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It has been shown elsewhere that in a classical spacetime with multiply connected space slices
(wormhole spacetime), closed timelike curves can form generically. The boundary between an initial
region of spacetime without closed timelike curves and a later region with them is a Cauchy horizon
which can be stable against small classical perturbations. This paper investigates stability against
vacuum Suctuations of a quantized field, by calculating the field's renormalized stress-energy tensor
near the Cauchy horizon. The calculation is restricted to a massless, conformally coupled scalar
field, but it is argued that the results will be the same to within factors of order unity for other
noninteracting quantum fields. The calculation is given in order of magnitude for any spacetime
with closed timelike curves, and then a detailed calculation is given for a specific example of such
a spacetime: one with a traversable wormhole whose mouths create closed timelike curves by their
relative motions. The renormalized stress-energy tensor is found to diverge as one approaches the
Cauchy horizon. However, the divergence is extremely weak: so weak, that as seen in the rest frame
of one of the wormhole mouths the vacuum polarization's gravity distorts the spacetime metric
near the mouth by only Sg„„(lp/D)(lr /bt), where At is the proper time until one reaches the
Cauchy horizon and D is the distance between the two mouths when the Cauchy horizon forms. For
a macroscopic wormhole with D ~ 1 m, bg„„has only grown to lr /D 10 when one is within
a Planck length of the horizon. Since the very concept of classical spacetime is normally thought to
fail, and be replaced by the quantum foam of quantum gravity on scales AC & lI, the authors are led
to conjecture that the vacuum-polarization divergence gets cut ofF by quantum gravity upon reaching
the tiny size lI /D, and spacetime remains macroscopically smooth and classical and develops closed
timelike curves without di%culty. Hawking, in response to this, has conjectured that the spacetime
near the Cauchy horizon remains classical until DEt (which in a certain sense is frame invariant) gets
as small as ~ l~, and correspondingly until. by~„~ 1, and that, as a result, the vacuum-polarization
divergence will prevent the formation of closed timelike curves. These two conjectures are discussed
and contrasted. The attempt to test them might produce insight into candidate theories of quantum
gravity.

I. INTRODUCTION AND SUMMARY

It may be that the laws of semiclassical gravity (gen-
eral relativity plus quantum field theory in curved space-
time) permit the existence of classical, traversable worm-
holes (topological handles in space through which time-
like and null curves can pass). i ~ s If so, then classical
general relativity predicts that generic relative motions
of a wormhole's mouths and/or generic externally pro-
duced gravitational redshifts will dynamically change the
manner in which time connects up through the wormhole,
thereby creating closed timelike curves (CTC's) that loop
through the wormhole. ~ 4

In this situation (and any other where initially space-
time is asymptotically flat and devoid of CTC's, and later
CTC's arise), the boundary between the early region of
spacetime without CTC's and the later one with them is
a Cauchy horizon. s ~ s If the Cauchy horizon were unsta-
ble against perturbations produced by fields that reside
in the spacetime, and if the instability were sufBciently
strong, then that instability might prevent the formation
of CTC's.

Indeed, there is such an instability for some sets of
wormhole parameters (e.g. , a wormhole in flat space-
time whose mouths are moving toward each other at high
speed and whose Cauchy horizon arises when the mouths
are sufficiently close together). For such wormholes, high-
frequency waves of any zero-rest-mass, classical field can
loop through the wormhole over and over again, piling
up on themselves at the Cauchy horizon. The result is a
stress energy that diverges as one approaches the Cauchy
horizon (at least in the test-field limit) and that, via the
spacetime curvature it produces, might well destroy the
horizon and prevent the creation of CTC's. 2

