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Head-on collisions of strings, monopoles, and Skyrmions result in 90 scattering. We propose a
unified description of these objects (for the global case) as members of a definite class of topological
defects. All soliton-soliton pairs that are members of this class scatter at 90 in head-on collisions.
Our analysis also shows that the scattered solitons are composed of half-portions of the original soli-
tons. We further predict back-to-back scattering for head-on collisions of a soliton-antisoliton pair
at su%ciently high energies. We argue that these qualitative aspects of scattering are common be-
cause strings, monopoles, and Skyrmions correspond to various winding-number mappings from S
to S". Our analysis concentrates on the smoothness of the field configurations and may be extendi-
ble to the scattering of gauged topological defects. For the case of strings our results lead to an un-

derstanding of intercommutivity and the accompanying formation of kinks.

I. INTRODUCTION

Topological defects arise in many areas in physics. In
condensed-matter physics Aux tubes in type-II supercon-
ductors, vortices in super6uid helium, and various topo-
logical defects in liquid-crystal systems have been experi-
mentally as well as theoretically investigated. ' In particle
physics and cosmology defects such as cosmic strings and
monopoles have played very important roles. The Skyr-
mion is one of the most important topological objects in
particle physics and provides an alternate description of
the nucleon.

Interaction of these defects with each other has also
been extensively investigated. Recently an experimental
study of strings and other topological defects in a liquid-
crystal system was carried out with results in agreement
with earlier theoretical analysis. Such studies are of cru-
cial importance for models of cosmic strings. For exam-
ple, it was numerically found that when two strings cross,
they interchange partners (i.e., they intercommute). '

This behavior is essential for the viability of any cosmic-
string scenario in the early Universe. If strings do not in-
tercommute, they very quickly dominate the energy den-
sity of the Universe. Because of the intercommutivity,
bigger loops get chopped into smaller loops. An oscillat-
ing loop radiates energy and has a lifetime which is short-
er for smaller loops. Thus small loops disappear fast
enough solving the overdensity problem for strings.
Scattering of strings shows many other interesting
features as well. The interaction of Skyrmions in 3+1
dimensions is clearly of great signi6cance being interpret-
ed as interaction between nucleons. ' Skyrmion
scattering in 2+ 1 dimensions has also been investigated
in a recent numerical analysis. ' As for monopoles, their
interaction has enough theoretical interest to have been
the subject of investigations for many years. '

There have been many numerical studies of the scatter-

ing and interaction of topological objects. Strikingly
enough in head-on collisions a pair of (local) monopoles, '

a pair of straight strings, and a pair of Skyrmions in
2+1 dimensions' all scatter at 90' (90' scattering for a
head-on collision of Skyrmion pairs in 3+1 dimensions
has also been conjectured, ' see also Ref. 19). In some
special cases [Bogomolny-Prasad-Sommerfield (BPS)
monopoles' ' and critically coupled strings '

j this be-
havior can be understood analytically. There is, however,
no uni6ed picture of what seems to be very general be-
havior for an entire class of topological defects.

In the present work we try to fill this gap by develop-
ing, for the global case, a common framework for under-
standing the qualitative behavior of the scattering of
these topological defects. The class of objects we consid-
er are defects which correspond to nontrivial mappings of
S" to S"for appropriate values of n. In 2+1 dimensions,
for n =1 and 2, respectively, we have vortices and tex-
tures. In 3+1 dimensions for n =1, 2, and 3 we have
strings, monopoles, and textures. Skyrmions in 3+1 di-
mensions for the two-flavor case are an example of such
textures and we will refer to these textures generically as
Skyrmions. (Textures also occur from nontrivial map-
pings of S to S . However it is not clear whether our
considerations in this paper can be extended for those
cases. ) Even if certain aspects of our arguments may re-
quire stronger justification (say, our arguments for the 90'
scattering), we feel that we have identified the common
topological features which give rise to the striking behav-
ior observed in the scattering of all these dift'erent objects.
This is one of our major results.

We show that, for a suitable choice of initial
configurations, the scattering processes of strings, mono-
poles, and Skyrmions (in 2+1 as well as in 3+1 dimen-
sions) show identical behavior because these simply
reduce to the problem of the scattering of parallel
straight strings. We 6nd a very surprising result that in a
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head-on collision of a soliton and an antisoliton involving
annihilation and recreation of a soliton-antisoliton pair,
the soliton and the antisoliton bounce back in their origi-
nal directions. This behavior is rather unexpected
though it was observed in one numerical work on
strings. We find that the same must be true for mono-
poles and Skyrmions as well. It is important to note that
this result applies only when, after the annihilation,
another pair is recreated. It will be interesting to check
this prediction in numerical simulations by working in
the appropriate regime of ener~. es.

We also argue that in a head-on collision a soliton-
soliton pair scatters at 90' if the initial configurations of
solitons are suitably oriented. Our arguments rely on
qualitative aspects of our field-configuration A nsatze
motivated by gradient energy considerations. Even
though we do not have strong justifications for these
Ansatze, it is remarkable that a common set of arguments
seems to apply to the case of all three classes of objects
and leads to predictions which are in complete agreement
with numerical results.

A further interesting aspect of our analysis for the 90
scattering of solitons is that we naturally find that the
scattered soliton consists of half-portions of both the
original solitons. This behavior has been previously dis-
cussed for monopoles and strings. ' ' Our analysis pro-
vides an explanation of this fact and shows that it is gen-
erally true and hence must also be true for Skyrmions. It
will be interesting to check this prediction as well in nu-
merical works.

We note that the 90' scattering has been observed for
certain dipolar vortices on Quid surfaces, where also the
scattered vortices are composed of the halves of the origi-
nal vortices. It will be interesting to see if our analysis
can be extended to such systems by identifying some suit-
able dynamical variable (such as the velocity vector field)
as the analog of the phase of the Higgs field.

Based on our results for the scattering of string-
antistring pairs, we provide arguments for the intercom-
muting behavior of strings. We analyze the configuration
of a string-antistring at the point of crossing and find that
it naturally leads to the formation of "kinks" at the cross-
ing point. These kinks have earlier been discussed in the
literature and play an important role in cosmology.

