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This paper presents an application of quantum-mechanical principles to a microscopic variant of
the traversable wormholes recently introduced by Morris and Thorne. The analysis, based on the
surgical grafting of two Reissner-Nordstrom spacetimes, proceeds by using a minisuperspace model
to approximate the geometry of these wormholes. The "thin shell" formalism is applied to this min-

isuperspace model to extract the effective Lagrangian appropriate to this one-degree-of-freedom sys-

tem. This effective Lagrangian is then quantized and the wave function for the wormhole is explic-
itly exhibited. A slightly more general class of wormholes —corresponding to the addition of some
"dust" to the wormhole throat —is analyzed by recourse to WKB techniques. In all cases discussed
in this paper, the expectation value of the wormhole radius is calculated to be of the order of the
Planck length. Accordingly, though these quantum wormholes are of considerable theoretical in-

terest they do not appear to be useful as a means for interstellar travel. The results of this paper
may also have a bearing on the question of topological Auctuations in quantum gravity. These cal-
culations serve to suggest that topology-changing effects might in fact be suppressed by quantum-

gravity effects.

I. INTRODUCTION

The past 3 years have seen a massive resurgence of in-
terest in wormhole physics. The interest in Lorentzian
wormholes was rekindled by the work of Morris and
Thorne. ' These authors constructed and investigated a
class of objects they referred to as "traversable
wormholes. " Prompted by that work, investigations have
been initiated of many other aspects of wormhole physics
such as time machines and causality, simple exam-
ples, ' classical stability, quantum models, "and ener-

gy extraction. ' This paper is intended to give a fuller ac-
count of the present author's work on quantum-
mechanical aspects of the stability of Lorentzian
wormholes. '

As a separate issue, the last 3 years have also seen a
Aurry of interest in Euclidean wormholes. These Euclide-
an wormholes are alleged to be of interest in attempting
to solve the cosmological-constant problem. For a sum-
mary of the status of these Euclidean ideas, see Unruh. '

It is to be emphasized that the Lorentzian wormholes
espoused by Morris and co-workers are a topic complete-
ly disjoint from the Euclidean ideas just mentioned. We
shall have no further need to discuss Euclidean
wormholes in this paper.

This paper —concentrating on the quantum-
mechanical aspects of Lorentzian wormholes —must im-
mediately address the question of quantum gravity. Now
the fundamental principles of quantum gravity are as yet
obscure. No satisfactory formulation of the problem ex-
ists. When confronted with interpretational and formal
problems of this magnitude, one's only hope of being able
to calculate is to resort to some (drastic) approximation
scheme.

The approximation scheme to be used in this paper is

the minisuperspace restriction of the canonical Wheeler-
DeWitt formalism. The basic idea of the minisuperspace
approach is to separate the three-metric into "modes"
and then insist that all but a finite number of these modes
(often one) be forced to satisfy the classical Einstein field
equations. The remaining finite number of modes (not
satisfying the Einstein field equations) are then quantized
by following the standard prescription of canonical
quantization.

This approach is most commonly adopted in quantum
cosmology calculations. ' Typically, all the "translation-
al" modes of the three-metric are "frozen out" by using
the classical field equations, leaving only the "radius of
the Universe" (more precisely, the scale factor) to be
quantized. In the approach adopted in this paper, a
Lorentzian wormhole is modeled by two spacetimes con-
nected by a "hole." Everywhere except the hole, the clas-
sical field equations are assumed to be satisfied, leaving
only the radius of the hole as the one degree of freedom
subject to quantization. This quantization is carried out,
leading to an expectation value for the radius of the
wormhole which is of order the Planck length. This indi-
cates (at least within the context of the minisuperspace
approximation) that the wormhole is stabilized against
collapse by quantum effects. Such a result, if it proves to
persist beyond the minisuperspace approximation, has
important implications for the process of quantum-
mechanical topology change. It is in fact possible to use
the results of this paper to argue that quantum effects
might suppress topology change. "

