expression for the full static effective potential
with tachyons as external states. But clearly some ap-
proximation scheme would be required here as well to ob-
tain meaningful results.

Although the work presented here is for open bosonic
strings and the particle fields derived from them, the
same analysis may be applied to the closed bosonic string.
It has been shown in Ref. 17 that a nonperturbative ex-
tremum in the effective potential exists for closed strings.
The closed string theory exhibits the same features as
open strings: The fields are smeared out, the coupling
runs at the tree level, and the number of degrees of free-
dom is reduced in the nonperturbative vacuum.

In the next section, we present some background ma-
terial on the level-truncation method of Refs. 8 —10 and
show how the momentum dependence enters into the P
model. In Sec. III, for the sake of comparison and as a
limiting calculation, we work out the effective potential
for conventional scalar P field theory and its finite-
temperature extension. These results should correspond
to the a'~0 limit of the P model. We work in four-

dimensional space-time, where P theory is renormaliz-
able, and we use the Euclidean formulation of finite-
temperature field theory .The renormalizability of the P
theory in 4 and 26 dimensions is discussed as well. In
Sec. IV we consider the finite-temperature behavior of the

model. Our results and conclusions are summarized in
Sec. V.

II. BACKGROUND

In covariant string field theory, the action is a Chern-
Simons form:"

(2.1)

The string field 4 can be expanded in terms of ordinary
particle fields whose coeKcients are solutions of the first-
quantized theory:

4=(/+A„a", +iab c0+ . . )~0). (2.2)

Here P is the tachyon field, A„ is the massless vector
field, and a is an auxiliary field. The form of the three-
string vertex in Eq. (2.1) introduces the momentum
dependence of the particle fields. The particle fields f in
the interaction Lagrangian become smeared over a dis-
tance &a':

f=exp a'ln (2.3)

A consequence of this is that the tree-level string cou-
pling runs, which induces asymptotic freedom. ' For
the tachyon cubic coupling

(2.4)

r= —(a y) +—m y+ —y,1 2 1 p2 A, -p
2 " 2 3I

where

(2.5)

where A, is the three-tachyon coupling (as well as some
numerical factors), ' and P is defined as in Eq. (2.3). Go-
ing to momentum space, we find that this is a usual P in-
teraction, but with a momentum-dependent coupling
( A,e '"' ' ). The additional momentum-dependent
factors result from the nonlocal nature of the string and
are what account for the good ultraviolet behavior of the
theory. '

The level-truncation scheme of Refs. 8—10 consists of
truncating the Fock-space expansion of the string field 4
to the lowest-lying states. A combination of truncating
both the expansion 4 at a certain point and the level
number of the interaction Lagrangian is used. The
method is then utilized to find the dominant tree-level
contributions to the static tachyon potential at all orders,
and a candidate nonperturbative vacuum is obtained.

In the present work, we consider the case in which all
the fields have been truncated to the level of the tachyon
field. In particular, we consider a scalar field theory with
a Euclidean Lagrangian
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aB (2.6)

and

3&3
u —=a'ln

4
(2.7)

The motivation here is to study the effects of the string-
induced momentum dependence in the coupling and to
go to the one-loop level in the effective potential and to
finite temperature.

We define the field theory entirely in Euclidean space
to facilitate the transition to finite temperature. In the
imaginary-time formulation of bosonic finite-temperature
field theory, ' ' the time direction becomes periodic and
the energy is discrete:

2'ITIVE

4 7 (2.&)

where P= 1/T and T is the temperature. Integrals over
the energy in one-loop calculations are replaced by sums

dk4I (21r) P „
(2.9)

We work in four dimensions of space-time for conveni-
ence. For string theory, the fields are 26 dimensiona1,
and a 1)( scalar field theory in 26 dimensions is nonrenor-
malizable. However, the P theory has the additional
momentum-dependent factor ex (

—2ak ) appearing in
loop integrals, which gives the P theory good ultraviolet
behavior. Since, for comparison, we want to consider the
case of P theory at finite temperature (for which a'=0),
we work in four dimensions where the P theory is renor-
malizable. The extension of the results presented here for
1)(7 to 26 dimensions is straightforward.