At present our analysis is applicable only to defects
formed due to the breaking of a global symmetry. In this
case we can associate a gradient energy depending upon
how fast the field is varying in the internal space. How-
ever, since gauged strings and gauged monopoles scatter
at 90, ' ' ' ' we feel that it must be possible to extend
our analysis for gauged systems as well. This is also sug-
gested by the fact that gauged objects near their core look
like global objects, and our analysis is crucially dependent
upon the behavior near the core itself. We are presently
working on the investigation of the gauged systems.

The organization of the paper is as follows. In Sec. II
we discuss the case of scattering of a string-string pair
and of a string-antistring pair. We analyze this case in
detail and argue in Sec. III that the case of monopoles
and Skyrmions can be simply inferred from the analysis
of the scattering of strings. We conclude that all these

objects show the same qualitative features in scattering.
Section IV presents our conclusions, where we discuss
limitations of our analysis and possible extensions of the
model.

II. SCATTERING OF STRINGS

A significant amount of numerical work for the scatter-
ing of topological defects focuses on the case of strings
primarily because of interest in cosmic strings. Since glo-
bal strings have a long-range force, as the strings ap-
proach each other, they antialign near the crossing point.
The overlapping portions of the string-antistring pair an-
nihilate (if relative velocity is not too large) leading to in-
tercommutivity [see Figs. 1(a) and 1(b)j. At the point
where strings intercommute, a kink forms which does not
straighten immediately. Intercommutivity was also ob-
served for local strings.

Strings naturally arise in phase transitions where the
vacuum manifold (the order-parameter space) for the
Higgs field (the order-parameter field) is multiply con-
nected. A closed path encircling a string corresponds to
the Higgs field tracing a nontrivial loop in the vacuum
manifold. The considerations below are quite general,
and we expect them to hold for any cylindrically sym-
metric global string, but for specificity we consider a
model in which a U(1) global symmetry is completely
broken by a vacuum expectation value of a complex sca-
lar field 4. A string solution along the z direction is
given by

@(r,8)=p(r )e'

and an antistring solution is given by

4(r, 8)=p(r )e

(2.1)

(2.2)

r is the distance in the x-y plane and 0 is the azimuthal
angle. Thus for a string (antistring) the phase P of the
Higgs field at angle 8 is /=8 ( —8). The magnitude of 4
is p(r) with p(0) =0 and p( ~ ) =il, the vacuum expecta-
tion value of 4.

A. String and antistring parallel to z direction:
back-to-back scattering

FIG. 1. Intercornmutivity of strings.

(b)

Our analysis assumes that the qualitative aspects of
scattering are determined by the consideration of the gra-
dient energy associated with the phase variation of the
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Higgs field. Because of the z symmetry we can ignore the
z direction and simply consider the field configuration in
the x-y plane. The following results also apply to the
scattering of vortices in two spatial dimensions.

Consider the initial configurations as shown in Figs.
2(a) and 2(b). If the string and antistring are sufficiently
far, the contours of constant Higgs field phase P will be
straight lines radially emanating from the respective
centers of string and antistring. Black dots in the center
of the string (antistring) represent C&=0 region. Though
the constant phase lines go to infinity, the magnitude of
the Higgs field p(r) will differ considerably from the vacu-
um value iI only in a small region shown in Figs. 2(a) and
2(b) by circles encircling the centers of the string and the
antistring. (However, we point out that this region,
where the gradient energy due to the radial derivative of
the Higgs field is concentrated, does not play any role in
our analysis. )

Figure 3(a) shows the field configuration as the string
and antistring approach each other. If one of them (say
the antistring) was initially rotated in the x-y plane com-
pared to Figs. 2(a) and 2(b), due to phase-gradient energy
we expect it to develop into a configuration such as in
Fig. 3(a). Figure 3(b) shows an intermediate stage of an-
nihilation where the string and antistring partially over-
lap. We emphasize that what we are presenting are the
Ansatze for the annihilation process motivated by an ap-
propriate gradient energy term. (As far as the continuity
properties of the field configuration are concerned, our
Ansatze are similar to those used in Ref. 21.) Figure 3(c)
shows total annihilation when the centers of the string
and antistring completely overlap.

Of course, as the string- and antistring approach each
other, we expect the contours of constant phase P to de-
form in order to minimize gradient energy. This is de-
picted in Fig. 4(a). Since contours of constant P will try
to concentrate in the region between the pair, we expect
that when the centers of the string and antistring overlap,
the field configuration looks like Fig. 4(b) as opposed to
Fig. 3(c). Here 8 is some angle between 0 and ~/2 [for
Fig. 3(c), 8 is equal to ir/2]

In Fig. 4(b) the centers of the string and antistring
(which are characterized by @=0)overlap, the string and
antistring have annihilated and all the energy may go in
radiation. [Note that in Fig. 4(b) there is no loop which
has a nontrivial winding number. ] We are, however, in-
terested in a di6'erent situation in which another string-
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FIG. 3 ~ Field configuration at various stages of the annihila-
tion of a string-antistring pair. (c) The stage of total annihila-
tion when the two centers of the string and antistring have over-
lapped.

antistring pair is recreated after the annihilation. Thus
the issue we have to address is, given the field
configuration in Fig. 4(b) and given that a string-
antistring pair will be recreated from this configuration,
whether we can get information about the direction in
which the string and the antistring are most likely to
separate.

Suppose that the string and antistring separate away
from the dotted line in Fig. 5(a). This line intersects the
circle (in which @ differs significantly from iI) at two
points where the Higgs field has phase P equal to m —a
and P =~+a. Here angle a is between 0 and 8. A pair is
created as soon as the string and antistring separate just
enough that they have distinct centers. Figure 5(b) shows
this pair separating along the line perpendicular to the
dotted line of Fig. 5(a). Each pair has a portion, shown

by a solid arc, which represents the field configuration at
the time of annihilation. We assume that this con-
figuration is not significantly changed by very small sepa-
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FIG. 2. (a) The configuration of a string in the x-y plane; (b)
the configuration for an antistring.

FIG. 4. The same as in Figs. 3(b) and 3(c) but now the distor-
tions of contours due to gradient energy is taken into account.
Here 0 is between 0 and ~/2.