The paper is organized as follows. In Sec. II we de-
scribe in detail the minisuperspace model we adopt for
Lorentzian wormholes. Canonical quantization is carried
out in Sec. III, while Sec. IV discusses the exact wave
function appropriate to the "dust-free" wormhole, and
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Sec. V discusses WKB methods as applied to "dusty"
wormholes. Finally, Sec. VI consists of discussion and
conclusions. Throughout the paper we adopt "geometro-
dynamic units" so that G = 1, g —= 1, and A =—Lp:Mp,
where L,p and Mp are the Planck length and Planck
mass, respectively.

II. MINISUPKRSPACE MODEL
FOR LORENTZIAN WORMHOLKS

To construct the class of wormholes of interest, consid-
er two copies of the Reissner-Nordstrom geometry. Both
geometries are taken to be of mass M, while one
geometry has charge +Q and the other has charge —Q.
One may temporarily wish to assume that

~ Q~ )M so that
no event horizons exist and the Schwarzschild coordinate
patch covers the complete geometry. This helps in
visualizing the construction, but our results are not re-
stricted to the ~Q~ )M case. The metric of the Reissner-
Nordstrom geometry is

2M Q 2 dr
r 1 2MIr+—Q Ir

+r (d0 +sin Odg ), (2.1)

while the electromagnetic field is simply E =Q Ir .
From each copy of the Reissner-Nordstrom geometry,

one removes identical four-dimensional regions of the
form I (t, r, 0, $)~r (a(r)I. One is then left with two
geodesically incomplete manifolds whose boundaries are
given by the timelike hypersurfaces I(t, r, 8,$)~r=a(r)I.
One now proceeds to identify these two hypersurfaces (by
"sewing" them together). The resulting spacetime is
geodesically complete. It possesses two asymptotically
fiat regions connected by a wormhole. The throat of this
wormhole is at r =a(r). Note that this spacetime is
completely singularity-free because the region surround-
ing r =0 has been explicitly excluded from the manifold.
In particular, for ~Q~ )M the naked singularity is exclud-
ed and need not further concern us. Because this mani-
fold is piecewise Reissner-Nordstrom, the Ricci scalar is
everywhere zero, except at the throat itself. Observe that
the electric fiux lines thread the throat of the wormhole
and do not terminate. Thus there is no electric charge
present anywhere in the model wormhole. This geometry
is "tailor made" for an application of the "thin-shell" for-
malism (the "junction condition" formalism). ' At the
throat of the wormhole the Riemann curvature tensor is
proportional to a 5 function. The Ricci tensor at the

I

junction can be calculated in terms of the extrinsic curva-
ture ' ' (second fundamental form)

~i ik~ 1 ~gk

2 '077 —o
(2.2)

Here g denotes the normal coordinate to the throat,
while ~ denotes proper time along the throat. The Ricci
tensor is almost everywhere (except at the throat) that of
a Reissner-Nordstrom geometry:

A", (x)
R" (x)=R' '" (x)—2V v 0 (2.3)

so that the Einstein-Hilbert action reduces to

(2.4)

d+M/a —Q /a
( 1 2M/a +Q2/a 2+a 2)1/2

d
arcsinh a

d7.

2
1/2-

1
2M Q
a a

(2.5)

Note carefully the distinction between Schwarzschild
time t and proper time ~. They are related by

dt (1—2M/a+Q /a +a )'

1 —2M/a+Q /a
(2.6)

For completeness we mention that the four-velocity of
a point on the throat is

dt da
d d. "
(1 2M/a +Q2/a 2+a 2)1/2

, a, 0, 0
1 —2M/a+Q /a

and that the unit normal to the throat is

(2.7)

By spherical symmetry, the extrinsic curvature contains
only two nontrivial components: A e=—A'~& and W', .
These components may conveniently be extracted from
Ref. 7 (a =—da /d r—an overdot denotes a proper-time
derivative):