This classical instability is counteracted by the worm-
hole's "diverging-lens" action: The wormhole drives the
waves' amplitude down, with each circuit, by a factor
b/2D, where b is the radius of the wormhole throat and
D is the distance between the wormhole mouths when the
Cauchy horizon arises. If D is sufficiently large, this at-
tenuation prevents the field's classical stress energy from
diverging at the Cauchy horizon; there is no instability;
and the classical field thus is unable to prevent creation
of CTC's. ~ 7
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Those of us who have been studying these issues sus-
pected, at first, that this same diverging-lens action
would also stabilize the Cauchy horizon against the vac-
uum fluctuations of quantum fields. However, closer
scrutiny quickly disspelled this misconception: In un-
published work, a number of people independently dis-
covered that, at any event in spacetime which can be
joined to itself by a closed null geodesic (CNG), the vac-
uum fluctuations of a massless scalar field should produce
a divergent renormalized stress-energy tensor (divergent
vacuum polarization). Since every event on a Cauchy
horizon at which CTC's arise is arbitrarily close to the
identical end points of a CNG (cf. Secs. IIA, VA, and
VIA), this means that the vacuum polarization must di-
verge everywhere on the Cauchy horizon.

In Sec. II of this paper we derive the order-of-
magnitude form of the vacuum-polarization divergence
for any spacetime with CTC's, and then in Secs. V and
VI we compute the full details of the divergence for a spe-
cific spacetime in which relative motion of a wormhole s
two mouths produces the CTC's. Elsewhere, Frolovg

computes the full det, ails for locally static spacetimes
in which the CTC's are produced by a diA'erence in the
gravitational redshifts at two wormhole mouths. These
derivations are all confined to the idealized case of a con-
formally coupled, massless scalar field. However, expe-
rience with vacuum polarization in other contexts (es-
pecially the Casimir effect, which is closely related to
our vacuum polarization; see Sec. VI D) suggests that
other quantum fields will exhibit the same behavior as
our scalar field, aside from signs and numerical factors of
order unity. At least t,his is likely to be so for noninteract-
ing quant, um fields; there are hints, though not strong
ones, that self-interaction might cause severe problems
for physics in the presence of closed timelike curves.

Will the divergence of the vacuum polarization, at a
Cauchy horizon where CTC's are trying to form, destroy
the horizon and prevent the creation of the CTC's'? Per-
haps not. A Planck-length cutoff on the existence of
classical spacetime may well prevent the vacuum stress-
energy tensor from growing large enough to destroy the
Cauchy horizon.

The key to the Planck-length cutoff is the fact that
spacetime is classical only on length scales larger than the
Planck length, /~ 10 cm. On length scales less than
or of order lI, quantum gravity fluctuations in the cur-
vature of spacetime are so large that the concept of clas-
sical spacetime makes no sense. Correspondingly, the
renormalized stress-energy tensor computed using semi-
classical gravity theory (quantum field theory in classical,
curved spacetime) must cease to be meaningful when it is
scrutinized on length scales less than or of order /~,. and
divergences occurring on such length scales must not be
believed.

Only the (as yet incomplete) theory of quantum grav-
ity can tell us for sure what happens on such length
scales. However, it turns out (Secs. II E, V D, V E,
VI D, and VIE) that the divergence of a quantum field's

renormalized stress-energy tensor is rather weak. It is
so weak in fact that, as any observer in any reference
frame appropriate to the macroscopic spacetime (e.g. ,

the rest frame of a wormhole mouth) approaches any
Cauchy horizon where CTC's arise, the observer sees the
spacetime curvature produced by the field's stress en-

ergy get completely swamped by the quantum fluctua-
tions of curvature long before he gets within a Planck
length of the horizon. More specifically, the vacuum-
polarization-induced cur vature distorts the metric by
amounts 6gvP (lI /D)(I~/At) (where D is the spa-

tiall

length of the closed null geodesics on or near the
Cauchy horizon, as seen in the observer's frame and At
is the time until the observer crosses the Cauchy hori-
zon), whereas the quantum-gravity fluctuations of geom-
etry, even in macroscopically flat spacetime, have magni-
tude 6g&G lI /At )& 6gvp. Correspondingly, it seems
reasonable to expect that the vacuum-polarization diver-
gence will get smeared out by quantum-gravity effects.