4032 CARL ROSENZWEIG AND AJIT MOHAN SRIVASTAVA 43

(b)

FIG. 5. Creation of a new string-antistring pair from the
configuration of Fig. 4(b). The string- and antistring separate
away from the dotted line. (b} The situation when the two pairs
have well-defined separate centers (in the sense that P has non-
trivial winding numbers around small loops encircling these
centers}. a is between 0 and 6.

ration of the centers. The distribution of the phase P on
dashed arcs is not fixed by the knowledge of the
configuration of Fig. 5(a) and will determine which one is
a string and which one an antistring.

Consider first the case when the string is separating to-
wards the lower left half of the x-y plane and the anti-
string is separating towards the upper-right-half plane.
Since the initial string-antistring pair was moving along
the x axis [see Fig. 3(a)], this represents a string and anti-
string bouncing back in their own half planes. Figure
6(a) shows the values of the phase /I) at various points
along the dashed portion of the separating string which
are required in order to have winding number one. The
important thing to note is the sequence of the occurrence
of these values for /)I/. Let us trace the loop around the
string starting at the point p in Fig. 6(a). As we trace this
loop counterclockwise in the x-y plane, the phase /t/ traces
a closed curve in the vacuum manifold S' as shown in
Fig. 6(b). As we go around the circle in the x-y plane the
Higgs field phase P completes unit winding number along
S', but /)I/ does not increase monotonically. A portion of
the vacuum manifold (between /=sr+a and /t/=sr+8) is
retraced when a&8. Thus the configuration of the string
is a highly excited one with more gradient energy than,
for example, the string in Fig. 4(a). Clearly the same is

true for the antistring as well. (Since the separation of
the centers of the string and antistring is very small at
this stage, we assume that the phases at various points on
the dashed portion of the antistring will be the same as
the ones at the corresponding points on the dashed por-
tion of the string. )

Now consider an antistring separating in the lower-
left-half plane and string in the upper-right-half plane.
Figure 7(a) shows the values of P required in the dashed
portion of the antistring and Fig. 7(b) shows how /)/ varies
along S' when a closed loop is traced counterclockwise
starting at point p in Fig. 7(a). We again see that a por-
tion of the vacuum manifold (between /t/=~ a—and
/t/=sr+8) is retraced. The same is true for the string that
is separating in the upper-right-half plane.

At this step we may draw some conclusions from these
figures. We see that for Fig. 7(a), any value of a leads to
a highly excited string-antistring pair, whereas for Fig.
6(a), the string-antistring pair has a higher gradient ener-

gy [as compared to the case in Fig. 4(a)] as long as a&8.
In order to have the lowest gradient energy we may ex-
pect that the configuration that requires least variations
of the field (in the sense that no portion of the vacuum
manifold is retraced) will be preferred. Intuitive argu-
ments thus single out the value of a =8 for Fig. 6(a)
which corresponds to back-to-back scattering of the
string-antistring pair. In simple terms we are saying that
in the left-half portion in Fig. 4(b) the phase /t/ already
winds partially in the anticlockwise direction (corre-
sponding to a portion of the string), and it will cost extra
gradient energy to reverse this direction if this
configuration is to separate out as an antistring with P
having a net winding = —1.

A rough estimate of the gradient energy densities
[coming from a term such as (V@) in the Lagrangian]
can be made as follows. We consider only some sort of
average gradient energy densities and assume that it gives
a fair representation of the net gradient energy of the field
configuration. An actual calculation of the net energies
requires the knowledge of the details of field con-
figuration even far from the cores of the string and can-
not be done in the present qualitative framework. Since
we are only interested in the comparison of energies for
various possible configurations, we believe our approxi-
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FIG. 6. (a) The distribution of /t on the dashed-arc portion
needed in order to represent a string. (b) The path traced in the
vacuum manifold as a closed loop is traced counterclockwise (a)
starting at p.

(a) (b)

FICs. 7. Same as in Fig. 6 but now the values of /t/ on the
dashed arc are chosen so that the configuration (a) represents an
antistring.
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mations are fairly justified. First consider the case in Fig.
6(a). We have

2
2a+2(8 —a } 2' 2a-

l/2
+

L

[8+(m —a) ],

2

(2.3)

where the first term is the gradient energy density for the
solid-arc portion in Fig. 6(a), and the second term is for
the dashed-arc portion. l denotes an appropriate are
length for both halves (which are separated by the dotted
line). (For this one may replace the solid arc by an arc
which has roughly the same shape as the dashed arc. )
Here we have assumed uniform variation of the phase P
for the solid-arc portion as well as for the dashed-arc por-
tion. As we are interested in rough comparative esti-
mates, we expect this approximation not to qualitatively
affect our results. We again emphasize that we are sim-

ply estimating some sort of average gradient energy den-
sity. For example, the same value as in Eq. (2.3) will be
obtained by considering the antistring configuration. If
we were to calculate net gradient energy, we will have to
estimate the sizes of various regions near as well as far
from the centers.

Similarly, the gradient energy density E2 for the case
in Fig. 7(a) is

section such that along any loop in this plane encircling
the intersection point the winding number of the Higgs-
field phase P is zero. This plane is shown by dashed lines
in Figs. 1(a) and l(b) (see also Shellard in Ref. 6). The re-
gion near the intersection point, therefore, is topological-
ly trivial, and the strings may pinch off at that point
separating away from the plane. Strings have intercom-
muted. Thus the consideration of string-antistring cross-
ing is completely general and amounts to an appropriate
choice of coordinate frame. During crossing, a segment
of string and antistring overlaps completely. For the case
in Figs. 1(a) and 1(b) this leads to strong twisting as the
string and antistring approach each other. For this
reason, we consider crossing in a plane where it is easier
to keep track of the phase P around the string and anti-
string. The considerations can be extended to the case of
Figs. 1(a}and 1(b) without altering any conclusions.

Consider the crossing shown in Figs. 8(a) —8(c). We
show the thick core of the string as well as the variations
of the phase P on loops enclosing these strings. Figure
8(b) represents the situation where at the midpoint of the
crossing, the string and antistring are completely over-
lapped. Figure 8(c) shows the stage when the middle por-
tions have crossed. Figures 8(a)—8(c) thus represent the
situation where the strings have not intercommuted.