1/2

A g=—%'~ = — 1 — + +ag 1 2M Q
a a a2

a
1

2M Q
1 —2M/a+Q /a a a

, 0, 0 (2.8)

Since Qg3d x ~41ra dr, an integration by parts leads to

S =2 aa arcsinh a
2

1/2-
2M Q
a a

2M Q'
a a

1/2
Q2dr —f M—
a

(2.9)
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It should be noted that this calculation is a direct analog of the minisuperspace techniques more commonly used in
quantum cosmology. ' The gravitational action has been written in this way with malice aforethought. We shall see
that the second integral (the f dt) is effectively absent from the total action. This integral is partly canceled by the elec-
tromagnetic contribution to the action, and the remaining portion J M dt is merely a reAection of the fact that the
mass of the system imposes an "imprint at infinity" on the metric. ' In each asymptotically Oat region, the electromag-
netic contribution to the action is

2~2 /l 2 /l 2
g(1) ~ ~2 4 2

16' 16~ r4 2 a r2 2 a (t)
(2.10)

A convenient technical trick at this stage is to cut off the Reissner-Nordstrom geometry at some large fixed radius p.
Then attach this truncated Reissner-Nordstrom geometry to a piece of Minkowski space. This procedure contributes
to the Einstein-Hilbert action an amount

S "= 'f-f [m]p dr= ' f M— dt+O(1/p)=S"' (2. 1 1)

Here I'A] denotes the discontinuity in the second fundamental form at r =p. Now let p~ co and combine terms to ob-
tain

=2 ~ 00 arcsinh 0
1/2

2M Q
0 02

2M Q
0 02

' 1/2

(2.12)

In order to understand better the classical behavior of this wormhole, we shall add some matter to the model. We
choose pressureless dust that is confined to lie on the throat of the wormhole. This dust should be thought of as a "re-
gulator, " used to improve the classical dynamics of the wormhole. Then m =4mo.0, the mass of the dust shell, is a
constant of the motion. The matter Lagrangian simply reduces to I, = —m, and the total Lagrangian describing the
matter plus gravity system is

I t t
=2 ' 00 arcsinh 0

1/2
2M Q
0 02

+ Q'+
0 0

1/2

The classical Wheeler-DeWitt Hamiltonian is now
easily extracted; the conjugate momentum to 0 is

1/2
2M Q
0 0

BI.
p —= =20 arcsinh 0

B0

(2.14)

This relation may be easily inverted to yield
a=(1 —2M/a+Q /a )'~ sinh(p/2a) so that the
Wheeler-DeWitt Hamiltonian is

H,„,(p, a) =pa —L„, —
1/2

2M Q
0 0

cosh + m
20

1/2
2M=20 1 +

2
+0

0 0
(2.15)

The classical dynamics of the wormhole is now ob-
tained by setting H„,=0. The fact that the Hamiltonian
is zero is a standard consequence of the reparametriza-
tion invariance of the theory. To check the correctness
of this calculation, observe that the constraint equation
JVt t 0 reproduces the classical Einstein field equations
for the motion of the wormhole throat:

2M Q
0 02

m

20
(2.16)

Classically, it is easy to see from the Einstein equations of
motion that I must be negative. We shall soon see that
quantum effects permit well-behaved wave functions for
both m=0 and m positive. This calculation of H«, is a
nontrivial check of correctness in that it shows that clas-
sically we can either (1) consider arbitrary metric varia-
tions in the action to obtain the full Einstein field equa-
tions and then use symmetry to simplify these field equa-
tions, or (2) use symmetry to simplify the action ab initio
and then use restricted variations of the metric to obtain
the same physics.

In fact, if a classical analysis is all that is required, then
proceeding from the Einstein field equations is both more
direct and less subject to subtle interpretation disputes.
However, when it comes to quantizing the system, the
Hamiltonian approach just exhibited will be much more
useful.

