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Bosonixation of odd-spin-structure amplitudes
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In string theory the odd-spin-structure loop amplitudes have previously been studied only in the
fermionic construction for cases with exclusively bosonic external states and only in the bosonic
construction for amplitudes with at least two external fermions. '%e establish and discuss the Bose-
Fermi equivalence for odd-spin-structure amplitudes.

I. INTRODUCTION
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Bosonization of string-theory vertices' and the con-
struction of amplitudes corresponding to these vertices
has proven to be an extremely useful technique in treat-
ing graphs with external fermions. At the one-loop level
the equivalence of the bosonized amplitudes to those de-
rived from the Neveu-Schwarz and Ramond fields is
based, in the case of even-spin structures, on the addition
theorem for 0 functions;

clear for the OSS piece. Furthermore, Lorentz invari-
ance even for the even-spin structures was not manifest in
intermediate steps, but was imposed at the end through
symmetrization techniques. In the bosonized formula-
tion the extension to multiloop graphs has also been dis-
cussed by many authors.

With external bosons only, the first appearance of
odd-spin structures occurs in the one-loop six-point func-
tion which contains the potential gauge anomaly. The
anomaly cancellation in the case of an SO(32) gauge
group was established without calculating the full ampli-
tude by taking the gauge projection from the beginning.
In this calculation the OSS fermionic correlation function
does not appear. In the calculation of the full six-point
function, this correlation was found to be

(o~&„(p,)&„(p )Io) =g„go"(p,/p )

The "prime form" E (x,y) is proportional to the 91 func-
tion, the proportionality constant canceling between the
two sides of Eq. (1.1):

where
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By a suitable choice of the arbitrary parameter e, an
equivalent addition theorem can be written with the |93 s
replaced by 0, , Oz, or 04. In the case of odd-spin struc-
tures, the Bose-Fermi equivalence has not been demon-
strated. The odd-spin-structure (OSS) amplitudes are
those which contain an odd number of I"s on internal
fermion lines. These include all parity-odd graphs with
external bosons only. Because of the chiral nature of
string theory, OSS amplitudes with external fermions do
not differ in their behavior under parity from even-spin-
structure amplitudes. In Ref. 2 the OSS amplitudes with
external fermions were considered together with even-
spin-structure amplitudes in the bosonized formalism.
The treatment relied heavily on analytic function theory
on a closed Riemann surface so that applications to
open-string theory and the connection to the Ramond-
Neveu-Schwarz (fermionized) formalism remained un-

v, —= (1np, )/2mi,

r —= (1nw ) /2~i (1.5)

(p}—:y„/(i&2)+y„g (d„"p"+d„"p "),

with

dn —(bn +b n n/2)/( 1 n)1/2 (1.7)P P P
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the b and b' sets of oscillations as well as the d and d set
satisfy canonical anticommutation relations. The vacu-

Relative to earlier normalizations, we have absorbed a
factor of 1/(i&2) into the definition of 1„to facilitate
unification with the Neveu-Schwarz sectors. That is we
have put, on the genus-1 surface,
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um expectation value in (1.3) is defined to include a nor-
malized trace over the Dirac matrices. The correlation
(1.3) was independently suggested from an analyticity
point of view by Verlinde and Verlinde and also derived
by Miki.

The elimination of spurious states from the string-
theory amplitudes is most easily e6'ected by including a
ghost term in Lo. The superconformal ghosts that elimi-
nate the negative-norm states due to the Neveu-Schwarz
and Ramond 6elds contribute to Lo through

L3 =g"P y— (1.9)

The index r takes integer values on fermion lines and
half-odd-integer values on boson lines. Traces over L("
are most transparent if one notes that (1.9) can be written
in terms of two independent sets of canonical oscillators:

Lf" = g r(d "d "+e"e"), ¹"=g (d "d "+e"e"), (1.10)

and, for integer r,
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These factors occur multiplicatively in the correlation
functions in the four one-loop spin structures.