2
2a+2(8 —a) 2m+ 2a

l/2
+

l/2

16
l2 [8 +(m+a) ] .

2

(2.4)

K. K.
2 2

3xg,

K
Q~z(

Since 0 ~ a ~ 8, we see from Eqs. (2.3) and (2.4) that the
lowest gradient energy is obtained for the case of Eq. (2.3)
with a = (9. This represents back-to-back scattering,
which is clear from Fig. 5(b). In fact it is clear from Eqs.
(2.3) and (2.4) that the gradient energy keeps increasing
as the angle of scattering is decreased from m. (exactly
back-to-back scattering) to zero (exactly forward scatter-
ing).

This is a remarkable result. If the dynamics of the an-
nihilation (and recreation) of a string-antistring pair is
dominated by phase-gradient energy considerations, then
the string and the antistring will bounce back after collid-
ing head on. This is especially surprising as the string
and antistring attract each other. We believe this pro-
vides an explanation of the numerical result in Ref. 6
where a brief mention of this behavior was made.

We will now turn to the case when the string and anti-
string are not exactly parallel. We will argue that above
considerations may provide a clue to the intercommuting
behavior of strings.

B. Intercommutivity of strings

(a)

n~~g, 2
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Intercommutivity of strings means that a pair of
strings, while crossing, exchanges partners [Figs. 1(a) and
1(b)]. It is clear from these figures that for a pair of
strings at any angle (except when they are exactly paral-
lel) we can always find a plane through the point of inter-

FlG. 8. Crossing of strings. (b) A certain segment of the
string and antistring have overlapped. (c) The case when strings
cross each other, and (d) the case when strings intercommute by
pinching of the middle portion (b).
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Strings will intercommute if instead of evolving into the
configuration shown in Fig. 8(c), the configuration of Fig.
8(b) evolves into the one shown in Fig. 8(d). We see in
Fig. 8(d) that this configuration is obtained from Fig. 8(b)
by the pinching of the loop in the middle of the crossing
(note that it is a topologically trivial portion of the
configuration).

If we consider the cross sections of the string and anti-
string in the x-y plane at z =0, we see that Figs. 8(a) —8(c)
represent the sequence of events analogous to the one
shown in Figs. 3(a)—3(c) with Fig. 8(b) representing the
case of complete annihilation [as shown in Fig. 3(c)]. Fig-
ure 8(c) then represents the case when another string-
antistring pair is created in the forward direction, while
Fig. 8(d) shows the case when the portion where the
string and antistring were completely overlapped in Fig.
8(b) radiates its energy in Cxoldstone bosons and disap-
pears, thereby pinching oft the string. In Fig. 8(c), we
have shown only 0 and vr values of P at the midpoint of
the crossing, because the lines representing other values
will be twisted in a more complicated fashion [see Fig.
7(a)]. Also for simplicity we have chosen to work with
the case shown in Figs. 3(a)—3(c) as compared to the
more appropriate case of Figs. 4(a) and 4(b). This does
not affect our qualitative arguments following.

As we argued in Sec. IIA, forward scattering of a
string-antistring pair requires higher gradient energies
and hence is not preferred. If the strings do not inter-
commute, then we are lead to Fig. 8(c). Let us just follow
the phase variations around (say) a string as we go along
it. We see that there is a twist in the /=0 line on the
string by m as we approach (along the z axis) the center of
the crossing point (from below), and as we go further up
the string gets untwisted. Clearly this twist requires an
extra amount of gradient energy. The same twist is also
present in the antistring. A rough estimate of the extra
gradient energy density due to this twist can be made
(say, for an antistring) as follows.

Note that crossing does not require exact forward
scattering and one only needs, after overlapping, for the
string and antistring to go in the other half plane than
they were in before scattering. Hence consider the anti-
string configuration of Fig. 7(a). Since the line of Higgs
phase /=0 for the initial antistring was along the nega-
tive x axis [see Fig. 3(a)], the angle 5 by which this /=0
line has twisted in Fig. 7(a) is

m.a
20 2

(2.5)

Here we have assumed that the variations of P in the
solid-arc region, as well as in the dashed-arc region, are
uniform.

The lines of P for other values will twist by a difFerent
(and possibly smaller) amount. The important thing is
that all such lines will be twisted for the crossing shown
in Fig. 8(c). We use the above value of 6 to get a rough
idea of the average twist in the string. This leads to a
contribution =k5 to the gradient energy density from a
term such as (V'@) . (Here k is some constant. ) Also,
since this corresponds to forward scattering, there is an
extra contribution to the gradient energy density from

Eq. (2.4). Thus, the net contribution to the gradient ener-

gy density is

E „d;,„,= [0 +(~+a) ]+
l

(2.6)

It is seen immediately from both the terms in the above
expression that the gradient energy increases with in-
creasing e. Essentially this means that when the strings
cross, their gradient energies become very large, making
the crossing of strings less favored as compared to inter-
commutivity. Of course, strings could bounce back as
then there is no twist energy and also the gradient energy
contributions will be minimal [see Eq. (2.3)]. However,
for two long strings crossing in a small region, the
momentum of strings will not allow strings to bounce
back. As we have argued above, the distribution of phase
P near the crossing point will favor that the strings inter-
commute (i.e., the overlapping region of the string and
antistring will pinch off). It should be possible to com-
pare the increase in the gradient energy [Eq. (2.6)] with
the kinetic energies of the relevant portions of the string
(i.e., the portion near the crossing point) and get some
idea of the magnitude of critical velocity of the strings
beyond which the contribution of Eq. (2.6) becomes ir-
relevant and strings can freely cross. However we will
not get into such an investigation in this paper.