Finally, we add some extra comments concerning the
truncation procedure. The truncation procedure forces
the geometry at large radius to be exactly Minkowski
(rather than asymptotically Minkowski), thus allowing
use of the simple version of the Hamiltonian constraint
II ff 0. An alternative procedure is available. If one
writes the Lagrangian and Hamiltonian in terms of the
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III. DYNAMICS OF THE WORMHOLE:
CANONICAL QUANTIZATION

From the classical equations of motion, we see that
1/2

2M Q —m /4a=+
a a

(3.1)

Thus large values of a are classically forbidden (a is imag-
inary), while for small a the behavior depends on the rela-
tive magnitudes of Q —m /4 and M . The classical
turning points occur at

a =M+(M —
Q +m /4)' (3.2)

If (Q —m /4) (M, there are two real classical turn-
ing points and the system oscillates between these turning
points. For large enough values of ~m ~, only one of these
turning points is physical, at a,„=2M+~m~/2. The
second "turning point" is then a;„=0,so that our pic-
ture of the motion is simple: The wormhole "emerges"
from a=O with infinite velocity, expands to a maximum
radius of order

~
m ~, and recollapses to a =0 in finite prop-

er time (also of order
~
m

~
). Note that even if Q )M, we

can with large enough
~
m

~

ensure that (Q —m /4) (M,
so that the comments of this paragraph apply.

If Q —m /4=M, the two turning points coalesce at
a =M.

If Q —m /4) M, both turning points are unphysical
(complex). The entire range a H(0, ~ ) is classically for-
bidden, and careful attention to suitable limiting pro-
cedures indicates that the classical solution is a—:0.

These comments should be compared with those in an
earlier paper where the case Q =M=0 was considered.
The turning points are then a;„=0and a,„=~m~ /2,
while at small times and small distances a (r) =&~m ~a/2.
Then a,„~Oas ~m~~0. It follows that for m=O the
classical wormhole always remains at a =0. Adding
quantum effects serves to "smear out" this classically
pointlike object.

With the classical dynamics of the model now under-
stood and the Wheeler-DeWitt Hamiltonian in hand,
quantization is straightforward. The only remarkable as-

Schwarzschild time coordinate and does not truncate the
geometry at large radius, then it is a standard result of
the Arnowitt-Deser-Misner (ADM) formalism that
Hs, h =2M, where each asymptotically Aat region contrib-
utes an amount M to the ADM mass (this is the "imprint
at infinity"). By defining a new "effective" Lagrangian

S,tr= f (Ls,„2M—)dt, (2.17)

one finds that the "effective" Hamiltonian corresponding
to this "effective" action satisfies H,ff=0. It is this S,ff
which, after it is rewritten in terms of the proper time
coordinate, is equivalent to the truncation procedure pre-
viously outlined. This makes explicit our previous com-
ment that the truncation procedure is related to the "im-
print at infinity" of the wormhole's mass.

With the Hamiltonian of the wormhole model in hand,
we now turn to the dynamics of the model wormhole.

pect of the analysis is that in some cases closed-form ex-
act expressions are obtained. Canonical quantization
proceeds via the usual replacement p) —i%0/Ba. Natu-
rally, the resulting quantum Hamiltonian has a factor-
ordering ambiguity. This factor-ordering ambiguity may
be removed in a natural (though not unique) way by
demanding that the quantum Hamiltonian be Hermitian:

1/4

H„,= 1 — +
a

L~
2a cos

a Ba

1/4
2M Q
a a

(3.3)

That this Hamiltonian is Hermitian may formally be seen
by Taylor-series expansion of the cosine. A more careful
statement, taking into account appropriate boundary
conditions, is that this Hamiltonian acts on L [0, ~ ), the
space of square-integrable functions on [0, ~ ). However,
when we discuss the m=O case, we shall see that in this
instance the boundary conditions may be deduced from
the Wheeler-DeWitt equation rather than being put in by
hand. The wave function of the wormhole is determined
in the usual fashion by the Wheeler-DeWitt equation
H, ,g(a)=0, which may be rewritten as H, fr/= —mlt.
Thus m may be interpreted as an eigenvalue of the
effective Hamiltonian associated with L,ff. The mass of
the dust shell is therefore quantized in this formalism.
This behavior is similar to that seen by DeWitt, ' where
a minisuperspace quantization of a Friedmann-
Robertson-Walker universe led to a quantization condi-
tion on the mass of the dust which that universe con-
tained.