III. P THEQRY

First, we will consider the case of P theory. This is
the a'~0 limit of the P theory. The Euclidean Lagrang-
ian is given by

X=—(B(b)+—m P+—P,2
(3.1)

where m &0 for a theory describing tachyons. The
tree-level contribution to the effective potential

y(0)( y ) m 2y2+1

2 31
(3.2)

(with A, )0) has a local maximum at /=0 and a local
minimum at 11,

= —2m /A, . The canonical vacuum
(P ) =0 is unstable because of the tachyon, and perturba-
tion theory is ill defined about such a vacuum. The pres-
ence of the tachyon indicates that an incorrect choice of
vacuum has been made. Shifting to the P= —2m /A,

vacuum, we obtain a physical mass for the scalar field
equal to —m, which is positive. The theory remains un-
stable because of tunneling effects, as V,~ is unbounded
from below as t)I)~ —&n; nonetheless, perturbative solu-
tions in the new vacuum are well defined.

y(1)(y ) f (21r) „,2& k +m
(3.3)

The momenta k are in Euclidean space, and the mass-
shell condition in k = —m .

The first two terms in this series are divergent and re-
quire counterterms. We add a counterterm in P as well
for a finite renormalization of A, . We then sum the series
and impose the conditions

dV, ~ =0,
d(t p

—()

(3.4)

We find that the minimum of V,(r at P = —2m /A, persists
even after the one-loop effects have been included.

The mass in the minimum of V,z is given by

d V,~ 2
A'= —m + +imaginary part.

y= —2m'yi.

(3.5)

The real part of this solution corresponds to a positive
physical mass. The imaginary part indicates that the
solution P= —2m /A, has gone beyond the full range of
validity of the one-loop approximation and that higher-
order terms are required. Also, the P theory is intrinsi-
cally unstable —it is only when all the fields in the string
theory are taken into account that the minimum of V,z

In open bosonic string theory, the effective potential is
also that of a cubic interaction, which is unbounded from
below as P —+ —ao. The canonical vacuum, in which all
of the fields take zero expectation values, is unstable be-
cause of the tachyon. In Ref. 9 a candidate nonperturba-
tive vacuum was found, and perturbation theory was
shown to be well defined about the new vacuum. It was
argued in Ref. 9 that barrier penetration of the full string
out of the local minimum of the potential is inhibited rel-
ative to particle tunneling, since a string field consists of
an infinite number of fields, and there is a suppression
factor for each one. Although the cubic-interaction field
theories considered here are unstable because of quantum
tunneling effects, the full (untruncated) effective potential
for P, when all the other fields in the string theory are in-
cluded, should have an infinite number of suppression
factors, which would combine to stabilize the nonpertur-
bative vacuum. For the (truncated) P theory, we are
effectively examining a toy model, and we leave aside the
question of the ultimate stability of the theory against
tunneling until a fuller treatment of the string theory can
be made. Instead, we will examine the effective potential
at finite temperature for indications of a second-order
phase transition. A second-order phase transition occurs
when the minimum of the effective potential gradually
merges with the maximum point, and there is no barrier
penetration or tunneling (as in a first-order phase transi-
tion).

The zero-temperature one-loop contribution to the (t

theory effective potential is given by
n
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becomes stable. For the model considered here, we will
ignore the imaginary part and take the real part as an ap-
proximation to the behavior in the context of a full string
theory.

We examine V,z to see where its inAection points are.
These are the values of P for which V,tr"(P) =0. At the
tree level, with V,tr= —,'m t)tt +(A/3!)P, the infiection
point is at t|)=—m /A, , which is midway between the
maximum at tt =0 and the minimum at tt)= —2m /A, .
When the one-loop effects are included, we find that the
inAection point has moved to a new position at

m
4'inflectio

Am /32m

m —
A, /32vr

(3.6)

In a second-order phase transition at finite temperature,
we expect the minimum point to meet up with the
inAection point at the critical temperature. We find that
this is indeed what happens in P theory at finite tempera-
ture.

Now we want to consider the case of finite temperature
and reexamine the mass terms. At finite temperature, the
effective potential Vp sphts into two terms:

1
Vp= VT=o+

27T2

21 1
—fx +P (m +AtIIt)]

0
(3.7)

(p(m (
)1/2 —p~m!