C. Kink formation

We have seen above that intercommutivity of strings
results when the configuration of Fig. 8(b) evolves into
the configuration of Fig. 8(d), which is obtained by letting
the middle portion of Fig. 8(b) disappear. It is known
from the numerical studies of global strings that due to
long-range forces, the strings try to antialign near the
crossing point. We expect this to be generally true in or-
der to have a smooth field configuration near the crossing
point. (Of course the length of the portion where the
strings are exactly antialigned will be smaller for the case
of gauged strings. ) Thus the angle y in Fig. 8(d) between
the string and antistring will be expected to be very small.
(In fact we expect y to approach to zero as the midpoint
of the overlap is reached. ) It is very suggestive to identify
this configuration as the kink. The difference between
this configuration and any other normal "bend" in the
string as shown in Fig. 9(b) can be seen by noticing the
following. At the point of maximum curvature for the
bend in Fig. 9(b), the tension of the string acts tangential-
ly and tries to straighten the bend. Such a bend will thus
very quickly disappear due to string tension. Contrary to
this the string tension in the configuration of Fig. 8(d) has
no tendency to straighten the kink as is clear from Fig.
9(a). Since the strong attraction of the string and anti-
string keeps the angle y as small as possible in Fig. 9(a),
the tension becomes less and less effective for straighten-
ing the kink.

We thus expect that the configuration of Fig. 9(a) has
much greater stability as compared to normal bends of
the string and looks and behaves quite similar to the
kinks. Actually if the bend of Fig. 9(b) is made sharper
and sharper, it will eventually result in a kink when the
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FIG. 9. (a) The configuration of the string near the point
where the strings intercommuted. (b) A normal bend in a
string. T here denotes the string tension.

inner sides of the string and antistring fuse together. It
will be extremely unlikely to form such fused
configuration by bending an initially straight string due
to large tension. However, we find that intercommutivity
naturally leads to such fused configurations (kinks).

D. String and string parallel to z direction: 90 scattering
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We consider strings parallel to the z axis and again, be-
cause of z symmetry, concentrate on the z =0 cross sec-
tion of the strings. Figure 10 shows a well-separated pair
of strings with a suitable choice of orientation. Figure
11(a) shows an intermediate stage of scattering, and Fig.
11(b) shows the stage when the overlap of the two strings
is maximum. We emphasize that our considerations
below depend crucially upon the existence of the stage
shown in Fig. 11(b), where the centers of two strings have
completely (or almost completely) overlapped. Since
parallel strings repel each other, such a stage will not
occur if initial kinetic energies of strings are small. Thus
this analysis is applicable only for certain energy regimes.

The aspect of the configuration of Fig. 11(b) which is
most crucial to our analysis is the following. The dashed
lines which represent contours of constant Higgs-field
phase P are most dense along the line PQ which is per-
pendicular to the line RS representing the direction of
approach of the two strings. Density of these contours
slowly decreases as we rotate the line PQ to the line RS
and is lowest near the line RS. This behavior is very nat-
ural to expect and follows from the fact that the forces
responsible for the distortion of the contours decrease
with increasing distance. Thus each string is not able to
significantly affect the distant portions of the other string.
Also the phase distribution shows that the phase P is con-
stant on the dashed lines even when we cross the center
of the strings. We have considered a symmetrical
configuration here in which the line of constant phase P
are most dense along the line PQ perpendicular to the
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original direction of approach. It seems to us that if
while colliding the strings were not symmetrical, then
one will not obtain 90' scattering, and the strings will
then scatter in the direction along which the lines of con-
stant phase are most dense. We assume that in an exactly
head-on collision, the strings orient themselves so that a
configuration like Fig. 11(b) is achieved.

Because of the symmetry of the problem, the strings
can only separate either along the x axis (i.e., along the
line RS) or along the y axis (i.e., along the line PQ). If the
strings were to separate along, say, a line making the an-
gle —0 from the y axis, then they should also be able to
separate along a line making the angle —8 from the y
axis, since the configuration has reAection symmetry
about the y axis (as well as about the x axis). Since we are
studying the evolution of fields governed by classical
equations of motion, such ambiguity cannot occur. This
ambiguity is absent only along the x axis or along the y
axis.

Now suppose we maintain this reAection symmetry
about the y axis (and x axis) but smoothly change the
concentration of the contours of constant phase (() by a
very small amount. As long as we do not alter any quali-
tative aspects of the configuration of Fig. 11(b), we expect
that the two strings will still separate along the same axis
as before. The qualitative aspects of this configuration

3 —I
7K I

2
/ 1Z

2

FIG. 10. A far-separated pair of strings.

FIG. 11. (a) An intermediate stage in the scattering of two
strings, and (b} the stage when the two strings completely over-
lap.
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are (1) refiection symmetry about the y and x axes and (2)
concentration of the contours of constant P along the y
axis. As we mentioned, as long as the reAection sym-
metries about the y and x axes are maintained, the only
possible directions for separation are the x and y axes.
[One can construct configurations in which the possibility
is enlarged to a larger number of directions, but such
configurations will not be relevant to the situation shown
in Fig. 11(b).] Since the x and y axes have a discrete
value of angle (~/2) between them, we do not expect that
the separation direction suddenly jumps from one axis to
the other by a very small deformation of the field which
still preserves the qualitative aspects (1) and (2).

Of course by deforming the field further and further so
that the variation of P is more and more uniform (and not
concentrated near the y axis), we will reach a situation
when the P variation is completely isotropic. At this
point the qualitative aspect (2) changes discontinuously in
the sense that continuing the same type of deformation,
we will reach a situation when the P variation is more
concentrated near the x axis. Since one of the qualitative
aspects of the figure has now changed discontinuously,
we have no reason to believe that the direction of separa-
tion still should be the same as before. Therefore a jurnp
in the direction may be allowed now.

Analogy between these arguments and the standard to-
pological arguments should be clear by now. Our argu-
ments are similar to those used for showing the winding
number to be a topological invariant. If we know that a
certain integral (of fields) has only integer values, then
continuous small deformations of fields cannot change
this value. Small changes should not lead to discrete
jumps if continuity is maintained. Our direction of sepa-
ration of two strings, which for Fig. 11(b) has only two
(discrete) possibilities (x and y axes), is the analog of the
winding number. The conditions of continuity are less
clear in our case. Our arguments amount to saying that
any change of fields which maintains the qualitative as-
pects of the configuration should be considered as a con-
tinuous change.