IV "DUST-FREE" WORMHOLE: EXACT SOLUTION

For nonzero values of m, exact solutions of the
Wheeler-DeWitt equation have proved elusive, and one
must resort to WKB techniques. For the special eigen-
value of m=0, exact solutions of the Wheeler-DeWitt
equation may be written down by inspection:

exp [ —( n + —,
'

)n(a /L~ ) ].
P„(a)=

(1—2M/a+Q /a )'
(4.1)

Here n is an integer-valued quantum number describing
the internal state of the wormhole. Negative values of n,
not being normalizable, are discarded in the usual
fashion. Note that the dynamics thus implies that
l(j(0) =0. The expectation value of the wormhole radius is

(g„~a~/„)=Lp. The apparent occurrence of singulari-
ties at the classical event horizons is not at all a problem
in that the wave function is square integrable over these
"poles." Physical quantities do not pick up infinites from
the event horizons, and the presence of these event hor-
izons is not a matter of concern.

While not a cause for concern, the presence of event
horizons does complicate the global geometry of the
wormhole. Recall that if ~Q~ )M, then horizons do not
occur and the global geometry is correspondingly simple.
On the other hand, if ~Q~

~ M, the Schwarzschild coordi-
nate patch does not completely cover the Reissner-
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f [a /(a +Q )' ]e da

—[(2n +1) a /L ]

Z2 L 2n + 1 —[z a(n+ 1/2j]=Z CKLP e

K, (Z~a~(n + —,
' )) Ko(Z —a~(n + —,

' ))
X

erfc[[Z iz7r(2n +1)]'
(4.2)

Here KO and E, are modified Bessel functions, erfc is the
complementary error function, and Q—:Ze:Z&aLI, . —
(It is one of the more outre features of geometrodynamic
units that the charge on the electron is related to the
Planck length by the fine-structure constant: e =&aLp. )
This result, while exact, is in its present form unenlight-
ening. The situation may be somewhat improved by us-
ing asymptotic expansions to show that for large n:

Lp(a)=—
4 &2n+1

(4.3)

Nordstrom geometry, and the global geometry of the
wormhole is more complex. For instance, if M) 0, Q=O,
the global geometry may be described as follows: (1)
Take two Kruskal diagrams (appropriate to the descrip-
tion of the maximally extended Schwarzschild solution);
(2) trim a small fringe off the future singularity of one di-
agram (the black hole); (3) trim a small fringe off the past
singularity of the other diagram (the white hole); (4) then
sew the two diagrams together along the trimmed fringes.
The result is a model whereby one can make physical
sense of the oft-repeated hope that matter which falls
down a black hole will reappear in a white hole some-
where else in the "multiverse. " Unfortunately, were one
to undertake such a trip, one would reappear in a future
incarnation of the Universe, rather than in a distant part
of our own Universe, in the meantime having been
squeezed down to sizes of the order of the Planck length.
This is not a useful method of interstellar trave1.

While it is clear from the exponential decay of the
wave function that the average radius of the wormhole
will be of the order of the Planck length, it is possible in
some cases to make more precise statements. The general
MAO, QWO case is intractable. However, for M=O,
QWO, exact results may be obtained:

f aIit„I2da

f I q„I'da

Alternatively, for the n=0 mode, one may use the small-
ness of the fine-structure constant (a =—„',) to obtain

Lp
(a ) = +0(Z a) . (4 4)

To see the physical regime in which these calculations
may be of interest, recall that for elementary particles,
such as the electron, Q/M=10+ . It is only in the
realm of charged elementary particles that the M=O,
QWO case is likely to be a good approximation to phys-
1cs.