If we approximate this smearing out by the simple ar-
tifice of terminating the divergence when the observer is
within a distance At l~ of the Cauchy horizon, then
the resulting maximum 6g„P /p/D ( 10 if D 1

m) is so weak that it has no hope of preventing the cre-
ation of CTC's. (See Sec. IIE for further detail. ) This
led the authors, in the originally submitted version of this
paper, to conjecture vigorously that the diverging vac-
uum polarization will not prevent the creation of closed
timelike curves.

Hawking, is in response to the originally submitted ver-
sion of this paper, has criticized the above estimate of
where quantum gravity invalidates the computed bg„P
(l&~/DAt). The quantities D and At depend on the ob-
server's reference frame, he points out, but the product
DLt does not. Therefore, he conjectures, it may well
be that the spacetime remains classical, near the Cauchy
horizon, and the computed bg„P remains correct, until
the product DAt gets as small as l&, and correspondingly
bg„„reaches unity. The resulting distortion of the clas-
sical spacetime geometry might then be suf5cient always
to prevent the creation of CTC's, Hawking speculates.
He calls his speculation the "chronology protection con-
jecture. " We have inserted into this final version of our
paper a brief section (Sec. II F) that compares and con-
trasts Hawking's conjecture with ours. It is not at all
obvious to us now which conjecture (if either) is correct.

The body of this paper is organized as follows: In
Sec. II we give our order-of-magnitude computation of
the effects of vacuum polarization and our discussion of
Hawking's conjecture and ours. In Secs. III and IV we

lay foundations for our detailed, quantitative computa-
tion of vacuum polarization: Sec. III derives a geometric-
optics approximation to the Hadamard function at points
in spacetime near which there are closed null geodesics,
and Sec. IV computes the detailed geometric features of
the specific spacetime in which our analysis is carried
out. Then in Secs. V and VI we use a point-splitting
regularization, based on the geometric-optics Hadamard
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function of Sec. III, to compute the scalar field's renor-
malized stress-energy tensor T"". In Sec. V we evaluate
T" near the throat of the wormhole, and in Sec. VI we
evaluate it between the two mouths and far from them.

Finally, in Sec. VII we list possible (but in our view
unlikely) flaws in our analysis, and we discuss some im-
plications of our results: If, as we conjecture (and Hawk-
ing disagrees), vacuum fluctuations are unable to prevent
the creation of closed timelike curves, what can prevent
their creation'? Or are they, perhaps, allowed?

Throughout this paper (except in the discussion of the
physical implications of our results, Sec. IIE) we use
"natural units, " c = G = fi = 1, and we use the sign
conventions of Misner, Thorne, and wheeler.

II. ORDER-OF-MAC NITUDE ANALYSIS FOR
ANY WORMHOLE SPACETIME WITH CTC'S

In this section we shall carry out an order-of-magnitude
calculation of the renormalized stress-energy tensor for a
conformally coupled scalar field P in an arbitrary space-
time with closed timelike curves, and we shall discuss the
physical implications of our calculation.

This section is organized as follows: In subsection A
we shall introduce and explore the concept of polarized
hypersurfaces. These are the hypersurfaces in spacetime
at which the renormalized stress-energy tensor diverges
(before one takes account of the effects of quantum grav-
ity). In subsection 8 we shall briefly sketch the point-
splitting approach to comput, ation of the renormalized
stress-energy tensor. In subsection C we shall sketch a
geometric-optics approach to evaluating the Hadamard
function, which underhes the point-splitting calculation.
In subsection 0 we shall evaluate the Hadamard func-
tion, in order of magnitude, near a polarized hypersur-
face, and then shall use it to compute the renormalized
stress-energy tensor. In subsection E we shall examine
the physical consequences of our stress-energy tensor and
its apparent divergence at the polarized hypersurface and
also at the Cauchy horizon (which is a limit of polarized
hypersurfaces), and we shall discuss our conjecture that
quantum gravity smears out the divergence and permits
the CTC's to form. In subsection F we shall discuss
Hawking's chronology protection conjecture, and com-
pare and contrast it with our own conjecture.