Following the above line of arguments, let us consider
the following deformation of the configuration of Fig.
11(b). Deform the field so that the dashed lines of con-
stant phase P are more and more concentrated along the
y axis. This does not change any of the qualitative as-
pects (1) and (2). Deforming the fields more and more we
arrive at the configuration shown in Fig. 12(a), where the
phase P is completely constant ( =m) in the region away
from the y axis and P changes by 2~ across the positive y
axis as well as across the negative y axis (full variation
around the origin is 47r). According to our above argu-
ments the direction of separation of strings in Fig. 12(a)
will be the same as the direction of separation for Fig.
11(b).

Figure 12(a) represents the case when the full gradient
energy of the two strings is concentrated along the y axis
(in the y-z plane if the z direction is taken into account).
Clearly in this case the motion of the strings will be to
shorten the length of the "stringlike region" along the y
axis. For this purpose one may imagine antistrings at
y =+~ also parallel to the z axis. Thus in the full three-
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dimensional problem Fig. 12(a) will represent two strings
at the origin connected by a sort of domain wall (in the
y-z plane) to two antistrings at y=+~. [For the two-
dimensional problem Fig. 12(a) represents two monopoles
at the origin connected by strings to two antimonopoles
at y =+~.] Clearly the two domain walls will try to de-
crease their areas by moving the two strings along the
+y axis and —y axis. Thus the configuration of Fig.
12(a) will evolve into the configuration shown in Fig.
12(b) which represents the two strings scattering at 90' to
the original direction of approach. As we argued above,
the configuration of Fig. 12(a) is the same as the
configuration of Fig. 11(b) as far as the qualitative aspects
(1) and (2) are concerned; hence, we conclude that for
Fig. 11(b) as well, the two strings will separate along the y
axis, i.e., at 90' to the original direction of approach.
Figure 13 shows this pair of strings separating along the y
axis.

We thus conclude that when two strings scatter in a

i 1 t I
K X yl )0II /3K

7t
7
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K / II ) l~
2 I I 101 h

FIG. 13. Configuration of Fig. 11(b) evolving into two strings
separating along the y axis (which is at 90' to the original direc-
tion of approach).

(b)

FIG. 12. (a) A deformation of the configuration of Fig. 11(b).
Here the phase P is constant ( =n ) away from the y axis and
changes by 2~ across positive y axis as well as across the nega-
tive y axis. (b) The expected evolution of the configuration (a).
Here the two strings are separating along the y axis.
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completely symmetrical manner, they are most likely to
separate out at 90 to the original direction. Another
very interesting aspect which is very natural from Figs.
11(b) and 13 is that the right half of the string, which is
going in the upper direction, is formed from the top half
of the original string coming from the right and the left
half of that string (which is going in the upper direction)
comes from the top portion of the left initial string. Simi-
larly the string which is going to the lower direction con-
sists of lower halves of the initial strings. This behavior
is consistent with various numerical results. '
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III. SCATTERING OF MONOPOLES AND SKYRMIONS
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We now discuss the cases of monopole and Skyrmion
scatterings. We will show that for suitable choices of ini-
tial configurations, these scatterings can be understood in
terms of the results obtained for strings.

A. Monopole scattering

Monopoles are formed when there are nontrivial map-
pings from a two-sphere S into the vacuum manifold of
the Higgs field. We will consider the case when the vacu-
um manifold is S [as is the case when SU(2) symmetry is
spontaneously broken to U(1) symmetry]. Figure 14(a)
shows a monopole configuration. At the origin the Higgs
field 4=0, and 4 goes to its vacuum value g far away
from the origin. The internal directions of 4 on a two-
sphere S enclosing the origin are shown in Fig. 14(a).
The internal degree of freedom for 4 is characterized by
two angles 6 (between 0 and vr) and 4 (between 0 and 2~)
since the vacuum manifold for 4 is S .

In Fig. 14(a) we have divided S into a family of cir-
cles, each parallel to the equator. The angle + winds
once around each of these circles (thus all of these circles
represent a winding-number-one mapping of S' to S').
These circles are further characterized by the angle 0. 0
is 0 at the north pole and 0=m at the south pole of S
(6=m. /2 for the equatorial circle). We have here used a
standard way of constructing the winding-number-n map
of S to S, wherein one starts with a winding number n
map of S ' to S '. By considering S as the suspen-
sion of S ', this map is then extended to a map from S
to S which can be shown to be a winding number n map
(see Refs. 21 —23).

Figure 14(b) shows an antimonopole configuration.
The only difference between Fig. 14(a) and 14(b) is that
now all the circles (which are parallel to the equator)
represent a winding-number-minus-1 map of S' to S'.
Thus %' varies in the opposite direction along these circles
as compared to the case of Fig. 14(a), whereas variation
of 0 from the south pole to the north pole remains the
same as before. In these figures we have shown the varia-
tion of 4 by dotted lines for a circle in the lower half of
S . Variation of 4 for other circles (for different values
of 6) will be the same.

Now let us study the scattering of a monopole-
antimonopole pair. Figure 14(c) represents an intermedi-
ate stage of annihilation where the two S 's have partially
overlapped. We have again oriented the monopole-

(c)

FIG. 14. (a) A monopole and (b) an antimonopole
configuration which are our initial configurations for a far-
separated pair. (c) An intermediate stage of the annihilation of
the monopole-antimonopole pair.

antimonopole pair in a very symmetric fashion, as this is
what we expect the gradient energy to lead to. As in the
case of strings, the S 's shown here represent regions
around the centers of the monopole and the antimono-
pole, where the Higgs field 4 divers significantly from its
vacuum expectation value g. Again our considerations
do not depend upon this S . Rather they depend on the
variation of + and 0, which is the same for all S 's con-
centric with the respective centers of the monopole and
the antimonopole.