One may, on the other hand, consider the "astrophysi-
cal case."Naturally occurring black holes are expected to
have Q «M and M))Mp. Let us approximate by set-
ting Q =0 and estimate (a ) by Taylor series expanding
the square root occurring in the integral for (a ). It is
this "astrophysical case" whose global geometry was con-
sidered previously. A brief calculation yields

I (-,') I., I.,'(a)=, ' +0
I ( 3)v'ir V2n +1 [(2n +1)M] (4.5)

Again, though the detailed calculations are tedious,
they support the assertion that (a ) =Lp. It might be ar-
gued that with hindsight this result is not surprising on
grounds of dimensional analysis. To see that this is not
quite true, observe that the model wormhole possesses
three independent length scales: (1) the Planck length LI, ,
(2) the Schwarzschild radius 2M, and (3) the "charge ra-
dius" Q

=Z&aLp. —
It is worth pointing out the exact sense in which I am

claiming the wormhole to be stable —it is a priori quite
possible that the minisuperspace calculation could have
led to a Wheeler-DeWitt equation whose solution was a
non-normalizable wave function that blew up as a —+0.
With such a wave function, one could at best define
( a ) =0, indicating that the wormhole would be
overwhelmingly likely to have collapsed to a point. In
fact, of course, the situation is very much better than that
unpleasant possibility, the true wave function behaving as
it~v'a/Q as a~O. This boundary condition, coming
directly from solving the Wheeler-DeWitt equation, does
not have to be put in "by hand. "

Once one adds dust to the wormhole throat, relatively
few exact statements can be made. It is, however, possi-
ble to show that the mass eigenvalues possess an infinite
degeneracy —this can be traced back to the fact that the
Hamiltonian is essentially a trigonometric function. Let
us proceed by noting the identity

cos [f(x)g(x)]=cos + [f(y)g(z)]
a

BX Bp Bz
r

x =y=z

cos cos
Bg Bz

—sin sin
Bz [f(y)g(z) ]

x =y=z

cos f(x) cos g(x) — sin f(x)
BX BX BX

sin g(x)
BX

(4.6)
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—/3(a /Lp )
With a little bit of work, one can use this identity to evaluate H, ff[e li/] as

' )/4—P(a /L ) —P(a /L )

0 a

L 2

X2a sin
2a Ba

1/4

+Q q()
a a

(4.7)

—2nn(a /Lp )
—2vrn(a /Lp )

H, ff e =+m e

—2n(n+ ) /2)(a /Lp ) —2n(n+ ) /2)(a /Lp )

H, ff(e = —m e

(4.&)

Thus suppose we take ttj to be an eigenfunction of H, ff

with H, ffp=mg; then &I(dH/Bp )[p(E,q), q]I
w~B(q) =

4 Ip(E, x)IdxX exp +

Observe that in the allowed region,

(5.3)

So one sees that the infinite degeneracy occurring in theI =0 case is no accident. Moreover, this informs us that
quantum-mechanically positive values of I are as well
behaved as negative values.

I tt'w~t)(q) I

1

I(()H/Bp )[p(E,q), q]I
1

q(E, q)I
(5.4)

V. "DUSTY" WORMHOLE: WKB TECHNIQUES

For the case m %0, exact solutions have proved to be
elusive, and recourse has been made to WKB techniques.
Since the Hamiltonian is not quadratic in momenta, a
slight variant of the usual WKB technology is appropri-
ate. Consider an arbitrary classical Hamiltonian H(p, q);
we wish to find the WKB approximations to the true en-
ergy eigenvalues and eigenfunctions H (P, q )g =EP.
Proceed as follows.