A. Polarized hypersurfaces

Although this section deals with an arbitrary space-
time with closed timelike curves, as a conceptual aid
we frequently shall refer to a specific example of such a
spacetime: the example that is treated in detail in Secs.
III—VI. That example is depicted in Fig. 1.

The wormhole of our example resides in Bat,
Minkowskii spacetime and has an infinitesimally short
throat. The wormhole's left mouth (mouth I) is at rest
in the Lorentz coordinate system (T, A, Y, Z) of the fig-
ure, and its right mouth (mouth 2) moves toward its left

FIG. 1. The wormhole spacetime studied quantitatively
in this paper.

mouth along the X axis. The right edge of mouth I (as
seen in the diagram) is the same world line as the left
edge of mouth 2. (The wormhole's mouths and throat
coincide because it is infinitesimally short. ) Proper time
7, as measured by an observer at rest on that edge of the
mouths/throat, is marked oA' in the diagram. There is
a very special closed null geodesic (CNG) C that starts
at v. = 0 on the throat, exits from mouth 1, runs along
the X axis from mouth 1 to mouth 2, then returns to
its starting point, 7 = 0 on the throat, joining smoothly
onto itself. This CNG is a "fountain" from which springs
the Cauchy horizon '8: The Cauchy horizon is gener-
ated by (nonclosed) null geodesics that all asymptote to
C when followed into the past. For a proof and detailed
discussion, see the Appendix of Ref. 6.

Figure 1 shows a portion of the Cauchy horizon 'H

It is, roughly speaking, a future light cone of the event
r = 0 on the wormhole's mouth l.

Since the renormalized stress-energy tensor diverges
at events that are joined to themselves by CNG's, such
events play an important role in this paper. The CNG
joining any such event to itself (e.g. , Ci in Fig. I, which
joins 'P to itself) must somewhere go backward in the
Lorentz time T of the external universe in order to re-
turn to its starting event; and the only way it can do this
is by traversing the wormhole. Those events that are
joined to themselves by CNG's which traverse the worm-
hole precisely N times form a hypersurface in spacetime
that we shall denote &~, and shall call the "Nth polar-
ized hypersurface. " (This name refers to the fact that
the vacuum polarization diverges at such a hypersurface,
and also to the fact that the structure of the divergent
vacuum polarization is somewhat like that of a layer of
dipoles, as we shall see in Sec. II E.)

The locations of the polarized hypersurfaces 'Ri, 'R2,
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'Rs, . . . are computed, in the vicinity of C, in Secs. V'A
and VIA, and are depicted in Fig. 1. These 'H~ are
nested inside the Cauchy horizon '8 and are tangent to

along the CNG C. (C must be tangent to all the g~
because it is a CNG that returns smoothly onto itself,
and this means that all events on it can be connected to
themselves by a piece of C that traverses the wormhole
any fixed number of times N that one might desire. By
contrast, for events on 'R~ that do not lie on C, e.g. , the
event P on 'Ri in the figure, the CNG that joins them to
themselves does not return on itself smoothly. Rather, it
crosses itself at some finite angle. The CNG Ci through
'P is an example; others are discussed analytically in Secs.
III, V A, and VIA. ) As Fig. I shows, the Cauchy horizon
'8 is the limit of 'R~ as N ~ oo. Accordingly, as was
asserted above, every event on the Cauchy horizon is ar-
bitrarily close to the identical end points of a CNG (end
points that lie on '8~ for N arbitrarily large).

This relationship between the Cauchy horizon and the
polarized hypersurfaces is not peculiar to the specific
wormhole spacetime depicted in Fig. 1. It is generic.
The &~ are always nested in such a way that the limit
of 'M~ as N —+ oo is '8 . The proof is rather simple.