In Sec. II we review the Bose-Fermi equivalence in the
case of the even-spin-structure amplitudes. We introduce
and make use of a PfaKan expression for the fermion-
ized correlation functions which leads to a generalization
of Fay's formula clarifying the Lorentz invariance of the
full amplitudes in bosonized form. In Sec. III we treat
the odd-spin-structure amplitudes, beginning for the sake
of clarity with the dimension D =2 case. The final sec-
tion contains a summary and discussion of our results.

r)0 r)0
where

d"=(P, +y„), d"=(P „+y „), [d„,d, ]=5„, , (l.1 la)

e"=(p„—y„), e"=(p „—y „), [e„,e, ]=5„, . (1.11b)

The ghost contributions to one-loop amplitudes are then,
for half-odd-integer r,

II. RESULTS FOR EVEN-SPIN STRUCTURES

In the fermionic construction of even-spin structures,
one encounters correlation functions of N anticommuting
Neveu-Schwarz or Ramond fields:

ggh
Tr( —1) (1.12a)

(2.1)

(1.12b) with various D-vectors r, (D = space-time dimension).

C& has a useful expression in terms of Pfaf5ans:

C (z,z, . . . , z )=P((o~r; H(z; )r H(z )~O) .). .

The PfaKan is de6ned as the square root of the determinant of an antisymmetric matrix:

P ( A; )—:[det( A;J ) ]'~, A,. = —A, .

(2.2)

(2.3)

The Pfaffian is trivally zero if N is odd. Using the properties of Pfaffians, the equivalence of (2.1) and (2.2) can be estab-
lished by induction, beginning from the trivial equivalence of the N =2 case, and noting that the right-hand sides of
(2.1) and (2.2) both satisfy the recursion relation

N

Civ(zi, . . . , z~)= g ( —1) Cz(z„z )C~ z(z2, . . . , zz jomitted) .
J =2

(2.4)

A recursion relation of this form provides an alternate de6nition of the Pfa%an and resolves the sign ambiguity in
(2.3). A useful theorem relates the Pfaffian of order N (even) to a sum over determinants of one-half the order:

2+ P(A)=P(A —A )= g ( —1) 'detA 1 .
eq. part's

(2.5)

In Eq. (2.5) the N indices of A are partitioned into two sets [i ] and [j ] of equal order N/2 and the determinant is tak-
en over the elements of A that couple the two sets. One then sums over all such equal partitions. This relation is de-
rived inductively by noting the trivial equivalence for the N =2 case and verifying that both sides satisfy the recursion
relation (2.4). The sign of each term depends on whether the sum of all the indices in set [j] is even or odd. The sum
over equal partitions can also be written by assigning to each index a parameter a =+1 and summing over all choices of
the u; consistent with a zero sum:
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(2.6)

At one-loop order in string theory, the amplitudes contain factors from orbital oscillators multiplied by traces over
anticommuting fields. These traces can be reduced to vacuum expectation values of fields with rotated oscillators
through the technique of Ref. 10. The resulting correlations can then be related to Pfaff]ans through Eqs. (2.1) and
(2.2). For example,

M]v:T—r( —1) w ff r; H(p;, b, bt)

„, e,(olr)
=w 'rr 0 ]]r, H(p, , dd) 0,

)'9 i=1

„, ~(ol )
=M P[r, ry(p. ./p;, w)] . (2.7)

Here I.o includes the term from the superconformal ghosts

r& ,r,—I:r.& ]=&.+,o.
r &X+1/2

The Neveu-Schwarz field is

(p b bt) ~ (bnp
—n —]/2+bntpn+]/2)

p p» ~ Ip P
n=0

The d oscillators in (2.7) given by the trace theorem of Ref. 10 are analogous to those in (1.7) and (1.8). r) is the Dede-
kind q function:

g= +(I—w") .
n=1

The g function is defined by

])9](0) 83( v]pl r)
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(2.9)

Although y(p /p, ) is singular at p. =p;, the Pfaff]an in (2.7) is, of course, defined as the square root of the determinant
of the corresponding matrix with diagonal elements put to zero.