1

( m ' —A'/32m') (3.8)

where ~m~=( rn )' an—d P=l/T. For small T the
minimum is displaced toward the origin /=0.

At higher temperatures (T)) ~m ~
and for A, && ~m ~),

where a change of integration variable has been made
from ~k~ to x. All the temperature dependence resides in
the second term.

For small temperatures (T« ~m ~ ), we can show that,
to lowest order, the minimum of this expression occurs
for the value

2 2
1 /2

(T) 2m AT
mlII

we find that the minimum in Vp is at

2mP;„(T)=— A, T2

24(A, /32m —m )
(3.9)

The solution is displaced toward the origin as well, away
from the T=O solution at P= —2m /A, . Furthermore,
the depth of the potential well at this minimum,
Vp(tI);„(T)), decreases as T gets large.

We have examined the maximum in the effective poten-
tial as well —the /=0 solution at T=O. We find that
this maximum moves toward positive values of P as the
temperature increases, and therefore that the maximum
and minimum points move toward each other as the tem-
perature increases. In fact, we find that the minimum
point meets up with the zero-temperature inAection point

P;„fl„„o„,given in Eq. (3.6), when

24m (m —
A, /32m. )

A,
2

(3.10)

This suggests that there is a second-order phase transi-
tion at this temperature.

In AP field theory, with spontaneous symmetry break-
ing, there can be either a first- or second-order phase
transition, depending on the shape of Vp. In a first-
order phase transition, there is tunneling through a bar-
rier from one vacuum to the other, whereas in a second-
order phase transition, the extremum points move togeth-
er at the critical temperature. In a AP theory, it suffices
to look at V,tr at /=0 regardless of the temperature, and
we need not work in the temperature-dependent local
minimum of V,z. The symmetry in the theory prohibits
the extremum at / =0 from wandering from this position.

For P theory, on the other hand, the potential has no
symmetry, and the situation is different. The theory is
unstable against quantum or thermal tunneling, and so
there is no point in considering a first-order phase transi-
tion. It does, however, appear that there is a critical tem-
perature for a second-order phase transition in P theory.
To verify this more explicitly, we look at the second
derivative of Vp, namely, the mass term at finite tempera-
ture.

We define the temperature-dependent mass squared by
mT(P=($})=Vp"(P=(P)). Taking the second deriva-
tive Vp and choosing (P ) =0 as the vacuum, we find

mT(/=0)=m dx x 1

8n(x +p m. ) (e'" +p ' —1)

( 2+p2 2)1/2
e

(x2+p2m~)i~2 (x +p m )
~ (3.11)

Here we have to be concerned with the fact that m (0 and that the integral is complex. Following the procedure of
Ref. 19, we find that the lowest-order temperature correction is imaginary, and therefore this expression is not useful.

Instead, we concentrate on the temperature-dependent mass as defined in the physical vacuum, P= —2m /A, , which
corresponds to a field of positive mass squared at the tree level. In this case, we get real contributions at finite tempera-
ture given by

2m
V

A,
2= —m +

16~
d k 1

3 k2 2 p(i 2 2)1/2 k2 2 $ /2 p(k2 2)1/2 (3.12)

where now we can evaluate the integral in the small-P (high-temperature) limit. Keeping only the lowest-order real con-
tributions, we get
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22m 7T
Pl + 1— + ~ ~ ~

16~' Plml
(3.13)

This would appear to have a critical temperature at T= 16ir m
I lk + Im I le, but this conclusion is incorrect since it

does not take into account the fact that the minimum of V& moves away from —2m IA, as T increases. To find mT at
the minimum, what we need to use is p;„(T), given in Eq. (3.9) for large T, and to evaluate V&"(p;„(T)).

For f3I m
I
« 1 and Im I

))A, , we find an additional contribution to mT.

+ X
1 + 2K T &T +

3m' Im I

(3.14)

This mass squared becomes zero at the temperature

24m (m —
A, /32ir ) 24m

A,
2

A,
2

(3.15)

which agrees with the temperature found earlier in Eq. (3.10) for which P;„meets up with the infiection point in V,s.
Thus we find that there is a second-order phase transition. The minimum in V,z disappears at this critical temperature,
and we no longer have a stable vacuum.