Step 1. Set H(p, q) =E and invert to obtain p (E,q), the
momentum at the point q of a classical trajectory of ener-

gy E.
Step 2. Quantize the energy eigenvalues by setting

As usual, the particle is most likely to be in those regions
where classically it travels the slowest. It is easy to see
that when H =p /2m+ V(q) this generalized prescrip-
tion reduces to the usual WKB approximation. This gen-
eralized WKB approximation may be systematically de-
rived in the usual manner from the first two terms of a
formal power-series expansion in A.

Applying this formalism to the problem at hand, in
place of E we write m, the mass of the dust shell which is
to be quantized. We note that p(m, a) is a multiualued
function:

Pl 1
p(m, a)=2a arccosh

2a 1 —2M/a+Q /a

fp(E, a )da =(l +6)fi . (5.1)

m 1=+2a arccosh
1 —2M/a+Q /a

+2a2nin . (5.5)
Here 6 is a number that depends on both boundary con-
ditions and the Hamiltonian H. In the old Bohr-
Sommerfeld quantization, 6 is just taken to be zero. For
a Hamiltonian quadratic in momenta, the WKB method
shows that 6 is typically a simple fraction (e.g. , —,', —,', etc.).
For Hamiltonian nonquadratic in momenta, 5 must be
evaluated on a case-by-case basis and is often transcen-
dental. ' Since for the purposes of this paper a precise
calculation of 5 would add little to our understanding, 5
will not be evaluated, but shall merely be carried along as
an arbitrary constant.

Step 3. In the classically allowed region,

fp(m, a )da

max m 1=2 2a arccosh
amin 2a 1 —2M/a+Q /a

=(I +5)fi . (5 6)

Here arccosh maps [1,ao) to [0, ~ ), and the + ( —)
denotes outgoing (ingoing) directions. The quantization
condition on I reads

&(aH/ap ) [p(E,q), q ]
wKB(q) =

q p(E, x)dxX exp +i

while in the classically forbidden region,

(5.2)

Note that the imaginary contribution to p (m, a), being a
total derivative, does not contribute to the quantization
condition. The WKB estimate for the eigenvalue I is
thus implicitly given as a function of l: m =m(l). Note
that each m eigenvalue has an infinite degeneracy (with
respect to n). The quantum number n does, however,
contribute when estimating the WKB wave function:
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PwKB(a) =
exp i f p dx/A'

+a(m, a)

exp[ 2n—ir(a/Lp) ]

[1—2M/a+(Q —m /4)/a ]'

(5.7)

in agreement with the exact calculation.
Returning to estimates of the eigenmass of the dust

shell, the quantization integral in the general Q WO,
MAO case is undoable. Though the integral may be com-
puted in closed form for the QWO, M=O case, the result
is not enlightening. A feel for the physics may best be ob-
tained by considering the Q =0, M =0 case:

are WKB eigenmodes corresponding to an eigenmass—m. Suppose we go outside the classically allowed re-
gion, to large values of a; then

m 1
arccosh

1 —2M/a+Q /a

=arccosh(0) =i ir/2, (5.9)

so that as a ~ ~, one has

p(m, a)~2a2iri(n+ —,'),
tpwKB(a) exp[ —2rr(a/L~ ) (n + —,

' )],
(5.10)

independent of l and ~m~. For the "Ripped" eigenvalues
(
—m), one sees

p (m, a) ~2a24ri(n + —,
' ),

lljwKB(a)~exp[ 2'(a/LJ, ) (n+ —,')—] .
(5.11)

Thus the large-radius asymptotic behavior of the WKB
solution is identical to that of the exact m =0 solution.