The Pfaff]an in (2.7) can be written as a product of D/2 Pfaffians corresponding to a Cartan-Weyl decomposition of
the Lorentz vectors r;:

r = (r;2, ]+i—r;2, )/&2, r,
'= (r; 2, ]

—ir; 2, )/—&2 . (2.10)

The superscript in (2.10) represents the Lorentz indices in the Cartan-Weyl basis, while the subscripts after the comma
represent the Lorentz indices in the Minkowski basis. To see the product decomposition of the Pfa%an, note that the
vacuum expectation value (VEV) in (2.7) can be written

N N D/2
0 ]]r; H(p;) 0 = 0 ]] X [r, 'H (p;)+r; H'(p;)] 0)''

i=1 i =1 a,-= 1

D/2
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D/2
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( —))r(0 ]][r, 'H '(p;)+r;'H (p )],„~„.~ 0)'
i=1

D/2 N

( —1) + 0 + [r, H (p, )+r, H(p, )]0.
b=l i =1

D/2 D/2
( —1 ) Q P [r; rj g(pj /p, ) r~ r, y(p, /p/

—) ]
a. =1 b=l

(2.11)

The parity ( —1) is +1 if a; ~ aj for all i &j and is —1 if the indices are an odd permutation thereof. In the last ex-
pression of Eq. (2.11), we have used the fact that y(p) is odd under inversion of its argument. The decomposition of the
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Pfaffian into a sum over products of D/2 Pfaffians can also be seen by a suitable manipulation into a block-diagonal
form using the well-known properties of determinants. We can now use (2.5} and (2.9) to write

i8', (0) 83
M =u) '~' g ( —1) II g 5

2m.03 . '9 . a =i b=l u. =21
l

x II r,
'

a. = —1
l

a.=+1
J

83(v —v; ~r)
( —1)~r'

8,(vj —v; ~r) a. =a.=b, a. = —a. = —1J 7 l J

(2.12)

To understand the essential features of (2.12), the reader might find it useful to examine first the D =2 case. For D =2,
in fact, one can write a simple generalization of Fay s formula, [Eq. (1.1)] that makes clear the Lorentz invariance of the
bosonized correlation function:

i8', (0)
I'[r, rJX(p, /p, )]=

2vr8, 0 a,- =+1
a. = —1 a.=+1

J

(2.13)

The Lorentz invariance of (2.12) is established by its equivalence to the manifestly Lorentz-invariant form (2.7). The
addition theorem (1.1) tells us that
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det
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l J

(2.14)
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In the general D-dimensional case, we have, therefore,
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J

where we have put, for clarity,
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l
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l
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The right-hand side is the bosonized expression for M&. It can be obtained by a trace over bosonized H fields H„:

—$'n L —1/2MN=g Tr( —1) 0 e 'w ' IIr H (p)e ' 0
nEZ i=1

(2.16)

where

D/2 Q.

JIB( ) ~ (
i —ie '(p)+r ~'el@ '(p)).

Ca. ' i i

a,. =1
(2.17)

The fields @' are constructed from bosonic oscillators in a way that is totally parallel to the string coordinate field ex-
cept that the momentum operator p 0 has quantized eigenvalues:

&0 (p)=q() —ip()lnp+ g (a ' p +a p )/v'rn
m =1

(2.18)

The sum over n in (2.16) takes the place of the loop momentum integral. The 83(ga;v;~r) in (2.15} results from this
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zeroth-mode summation. The cocycle s c, are required to provide the ( —1) factor in (2.15) or equivalently to ensure
that H with different Lorentz indices p anticommute. One representation" isP

C1=1
(2.19)

17TP o
Ca+1 e Ca

2miLO
The validity of (2.16) does not depend on the choice of 6 signs in 2.19. The insertion of the G-parity operator e
into the trace (2.7) has the effect of interchanging 83 and 84 in all equations of this section. The G-parity operator to in-
sert into the bosonized trace [Eq. (2.16)] is

G =exp im g po ( —1) (2.20)

N

Mz =——Tr( —1) w ' II r, I'(p, b, b )
i=1

o ii., rt~„d, d) o)
'QM i=1

„, e,(0]r)
N P [r, r, yo(p, lp;, w ) ]

Similarly, the correlation of Ramond fields with even-spin structure is given by replacing all 03 s by 02 s. This is accom-
plished in the bosonized trace [Eq. (2.16)] by replacing the sum over integers Z by a sum over half odd integers Z+ —,.
That is,

—1/2 02 D/2 D /2

X (
—1)'II X

a,. =1 b =1 a. =+1
a. =a.=b

J

e, yabv, r
II r"
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J 1(J
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J