IV. P THEORY

Now we want to consider the case of the P theory defined by the Euclidean Lagrangian

X=—(BP)+—m P+—P,1 2 1 2 2 A 3

2 " 2 3I

with

(4.2)

3&3
u =a'ln

4
(4.3)

The Feynman rules for this theory are the same as for the P theory except that now the coupling in the interaction has—2ak 2
an additional momentum dependence A, ~A,e " . The e6'ective potential up to the one-loop level for this theory is
given by

V,ir= —m P +—P +—f Ilnlk +m +(~P)e "
]—ln(k +m ))+counterterms .

(2m )

By expanding the logarithm, we see that this expression consists of the sum of diagrams

(4.4)

2 3! 2 (2')4 „ i n

—2ak

k +I (4.5)

The low-level diagrams are ultra violet finite because of the additional exponential factor in the interaction.
For example, the static tadpole diagram for P theory is given by

—2 kd k A,e
(2m. ) k +m

This can be reexpressed as

(4.6)

r,"'(0)=— 1 +m 2e 2am r(0 2am 2)
2

6+2 2n
(4.7)

where I (O, x ) is the incomplete gamma function

I(Ox)=e "f dt,
o x+t (4.8)

which is finite for x&0. For m &0, I (0, 2am ) has a pole, and we take the principal part of the integral. Then, as
long as a&0, the integral is ultraviolet finite.
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For the two-point function, we get

d 4k g2 —4ak
r")(0 o)=

(2m) (k + )
[(1—4am )e" I (0,4am ) —1],

16m
(4.9)

( P)e
—2ak2 & (gg)2e 4ak

k+m (k+m )

which is also ultraviolet finite for a%0.
Since the tadpole and two-point diagrams for P theory are ultraviolet finite, the counterterms provide only a finite

renormalization of A, and m, and are determined by iinposing Eq. (3.4). We find

4 —2ak ) (gy)3e 6ak
p~) 1 2~2+ A, ~3+ 1 d k

1
(Ap)e,

(4.10)(2') k +m (k+m )

As +~0, corresponding to the particle limit of the string-related field, this expression reduces back to the result for V,ff
for P theory. We are interested in the behavior of the effective potential near the minimum point P= —2m /A, . The
momentum dependence of V,)r makes it impossible to evaluate the integrals explicitly. Instead, we look at the near-
particle limit, where we replace X;„,for small a by

—2 k 3e
—2uk y3 (1 2 k2)y3int (4.11)

in the momentum-space integrals. The resulting expression for V',s) ( —2m /A, ), the mass in the minimum of the
effective potential, can then be evaluated in this approximation. We find

p(y)" 2m 2

eff
d4k 1= —m (1 —4ak )

(2ir ) (k —m )

1

(k+m )

Sam k
(k —m )

4m (1—2ak )

(k+m )
(4.12)

This contains the a =0 part V,ff plus a correction

2
y~) 2m

eff

2
y~=p) 2m

eff

4

+2aA, 'f k'
(2~)" (k —m )

1

(k+m )

4m

(k+m )
(4.13)

The remaining integrals can be regularized by introducing a cutoff' and can be evaluated. Using Eq. (3.5) for
V',&

'
( —2m /A, ), we find

2
Vi ~)" 2m

eff
A,

2= —m + (1—16am ).
16m

(4.14)

This is the mass in the minimum of the potential including the lowest-order one-loop effects corning from the momen-
tum dependence of the coupling. For m &0, the correction is positive and adds to the mass, stabilizing the vacuum
even more.

For the P theory at finite temperature, we have to evaluate the sum in the one-loop contribution

2 2

1 d k (AP)e exp[ —2a(4ir n /P +cok)]y(&)— ln 1+
2P (2') 4 n //3 +co

(4.15)

where Eqs. (2.8) and (2.9) have been used. Since what we are interested in is the mass in the minimum of the potential
at finite temperature, we take the second derivative of VI3

' and set p = —2m /A, :

2
~(])" 2m

4am
d kf, r e exp[ —4a(4~ n /p +cok)]

2p (2m) ~= — I4m2n2/p +cok —2m e ~m exp[ —2a(4~ n /p +cgk)]I
(4.16)

This sum cannot be evaluated explicitly, and again we consider the approximation in which a is small —the near-
particle limit —and replace X;„,by