By comparing Figs. 14(c) and 3(b) for the case of the
scattering of the string-antistring pair, we see that as far
as matching of + is concerned, the two situations are
identical. As for 6, as long as the motion of the
monopole-antimonopole pair remains confined in the x-y
plane for scattering with zero impact parameter, 0
matches smoothly for various circles on the S 's of the
monopole and antimonopole. Thus 0 becomes an ir-
relevant parameter for this kind of scattering. It is then
straightforward to repeat the considerations of Sec. II A
for this case, and we are lead to exactly the same con-
clusions as the ones in Sec. II A. We, therefore, conclude
that for the configurations of monopole-antimonopole as
shown in Fig. 14(b), the monopole-antimonopole pair will
bounce back if another monopole-antimonopole pair is
recreated after the annihilation. This behavior has not
yet been observed in numerical studies. However, as
should be clear from the above analysis that this result is
expected under rather restricted conditions which are (1)
exact symmetry of the configurations so that the motion
remains in the x-y plane (i.e. , a plane which is parallel to
the circles that have nontrivial winding number), and (2)
energy should be large so that after the annihilation,
another pair could be easily created. It will be very in-
teresting to check this prediction by working in the ap-
propriate energy regime.
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family of circles, all of which are just like the string
configuration. Once the label (e) for the members of the
family becomes irrelevant (as was the case for the above
choices of the configurations), then monopole scattering
looks identical to the scattering of parallel straight
strings, and thus the problem simply reduces to the study
of string scattering.

B. Skyrmion scattering in 2+1 dimensions
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Let us now consider the case of monopole-monopole
scattering. Figure 15(a) shows two far-separated mono-
poles, and Fig. 15(b) shows the stage when the two mono-
poles are completely overlapped. Again the analogy be-
tween this case and the string-string case as shown in
Figs. 11(a) and 11(b) is quite clear. Note that the varia-
tion of 4 (shown by dotted lines for a circle in the lower
half of S ) is maximum along the x axis and gradually de-
creases as we rotate to the y axis. The situation is identi-
cal to the one shown in Fig. 11(b) [with x-y axes inter-
changed as the direction of approach in Fig. 15(a) is
along the y axis]. Thus the variation of 4 is maximum
across the x-z plane here [same as for Fig. 11(b) where the
phase variation was maximum across the y-z plane].

Following the analysis of Sec. IID we thus conclude
that if the collision is energetic enough such that the
centers of monopoles completely overlap, then the mono-
poles will scatter at 90 with respect to the original direc-
tion of motion. Again due to the symmetry of the prob-
lem, the motion of the monopoles is confined in the x-y
plane (which is determined by the planes of the circles
with nontrivial winding number for 4). We further note
that according to the analysis of Sec. II D, the
configuration of the scattered monopole which is going in
the negative x direction (positive x direction) is composed
of those half-portions of the initial monopoles which were
in x (0 (x )0) regions of the space. These findings are
completely consistent with earlier results. '

The essence of the arguments we have used above is
that the scattering of monopoles can be reduced to the
case of the scattering of strings if the monopoles are ap-
propriately oriented. The reason that we are able to do
so is clear from the above construction of the monopole
configuration, which is simply obtained by considering a

(b)

FIG. 15. (a) A pair of far-separated monopoles. (b) The stage
when the two monopoles are completely overlapped.
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FICx. 16. (a) A far-separated Skyrmion —anti-Skyrmion pair
in 2+1 dimensions. (b) An intermediate stage of the annihila-
tion.

Extension of the above arguments to the case of Skyr-
mions is then immediate. Since Skyrmions in 2+1 di-
mensions correspond to nontrivial mapping of S to S,
one may try to use the configuration of monopoles of Sec.
III A. There is only one subtle point here. A Skyrmion
in two space dimensions occurs when fields go to some
constant value at the boundary of a closed region. This
region then can be considered as the stereographic pro-
jection of S, and Skyrmion configuration can be con-
structed (for more details, see Refs. 21 and 23). Figure
16(a) thus shows a far-separated Skyrmion —anti-
Skyrmion pair. These configurations are individually ob-
tained by stereographically projecting the configurations
of a monopole [Fig. 14(a)] and of an antimonopole [Fig.
14(b)] onto R . Note the occurrence of region with 6=0
in between the Skyrmion —anti-Skyrmion pair. This is
one important difference between the case of Skyrmions
and the cases of strings and monopoles, where the varia-
tion of the Higgs-field phase extends to infinity. Also
note that a Skyrmion configuration, contrary to the case
of strings and monopoles, does not require that the Higgs
field go to zero inside the Skyrmion.

Figure 16(b) shows an intermediate stage of the annihi-
lation [analogous to Fig. 14(c)]. We note that the only
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difference between the case of string-antistring scattering
as shown in Fig. 3(a)—3(c), and this case is the occurrence
of another angle 0 which labels different circles around
the centers. However we also note that the value of 0
smoothly matches as different circles come into contact.
Thus 6 becomes irrelevant (just as 8 became irrelevant
for the case of monopoles) reducing this problem to the
annihilation of a string-antistring pair. It is easy to see
that in the same way the problem of the scattering of a
Skyrmion-Skyrmion pair in 2+ 1 dimensions gets reduced
to the case of string-string scattering, and all those results
apply to these cases as well.

We, therefore, conclude that a Skyrmion —anti-
Skyrrnion pair in 2+1 dimensions will bounce back upon
annihilation. A Skyrmion-Skyrmion pair will scatter at
90' (a behavior which is very recently observed in certain
numerical studies' ), and the configuration of scattered
Skyrmions will be composed of the half-portions of the
initial Skyrmions.

C. Skyrmion scattering in 3+1dimensions

Skyrmions in 3+1 dimensions correspond to a non-
trivial mapping of S to S . Following the discussion of
Secs. IIIA and IIIB, we can construct a Skyrmion by
considering the stereographic projection of S . (See Refs.
21 and 23). Figure 17(a) shows a Skyrmion configuration
with winding-number one. We see that this is obtained
by considering a family of monopole configurations (with
unit charge) and labeling each concentric S by a third
angle y between 0 and ~. g =~ at the center of the Skyr-
mion, and y approaches zero at and beyond the outer-
most S . Similarly Fig. 17(b) shows an anti-Skyrmion
configuration which is obtained from a family of an-
timonopole configurations. [Again, what we are doing is
to start with a winding-number-one (minus one) map of
S to S and then extend this map to a winding-number-
one (minus one) map of S to S by considering S as a
suspension of S . '

We see that for this choice of Skyrmion configurations,
the only difference between the case of monopole-
monopole (monopole-antimonopole) scattering and
Skyrmion-Skyrmion (Skyrmion —anti-Skyrmion) scatter-
ing is the occurrence of another angle g. However, we
also note that the value of y will smoothly match as
different S 's come in contact. Thus y becomes ir-
relevant (just as 6 became irrelevant for the case of
monopoles and for Skyrmions in 2+ 1 dimensions) reduc-
ing the problem to the annihilation of monopole-
monopole (monopole-antimonopole) pair.