Turning to the other extreme, as a ~0, the "velocity
factor" I /'t/a dominates and

V'a
PWKB( )

2 2 iy4(Q —m /4)
(5.12)

Again, this is similar to the exact m =0 solution, but
with a "shifted" value of the charge, Q ~(Q —m /4)'

In fact, if one just blithely sets m =0, one can recover
the exact solutions from the WKB estimates. For m =0,
p (a) =2a arccosh(0) =2aiir(n+ —,

' ), while ~a(a)
~

=(1—
2M/a +Q /a )', the entire real line being classically
forbidden. The WKB wave function is then

exp[ ir(a/Lp) (n +—
—,')]

KB(a)=
(1 —2M/a+ Q'/a')'"

(5.13)

so that in the classically allowed region the wave function
is indeed oscillatory, but with an envelope that for n &0
is exponentially damped. Note that we have in this
manner recovered the degenerate modes discussed in the
previous section. If we now Hip m —+ —m and use
arccosh( —x) =arccosh(x)+i ir, we find that

exp i f 'p dx /fi
PWKB( a )

a(m, a)

exp[ —(2n+1)ir(a/Lp) ]

[1—2M/a+(Q —m /4)/a ]'r

(5.8)

2 f 2a arccosh — da = ( l +6 )fi .
0 2a

(5.14)

Rescaling to dimensionless variables, the integral is trivi-
al with the result that m(l)= —Mi&2(1+5). Thus the
mass of the dust shell is quantized in terms of the Planck
mass, as is only to be expected.

In summary, the WKB analysis indicates that the re-
sults obtained for the exact m =0 eigenfunctions are gen-
eric. The wave function is well behaved at the origin and
exponentially damped at large radius. The average ra-
dius is of the order of the Planck length.

VI. SUMMARY AND CONCLUSIONS

In summarizing the content of this paper, one should
make a very careful "reality check" as to how much of
these calculations to actually believe. Perhaps the most
damaging technical criticism that can be made concern-
ing this calculation is that it is performed in minisuper-
space instead of using Wheeler's full superspace. It is
quite possible (maybe even likely) that the brutal trunca-
tion from an infinite number of degrees of freedom
gz(x, r ) down to one degree of freedom a(r) has also bru-
tally truncated the real physics. Unfortunately, given our
current lack of calculational abilities, we simply have no
choice. In mitigation of this point, observe that although
the application is unique, the minisuperspace technology
employed is a standard quantum-gravity technique.

I should mention some other potentially serious prob-
lems. (1) Though the factor ordering choice made in H„„
is in some sense "natural, " it is by no means unique. For-
tunately, this criticism does not apply to the WK8
analysis —and the WKB analysis indicates that the quali-
tative features of the exact solutions continue to hold for
m&0. (2) Since the expected wormhole radius is of the
order of the Planck length, it is far from clear that the
Einstein-Hilbert action is an appropriate description for
gravity. If R terms are present (and this is expected on
rather general grounds), the analysis of this paper is in-
complete. In particular, a naive application of the
"thin-shell" formalism is no longer appropriate since this
would now involve squares of 5 functions.

The "bottom line" is this: This paper has marshaled a
number of calculations which serve to indicate that min-
isuperspace models of Wheeler wormholes are quantum-
mechanically stable with a natural radius of the order of
the Planck length. It is this qualitative feature of the
analysis that should be taken as the main thrust of this
paper —rather than any of the particular model calcula-
tions. Unfortunately, it is rather difficult to judge to
what extent if any these results might survive if one at-
tempts to go beyond the minisuperspace approximation.
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The implication that Wheeler wormholes are stable
and amenable to some limited calculational techniques
bears upon a second question —the quantum-mechanical
process of topology fluctuation. " The occurrence of a
Auctuation in topology may be viewed as equivalent to
the collapse (and subsequent detachment) of a Wheeler
wormhole. However, the minisuperspace calculation
presented in this paper can be interpreted as indicating
that the required collapse does not occur. Thus, if we are
willing to believe this result beyond the minisuperspace
approximation (and this is a big if), it is possible to argue
that the putative quantum-mechanical stability of the

Wheeler wormhole might in fact prevent fluctuations in
topology. " Though the idea that quantum gravity
engenders topological fluctuations has been current in the
community for a rather long time, the number of calcula-
tions that can actually be carried out is distressingly
small.
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