8, ( v. —v. )
'

a,'. aj'
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(2.21)

III. RESULTS FOR ODD-SPIN STRUCTURES

Although the results for even-spin structures have been relatively well understood for several years, the relation be-
tween the fermionized and bosonized expressions for odd-spin structures has not been up to now well established. For
amplitudes with external fermions, the fermionized construction presents severe complications' and has not been well
studied in the case of multiple external fermion pairs. The bosonized expressions, on the other hand, seem relatively
simple. ' ' Conversely, the OSS amplitudes with external bosons have been clearly derived only in the fermionized
version, although it is tempting to infer the corresponding bosonized expressions from the amplitudes with external
fermions. In this section, beginning from the well-understood parity-odd amplitudes with external bosons, we derive
the corresponding bosonized expressions. The way in which the bosonized vertices provide the required D-dimensional
e tensor is made clear together with the Lorentz invariance of the bosonized formalism.

From the fermionized point of view, the OSS amplitudes with external bosons have a structure apparently quite
different from that of the even-spin structures. In place of (2.7) one encounters correlation functions of the form

gh
N

Moss Tr( —1) I + w II r; I (p;, b, bt)

N
Q y

+ r. ~ P p. d d Q
i=1

(3.1)

The trace in the center expression of (3.1) and the VEV in the final expression are defined to include a normalized trace
over the Dirac matrices. Using the results of Ref. 6, Eq. (3.1) may be written

N
OSS D —2MN = '9 ep p p X ripri,

i.=1
J

. r, „(—1) P'[r, r go'(p Ip, )], (3.2)

with yo given in Eq. (1.3). The validity of (3.2) is established inductively starting from the trivial N =D case and mak-
ing use of the recursion relation of the Pfaffians. In (3.2), D-vectors are chosen from among the r; in all possible ways
such that ij (ik for j (k. The parity ( —1) is +1 if the ordering [r]= [r; r;; other r s] is an even permutation

of the index order and —1 otherwise. The prime on the Pfaffian indicates that the D r; contracted with the e tensor are
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omitted from the Pfaffian. The e tensor can be incorporated into a larger Pfaffian writing, for D even,

Moss ( 1 )D/2 D —
2P(& +11(

By the Pfaffian in (3.3) we mean the square root of the determinant of the antisymmetric matrix A,", in which

A,"=0, i =j,
2,"=r, ryo'. (p, lp;), i,j ~N, iAj,
A, . =ri . N, i +N &j +X+D,
A,"=0, N (i,j ~X+D .

(3.3)

(3.4)

r; z. is the (j—X)th component of the D-vector r, Fo.r clarity we study first the D =2 case suppressing the factor
coming from the ghosts. Equation (3.3) becomes

ass= q2 —p [te„„+r, .r&yo'(p, Ip; ) ]OSS 2 (3.5)

The two-dimensional e tensor contracted with two r s is

e„„=r; ir, 2 r; 2r, 1
=—i (r; r, rj r;—), (3.6)

whereas, using the antisymmetry of g0',

r, rjyo'(p~ Ip; ) = r; r~yo'(pj /p, ) rj r; yo—'(p; Ipj. ) .

We can therefore use the theorem (2.6) to write the D =2 case as

(3.7)

ass= ig2-
a,. =+1

a,. = —1

(
—1 )~r

J
,
a.=+1j

det[t +go'(p, /p; )]
dt t=0

(3.8)

The last set of large parentheses in (3.8) appeared also in the work of Verlinde and Verlinde. The structure of the QSS
amplitudes seems in the fermionic construction quite difFerent from that of the even-spin-structure amplitudes given in
(2.12). In order to make connection with the bosonized amplitudes, we make use of a further identity from Fay:

II 8,(x —x;)8,(y; —y )

II8,(y —x; )

8', (y, —x;)
det t-

dt 81(y —x; )
(3.9)

This can be obtained by differentiating Eq. (1.1) X/2 —1 times with respect to e and setting e to —r/2 —
—,'. Using the

definition (1.3) of yo", we then have

det[t +go"(P. /P,)].dt

N

pa, v,
i=1

N/2 —1

8', (0)
2&l II 8(;--,)" II (-1)

a,. =+1

(3.10)