=—(1—2ak )P =—1 —2a2 3=A
int 3t

Then we obtain

2 24~ n

p2
(4.17)

2
~( $ )'~ 2m 1 4a(4n2n /P +—k )

22P (2m) „= „4~ n IP +k m+8am (4m. n I—P +k )
(4.18)

We expand the denominator, keeping only the lowest-order terms in a, and use the summation formulas given in the
Appendix. We obtain
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2
~( ] )~~ 2m f d k

4
13(I 2 2)1/2 p(k —m )

/

eP(k —m ) 1 (eP(k —m ) 1 )2

1 —4ak
(1 2 2)3/2 (k2 2)1/2

4o.m

(1 2 2)3/2

elm

(R2 2)3/2
P(k —m )e' ' 2P(k —m )e'"

eP(k —m )' 1)2 (eP(k m)' — 1)3
(4.19)

By letting P~ ~, we can extract the one-loop T=0 piece:

22m
~T =O—

2 d3k 1 4Of2

g (2 )3 (I 2 2)3/2 (1 2 2)1/2
4am

(I 2 2)3/2
(4.20)

For the full effective potential up to one loop, we add the
tree-level terms plus the counterterms. All of the renor-
malizations occur at T=0 and are taken into account by
the T=O part of V&. We can extract as well the finite-
temperature a=O piece of Eq. (4.19) and use the results
of 1t. theory found earlier. In this way, by using Eqs.
(4.14) and (3.22), we find that, to lowest order in a and for
T»/m/,

2
2~'T'

mT=m + 1 —160m + +5m .
16~ 3m

(4.21)

Here 6m is the remaining finite-temperature a-
dependent piece of Eq. (4.19), which we approximate for
high temperature as

2cxk 1 ye~+
ir2p2 e~ —1 (e~—1)

(4.22)

where we substituted y =Pk. These integrals can be eval-
uated, and we get

AA,
5m (4.23)

which we add to m z. The final expression for the
temperature-dependent mass to lowest order in a is then

2 2 2 2~'T'
mT= —m + 1 —16a(m rr T )+—

16~ 3m

(4.24)

The theory has a second-order phase transition, since
for high enough temperature mT=O, and the minimum
of V ff becomes an infIection point. Solving for the criti-
cal temperature to lowest order in a and X/m, we get

24mT =(1—24am )
A2

(4.25)

Comparing this with Eq. (3.23), the a=O result obtained
for P theory at finite temperature, we see that the effect
of the a dependence is to drive the critical temperature

higher (since m (0). Thus for the P theory, there con-
tinues to be a second-order phase transition, but the
momentum dependence in the coupling has raised the
critical temperature.

This result for the critical temperature clearly depends
on the interactions between P fields, and it explicitly de-
pends on the coupling A, and the momentum factor a. It
is thus very different from the Hagedorn temperature,
which results from the exponentially increasing density of
states of a string theory in an ideal-gas approximation.
The Hagedorn temperature, as originally proposed, does
not take interactions into account. ' In Ref. 7 interac-
tions were included in the analysis, and it was shown that
there is a phase transition near the Hagedorn tempera-
ture associated with winding modes of the finite-
temperature string theory becoming tachyonic. These
winding modes have a symmetry that forces the effective
potential, defined in terms of them, to be a quartic func-
tion, and it is argued that the phase transition is of first
order. The winding modes become tachyonic because
above the Hagedorn temperature the stable vacuum has
shifted, and the winding mode fields need to be given
nonzero expectation values. The first-order phase transi-
tion is then a jump from the wrong vacuum to the stable
one.

There are, however, two additional ingredients that
need to be considered. First is the fact that, even at zero
temperature, on must define the theory in the correct
vacuum. The bosonic string, with a cubic interaction,
has a tachyon in its spectrum, and the canonical vacuum
is intrinsically unstable. As shown in Refs. 8—10, there
does exist a stable nonperturbative vacuum, and when the
theory is defined about this vacuum, the tachyon disap-
pears and the number of degrees of freedom is reduced.
This is exactly analogous to what is happening at finite
temperature for the case of the winding modes, only here
it is happening at zero temperature and for the tachyon.
The second new ingredient that has to be taken into ac-
count is that the particle fields coming from a string field
theory have momentum-dependent couplings. This
arises from the extended nature of the string and ac-
counts for its good ultraviolet behavior. Any discussion
of string theory at finite temperature that includes in-
teractions needs to take these two additional ingredients
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into account: The theory exhibits complicated vacuum
structure even at zero temperature, and the coupling runs
even at the tree level.