(i) Choose an arbitrary event Q on '8, and then
choose some other event Q that is in the region with
CTC s, and is arbitrarily close to Q . (ii) Through the
event Q there must pass a CTC. (iii) That CTC must
make some number n (not zero) of loops through the
wormhole as it travels from Q in a timelike fashion back
to Q. (iv) By retracing that CTC over and over again
we can turn it into a CTC f~ with an arbitrarily large
number N of loops through the wormhole. (v) We can
then push Q closer and closer to the event Q, deform-
ing S~ continuously in the process but keeping its two
ends attached to Q and keeping it everywhere causal. Ul-
timately 8'~ will become a closed null geodesic, and we

will not be able to push Q any closer to Q without forc-
ing some piece of S~ to become spacelike. (vi) Q now
lies on 'H~, the polarized hypersurface of order ¹ Since
Q began arbitrarily close to Q and is now even closer,
this shows that arbitrarily close to any point Q on '8
there is a piece of 'R~ with arbitrarily large N. In other
words, 'H is the limit of R~ a's P ~ oo.

This nesting of the Q~ guarantees that, when any ob-
server (e.g. , one who moves along the world line L of Fig.
I) enters the region of CTC's, that observer will pass first
through the Cauchy horizon Vf', and then will .pass se-
quentially through the various Q~. At each of the Q~
the observer will experience a strong peak of vacuum po-
larization, and between the 'R~ the vacuum polarization
will be much weaker.

B. Point-split ting regularization

We do so not only at events immediately preceding the
Cauchy horizon 'R, but also at events that lie close
to the polarized hypersurfaces Q~, which are after the
Cauchy horizon and in the region with CTC's.

What makes us confident that quantum field theory
can be formulated in anything like its standard form in
the region with CTC's'? Our confidence comes from the
following.

(i) It seems rather certain that, for a classical, massless
scalar field P in an asymptotically fiat wormhole space-
time with CTC's, the Cauchy problem is well posed in
this sense: For every choice of the standard initial data
at past null infinity, there exists a unique solution of the
scalar wave equation throughout the spacetime. The rea-
sons for this are spelled out in Ref. 6, and a rigorous
proof has been given by Friedman and Morris for a spe-
cific example of such a spacetime (the example described
in Fig. 4). (ii) This implies that we can define a com-
plete set of modes of the classical field P in the standard
way at past null infinity, and can then propagate each
of these modes throughout the spacetime, including the
region with CTC's. These modes will satisfy standard
orthogonality conditions with respect to the standard in-
ner product, with the one unusual feature that the hyper-
surfaces on which the inner product is computed cannot
everywhere be spacelike; see Fig. 5 of Ref. 6, and the as-
sociated discussion. (iii) The Fock space for the quantum
field P can then be constructed in the standard manner in
terms of these modes. (iv) The standard point-splitting
procedure for evaluating the renormalized stress-energy
tensor should then follow.

We have not yet explored this quantization procedure
in full detail, so we are not absolutely certain that it
goes through fully successfully. However, as yet we have
seen no sign of any difficulties. If it fails in some as-yet-
unseen way, then the analysis in this paper at least will
still be correct before the Cauchy horizon and should
correctly predict the strength of the divergence of the
vacuum polarization as one approaches the horizon.

In our computation of the vacuum polarization, we
shall not use a mode expansion of the field operator.
Rather, we shall use, as the foundation of our calcula-
tion, a geometric-optics approximation to the Hadamard
function. The Hadamard function is the following clas-
sical biscalar field, which depends on two points z and
x' in spacetime and on the quantum state

~
4) of the

quantized scalar field P:

«'&(, ') = (~ I i( )i( ')+ &( )4( ')
I +) (&)

Since the field operator P satisfies the conformally cou-
pled scalar wave equation, so also does this Hadamard
function, in both of its arguments:

to-+ -,'~( )I«'& = to- + -.'~( ')I«'& = 0

In this paper we calculate the details of this vacuum
polarization for a quantized, massless, conformally cou-
pled scalar field P, using a point-splitting regularizationi5
of the stress-energy tensor in the geometric-optics limit.