We, therefore, conclude that a Skyrmion —anti-
Skyrmion pair in 3+1 dimensions will bounce back upon
annihilation. A Skyrmion-Skyrmion pair will scatter at
90, and the configuration of scattered Skyrmions will be
composed of the half-portions of the initial Skyrmions.
What we are finding here is that as far as simple con-
siderations of smooth matching of the Higgs field are
concerned, there is virtually no difference between the
case of the scattering of strings, monopoles, and Skyr-
mions. For the choices of the configurations as shown in
Figs. 14(a) and 14(b), 16(a), 17(a), and 17(b), we see that

FIG. 17. (a) A Skyrrnion and (b) an anti-Skyrmion
configuration in 3+ 1 dimensions.

monopoles as well as Skyrmions in 2+ 1 dimensions differ
from strings due to the existence of another angle 0,
which becomes irrelevant for such scatterings, and Skyr-
mions in 3+1 dimensions differ from the strings due to
two angles 0 and y, both of which become irrelevant for
the above scattering processes. This is the reason why all
these objects may be expected to show the same behavior
in scattering processes.

IV. CONCLUSIONS

We have considered the scattering of a certain class of
global topological defects. These are classified by non-
trivial mappings to S" to S" with n =1, 2, and 3, respec-
tively, for strings, monopoles, and Skyrmions in 3+ 1 di-
mensions and n = 1 and 2, respectively, for vortices and
Skyrmions in 2+1 dimensions. We present Ansatze for
various stages of the scattering processes, which are
motivated by a consideration of the gradient energy. We
analyze the configuration at the stage when the two soli-
tons completely overlap, and then by assuming that the
consideration of gradient energy determines the dynam-
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ics, we draw conclusions about the qualitative aspects of
the scattering such as the final direction of scattering. It
is clear from our Ansatze in various figures that, at the
stage of total overlap, the spatial distribution of the mag-
nitude of the Higgs field is roughly symmetric. We ex-
pect the magnitude of the Higgs field not to play any im-
portant role in determining the direction of scattering
and simply concentrate on the spatial variation of the
direction of the Higgs field in its vacuum manifold.

We find the surprising result that a string-antistring
pair under certain conditions is most likely to scatter
back to back. We further argue that a string-string pair
will scatter at 90 if the collision is energetic enough so
that the string centers overlap at an intermediate stage of
the scattering. We find that the scattered string is com-
posed of half-portions of the initial strings. Our Ansatze
also show why the intercommutivity of strings is expect-
ed and how kinks form very naturally at the points where
strings intercommuted.

We then show that the scattering processes of mono-
poles and Skyrmions can be reduced to the scattering of
strings under certain conditions. Thus all the qualitative
aspects of the scattering of strings automatically apply to
the cases of monopole scattering and Skyrmion scatter-
ing. This is the most important aspect of our analysis in
the sense that even if our arguments for the 90 scattering
of strings and back-to-back scattering of a string-
antistring pair are not very strong, just by knowing that
some of these types of behavior are observed for strings in
numerical studies, we can conclude that the same must be
true for Skyrmions and monopoles as well. We em-
phasize here that these results apply to only those scatter-
ing processes where Skyrmions (or monopoles) are ap-
propriately oriented.

The 90' scattering of strings and monopoles has been
known for some time, and for Skyrmions in 2+1 dimen-
sions it is observed in very recent numerical simulations.
However the back-to-back scattering of these objects is a
prediction of our model which has not been observed so
far (except in Ref. 6 where a brief mention of such behav-
ior was made for the case of strings). It will be extremely
interesting to test these predictions of our analysis in nu-
merical studies by working in an appropriate regime of
energy and by working with suitable types of initial
configurations. Such a confirmation will be especially im-
portant for the case of Skyrmions in 3+ 1 dimensions be-
cause of possible implications for the nucleon-antinucleon
scattering.

Our present analysis is applicable only to global defects
as our Ansatze are motivated from a consideration of gra-
dient energy. However we know that 90' scattering (as
well as intercommutivity of strings) is observed for local
strings and monopoles. We thus feel that our approach
should be extendible to the case of local strings and

monopoles as well. (Local Skyrmions have zero energy
and are of no interest from the point of dynamics. )

Another interesting system to study is the scattering of
anyons in 2+1 dimensions. Since anyons in many as-
pects behave similar to gauged vortices, we expect that
same qualitative features may also show up in the scatter-
ing of anyons. We are presently working on the investi-
gation of these systems.

As we have discussed, our analysis assumes certain
conditions to be valid for the scattering process and
hence our predictions are accordingly restricted. For ex-
ample, for the back-to-back scattering of soliton-
antisoliton pairs, we assume that after the initial pair an-
nihilates another pair is recreated. Our qualitative con-
siderations are insufhcient to find what sort of initial con-
ditions (for example, the initial energies) are required for
this to happen. The situation is somewhat better for 90'
scattering of a soliton-soliton pair, where one can say
that the initial energies should be large enough that the
centers of the solitons corn.pletely overlap. However, one
has to be careful then whether the dynamics is still dom-
inated by the considerations of gradient energy. In this
context we may note that the theoretical investigations of
monopole scattering in Refs. 14 and 15 were done for the
case of BPS monopoles which do not exert long-range
forces on each other. Thus in that case monopoles could
overlap even with very small kinetic energies. Similarly
the investigation in Refs. 7 and 8 was for the case of criti-
cally coupled strings. For the case of the intercommu-
tivity of strings, our considerations (which are based on
the gradient energy) will be applicable as long as the
relevant kinetic energies are not much larger than the
gradient energies.

Our arguments in this paper (for example, for choosing
the Ansatze for the field configurations) are very intuitive
and require stronger justification. However we feel that
the strength of our analysis lies in the fact that it provides
a common framework for the understanding of many
qualitative features of the scattering processes of a large
class of topological defects. Some of our results are in
complete agreement with the numerical results, and the
rest of the results are very clear predictions, the testing of
which can provide a clean test of our model.
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