V. CONCLUSIONS

Our goal here has been to study, in the context of a toy
model, the effects of vacuum structure and the momen-
tum dependence of the string coupling on the finite-
temperature behavior of open bosonic strings. In partic-
ular, we wanted to see if there are any phase transitions
occuring between the possible vacua of the theory. Since,
for the full string theory, this is an extremely complex
problem, several approximations have been made. First,
we have truncated the string field to its lowest level—
that of a tachyonic scalar field P. This field by itself ex-
hibits both of the properties we are interested in —it has
nontrivial vacuum structure, and its coupling contains

—2ak 2
the momentum-dependent factor e " . Thus this P
theory serves well as a toy model in which to study the
effects of finite temperature. Next, we have assumed that
we are interested in the P theory primarily in the context
of a full string theory. A cubic P theory by itself is unsta-
ble to tunneling of the fields off to P~ —~,though we
may still define the theory perturbatively in the new vac-
uum. In the context of a full string theory, however, with
an infinite number of fields, tunneling out of the
minimum is greatly suppressed. Our approximation
here has been to ignore questions concerning the instabil-
ity of the theory due to tunneling and to restrict our in-
vestigation of phase transitions to second-order phase
transitions, which do dot involve tunneling. Last, we
have worked in a near-particle limit in which the parame-
ter u, coming from the extended nature of the string, is
taken to be small. We have also taken A, and p to be
small compared to the mass ~m ~.

Within the restrictions set by considering such a toy
model, we have been able to determine that there is a
second-order phase transition in the (t theory, and that it
occurs at a temperature T =(1—24am )24m /A, . The
effect of the string correction (the a terms) is to deepen
the potential well at the minimum and to drive up the
critical temperature of the phase transition. However, at
high enough temperatures (at this level of approxima-
tion), the theory becomes unphysical again, and there is
no stable vacuum.

In comparing P theory to P theory, there are several
interesting properties to point out. While (t in greater

than six dimensions is a nonrenormalizable theory, P is
not. The additional momentum dependence in the cou-
pling makes all the Feynman graphs ultraviolet finite.
This is a direct consequence of the fact that the P theory
is coming from a string theory, which has good ultravio-
let properties. We have also seen that P theory by itself
has a second-order phase transition. At zero tempera-
ture, the ( P ) =0 vacuum is unstable, but there does exist
a minimum in the eff'ective potential at ((t ) = —2m /A, ,
in which the field has a physical mass. When the temper-
ature turns on, this minimum point moves, and gradually
the minimum and maximum points come together at the
infIection point, and there is no longer a locally stable
vacuum in the theory. The (t theory for small a has these
same properties, but the minimum is somewhat more
pronounced and the critical temperature of the second-
order phase transition is higher. Thus, to this level of ap-
proximation, the string effects tend to stabilize the vacu-
um as compared to (t) theory. To determine whether a
stable vacuum exists at temperatures above the critical
temperature requires going beyond the lowest level of ap-
proximation and taking into account the full suppression

—2 I&factor e in the coupling. This in turn would require
doing the sum in Eq. (4.16) and at present does not seem
feasible.

The Hagedorn temperature, as originally introduced,
did not involve interactions between strings. As interac-
tions are taken into account, it is seen that what really
matters is vacuum structure. In Ref. 7 it was shown that
winding modes can acquire unphysical masses near the
Hagedorn temperature and that a phase transition can
occur. Even at zero temperature, the bosonic string ex-
hibits nontrivial vacuum structure, and a stable vacuum
can be found that eliminates the tachyon. For a complete
understanding of the Hagedorn transitions in a string
theory, the vacuum structure of all the particle fields will
have to be better understood, and the full momentum
dependence of the interactions will have to be included.
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APPENDIX

The following three summation formulas are used in
the derivation of Eq. (4.19):

(4mn /p+k —m )

1 1

2(k2 2)3/2 2 P(k2 —m2)1/2 —1e

1

p(k 2 ~ 2)1/2
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4' n /P P 1+
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/
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/
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