The standard procedure for regularizing the Hadamard
function becomes especially simple when the event at
which T& is to be computed is surrounded by a neigh-
borhood in which the spacetime curvature vanishes. This
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is the case for all events in the spacetime of Fig. 1 and in
most other model wormhole spacetimes currently being
studied, '9' ' except for events precisely on the worm-
hole throat (which we shall avoid). It can also be made
the case in generic wormhole spacetimes: Since we are
interested only in the "divergent" behavior of the stress-
energy tensor near polarized hypersurfaces, and not in its
nondivergent parts, and since there is no reason to expect
the divergent behavior to be affected by small, localized
alterations in the spacetime curvature, in generic worm-
hole spacetimes we can "flatten" spacetime locally " in a
tiny neighborhood around any event at which we wish to
evaluate the stress-energy tensor.

In our chosen, curvature-free neighborhood, regular-
ization of the Hadamard function reduces to simply sub-
tracting oR' its flat-spacetime, vacuum-state value:

T„„= lim 17„G„(i) (4a)

where P» is the second-order differential operator

(4b)

C. Geometric-optics approximation to G~

In this paper we deal with the unusual situation where
z and x', though infinitesimally close to each other,
nevertheless can be connected by an infinite number of
geodesics g~, each characterized by an integer N (posi-
tive, negative, or zero). Geodesic go reaches along the in-
finitesimal vectorial separation from z' to z. For positive
N, geodesic Q~ begins at z' and, traveling always locally
forward in time, traverses the wormhole from mouth 2 to
mouth 1 N times before arriving at z. The dashed curve
gi in Fig. 2 is an example, for N = 1. For negative N,
Q~ begins at z' and, traveling always locally backward
in time, traverses the wormhole from mouth 1 to mouth
2 N times before arriving at z. The dashed curve g i in
Fig. 2 is an example.

For the points z, z' that we shall consider (e.g. , those of
Fig. 2), two or more of the wormhole-traversing geodesics
g~ will be very nearly null (e.g. & Qi and g i in Fig. 2).
In this situation, the Hadamard function G(i) [which can
be thought of as evolving via the wave equations (2)] con-
tains huge contributions produced by propagation along
routes very close to each of the nearly null g~. These
contributions can be described by a geometric-optics ex-
pression, which is an obvious generalization of the stan-
dard Hadamard expansion s of G( ) (see Sec. III):

G(1) G(1)
4x~o.0

Here 00 is half the square of the infinitesimal vector sep-
aration between z' and z.

The field's renormalized stress-energy tensor in the
state

~ @) is computed fram this regularized Hadamard
function using the relation 5

FIG. 2. Blowup of the spacetime region of Fig. 1, near the
event P.

(1) AN ( 11/2 lG-, =), (
+ viv»l~ iv[+~ ivI .

4+2 (o~

Here the sum is over all nearly null geodesics g~ that go
from z' to z [except go, whose contributions are removed
by the regularization of Eq. (3)]; o~, the Nth geodetic
interval between z and z', is equal to 1/2 the square of
the proper distance along g~ from z' to z, multiplied
by —1 if Q~ is timelike and +1 if it is spacelike; and
b,~, v~, and iv~ are functions which, unlike 1/o~, vary
smoothly as z moves through the light cone of z' (i.e. , as
g~ switches from spacelike to null to timelike).

For points z very close to the Nth polarized hypersur-
face 'R~, and for z' arbitrarily close to z (e.g. , Fig. 2
with X = 1), the geodesics gy~ are very nearly null, the
geodetic intervals op~ are infinitesimally small, I/O'y~
are arbitrarily large, and correspondingly the order-+N
contributions to G(i) and to T„are arbitrarily large (di-
vergent). Since the divergence is produced by the leading
I/op~ part of G( ) and is unaffected by the part ivy~
that depends on the state

~
4) of the field, the diver-

gence is an intrinsic feature of the field's vacuum. It is a
vacuum-polarization divergence.

D. Order-of-magnitude evaluation of G ~ and T "

We shall now evaluate the strength of the vacuum po-
larization divergence in order of magnitude.