Since 8', (0)=2m' w', we can then write the D =2 case as

Mo = — g 5 II r,

a. = —1
t

J
a.=+

J

N

8, b'av,
i=1
gw'" II

8(v —v )

; () i 81(0)/2n
(3.11)

It is a simple matter to generalize the D =2 case to that of an arbitrary even number of dimensions D. To compare
with Eq. (2.15), one has, for the odd-spin structures,

D/2 D/2
M = —g g( —1)

a,. =1

81

b'av;

7

gw'" II r'
a. =—

—b
8(v —v)1 j i

rj
; () i 8', (0)/2m.

(3.12)

From this point it is a simple matter to write MN as a trace over bosonic fields only:
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I. —5/8M~ee= — g Te 0 e "e 'ee ' tie M (p;(e "0) .

n GZ+1/2 i=1
(3.13)

In the fermionized form the vertex is expressed in terms of Neveu-Schwarz fields for emission from a space-time bosonic
line and in terms of Ramond fields for emission from a space-time fermion. The bosonized formalism provides a
unification of these emission vertices since the H occurring in (3.13) is the same as that in (2.16). Similarly, the
Ghozzi-Scherk-Olive (GSO) projection in the two cases (in the I'z picture) takes the unified form

l 7TPp ~gh
1 —e (

—1)~
~@so=

2

In the F2 picture the bosonic propagator is

l
8 I l g2 Gso

0

while the Fermion propagator is

F
E L 5/8 Gso

0

In both cases,

5 00

Lo=p /2+ g (p') /2+ g n (a" a„")+ g n (a"' a"') +Lf" .

(3.14)

(3.15)

(3.16)

(3.17)
a=1 n=1 a=1

Note, however, that on bosonic lines p has integer eigenvalues, while on fermionic lines the eigenvalues are in Z+ —,.
In the case X = 10, the fact that 8,(0~r) =0 requires in (3.12) that the r; be associated in pairs with opposite a; to the

Cartan-Weyl indices b. Equation (3.12) then contains five factors of the form (with i & j)
8,(a, (v —v, ))/0, (v —v, ) =a

5 5 T

m„"=—q-'~-'"[ie;(0)/2~]' y ( —1)' II
a,. =1 b =1 a,. =+1 ' i

a.=— J
a.=+

J

(3.18)

5 5= —&'&' X(—1)'II X ~ .b.
a,. =1 b = 1 a,. =+i

8 ~10= —g e . . . rl r2 . r10
1 2 10

II r,
' IIa,

j i(j
CK

—+J

(3.19)

In (3.19) one recovers the Lorentz-covariant e tensor
form which is evident in (3.1). It is instructive to consid-
er the two-dimensional case in which the second and
third forms of M in (3.19) correspond to Eq. (3.6).

IV. SUMMARY AND OUTLOOK

We have demonstrated the Fermi-Bose equivalence for
the odd-spin-structure amplitudes. Although the boson-
ized form might not have been unexpected based on the
results for the even-spin structures, the present work pro-
vides the precise relation between this bosonized form
and the earlier fermionized form of the amplitude. In ad-
dition, the equivalence of Eq. (3.12) to (3.2) establishes
the Lorentz invariance of the bosonized amplitudes and
the correct provision of the totally antisymmetric e ten-

sor. The parity-odd nature of the amplitudes is not at all
apparent in the form (3.12), which seems quite similar to
the forms (2.15) and (2.21) of the parity-conserving ampli-
tudes.

It would be interesting to determine whether the proof
of anomaly freedom ' of the SO(32) theory or the finite-
ness' of the parity-odd N-point functions is simpler from
the bosonized point of view. It is also possible that the
Pfaf5an form of the fermionized amplitudes, which we
have heavily relied upon, will make these properties more
transparent. We leave these questions and other applica-
tions of our results to future investigations.

Note added. After submission of this article it has
come to our attention that the identity due to Fay quoted
in our Eq. (3.9) was also employed recently by P. DiVec-
chia, Nordita Report No. 90/2 P (to be published in
Proceedings of the XXIII International Symposium
Ahrenshoop, Ahrenshoop Germany, 1989).
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