Consider an event x arbitrarily close to the polarized
hypersurface 'R~ in any wormhole spacetime with closed
timelike curves, and choose an observer whose world line
passes through x and then, a tiny proper time At later,
passes through 'Riv (cf. Fig. '2). (We use t to denote the
observer's proper time, and T to denote Lorentz coordi-
nate time in the flat region of the spacetime of Figs. 1
and 2. For the special case of that spacetime, and for the
observer's world line 8 shown in Fig. 1, these two times
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are equal: t = T.) Denote by D the spatial length of
gN as measured in the observer's reference frame, as it
makes a trip from the vicinity of z and z', through the
wormhole once, and back to the vicinity of z and z'. (In
the spacetime of Figs. 1 and 2, and for any split points
z, z near that portion of &~ which is shown in Fig. 1,
D is roughly the same as the length of the CNG C from
which the Cauchy horizon s null generators spring; i.e. , it
is roughly equal to the separation between the two worm-
holes at the moment when the Cauchy horizon comes into
being. )

It is easy to convince oneself, by an argument whose
spirit is embodied in "0 T —X = (T+X)(T—X)
DAt, " that for z' much closer to z than z is to 'HN, the
geodetic intervals between z' and z are

~il2 ( b
N (N 1)—

DA&
(7)

(l )No (N 1)—
Tpv

(D) D(At)s (8)

Here the power is N if the point z is far from either mouth
of the wormhole, and N —1 if it is close to a mouth.

E. Physical e8'ects of the "divergent" T'~";
conjecture that quantum gravity cuts off

the divergence and permits CTC's

When G«z is differentiated twice to produce the stress-
energy tensor [Eqs. (4)], the result is a factor (At)s in
the denominator rather than At:

(6a)

Note that as At goes to zero, i.e. , as z approaches the
polarized hypersurface VfN, cryN go to zero and thus the
regularized Hadamard function (5) diverges to infinity.
The strength of G& &'s divergence is proportional to the
values of the function AyN in the vicinity of z. This
function, called the "scalarized Van Vleck —Morette de-
terminant, " is (cf. Sec. III) a measure of the defocusing
eA'ects that the wormhole exerts on the amplitude of a
classical, high-frequency scalar wave which propagates
along a null geodesic that closely parallels QyN, begin-
ning near z', z, passing through the wormhole N times,

and ending back near z', z. More specifically, A+~ is

the amplitude that the wave has after its trip, divided by
the amplitude the wave would have if there were no de-
focusing by the wormhole. Since the wormhole acts like
a diverging lens with focal length of order b =(radius of
wormhole throat), 2 each wormhole traversal followed by
propagation a substantial fraction of the way toward the
next traversal produces a defocusing-induced amplitude
decrease of order b/D (Here and t. hroughout we presume
that b/D « 1.) If z is far from both wormhole mouths,
there will be N such defocusing factors, so

To make physical sense out of these order-of-magnitude
estimates, it is helpful to convert from the natural units,
c = G = h = 1, in which the above formulas are written,
to cgs units (but with c still unity). This can be done

by noting that the vacuum polarization is proportional
to Planck's constant h, or equivalently to the product of
the Planck length /1 ——QGh/cs and the Planck mass

m~ = ghc/G. Correspondingly, expression (8) becomes

( l i~'l( )( mi
D) k(At)s (9a)

The corresponding metric perturbation (equal to the
fractional change of length bl /L that an idealized, broad-
band gravitational-wave detector would undergo, as it is
carried by our chosen observer up to time At) is

This scalar-field stress energy acts back on the spacetime
to produce (via the Einstein field equation) a spacetime
curvature with magnitude

b ) No" (N-')

&papua

GTpv D)
(9b)

bl
if z is far from both mouths.+N D) (6b) (9c)

If z is very close to either mouth, then one of the
geodesics gyN will travel a negligible distance after its
last (Nth) wormhole traversal, and thus will have 4 ~

(b/D)( 1), while the other will travel such a tiny dis-
tance before the first wormhole traversal that the first
traversal will produce negligible defocusing, and again
~1/2 (t /D)N 1—

( |) (N 1)-
b,+N ~' —

~

if x is near either mouth. (6c)

The order-of-magnitude values (6a)—(6c) of oyN and
Ay~ imply the following magnitude for the Hadamard
function near the polarized hypersurface 'H~.

This is the divergence as the observer approaches the Nth
polarized hypersurface 'RN. The divergence will be far
weaker than this as the observer approaches the Cauchy
horizon '8 (cf. Fig. 1), except at the CNG (.' from which
the horizon generators spring: because all the &~ are
tangent to 'R at (.", the dominant divergence at C will
have the form (9) with N = l.

The authors' argument, suggesting that this divergence
may be cut oA' by quantum gravity long before it becomes
of order unity (and thus, at the Cauchy horizon, long
before it can prevent the creation of CTC's), proceeds as
follows.

On any time scale At and in any classical space-
time, Hat or curved, quantum gravity presumably pro-
duces fIuctuations of the curvature and metric with
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magnitude

ppQG ) & ( QG
&ppp~ ~ (~t)s ) 9pv

Note that at all times At these quantum gravity fluctu-
ations are larger than the vacuum-polarization-induced
fluctuations (9) by a factor

pv

b&vp l~ b

Since we have presumed the wormhole throat to be tiny
compared to the distance between the wormhole mouths,
6 &( D, and since the horizon or polarized hypersurface
must always have W & 1 in Eqs. (9), the quantum-gravity
Quctuations dominate over the scalar field's vacuum-
polarization effects by a factor & D/lI .

This quantum-gravity dominance does not necessarily
mean that the vacuum polarization is insignificant. After
all, the quantum-gravity fluctuations (10) have vacuum
expectation values that are tiny compared to the Auctua-
tions themselves —in fact, that are probably of the same
order as the vacuum polarization efFects (9) which we
have computed, so long as At & lI . Thus, we must be
concerned about the strength of the vacuum polarization.

The vacuum polarization's energy density

(12)

is plotted as a function of the observer's proper time t in
Fig. 3(a). (The minus sign comes from a more careful ex-
arnination of the derivatives of 1/At than we gave above;
cf. Secs. V D and VI D.) The cross-hatched region in Fig.
3(a) is that, IAtI l~, in which classical spacetime does
not exist and therefore Eq. (12) fails. Presumably quan-
tum gravity causes some sort of probabilistic interpola-
tion of the predictions of Eq. (12) through this region,
from the extremely negative energy density just before
the horizon or polarized hypersurface to the extremely
positive energy density just afterward.

The form of the energy density near the horizon or
polarized hypersurface is that of a dipole layer of energy:
a highly localized, negative energy density on one side,
and a highly localized, equal-in-magnitude, but positive
energy density on the other.

If, as we have argued, quantum gravity produces a
probabilistic interpolation of the energy density at IEtI &

/p, what will be the nature and magnitude of the tidal
gravitational forces felt by our observer as he/she passes
through the horizon or polarized hypersurface? If the
observer carries an idealized gravitational-wave detector
with perfect, broadband frequency response, the detec-
tor will exhibit the tidal-gravity-induced strain shown
in Fig. 3(b). This strain is the second time integral of
the Riemann tensor (9b), with interpolation through the
quantum-gravity region. The maximum strain is given,
in order of magnitude, by Eq. (9c) (which is valid only
before the horizon or polarized hypersurface is reached),
w1th At ~ l~.'

TOO

lp mp

D Ip3

(a)

FIG. 3. (a) The vacuum-polarization energy density mea-
sured by an observer who moves along the world line 2 of Figs.
3. and 2, as the observer nears and passes through the Nth po-
larized hypersurface Q~. Shown stippled is the region so close
to 'Riv ( IbtI & li ) that the classical concept of time makes
no sense. Presumably quantum gravity halts and smears out
the divergence of the energy density in this region. (b) The
strain bL /L produced in an idealized gravitational-wave de-
tector by the vacuum polarization's spacetime curvature, as
the detector moves along the world line l..

Since X & 1, for a, macroscopic wormhole with, say,
D & 1 m, this maximum strain is (AL/L) „& 10
This is far too small to be detected with even the most
advanced modern technology. Thus, our observer will
not notice at all the tidal effects of the "divergent" vac-
uum polarization as he /she passes through the polarized
hypersurface.

Although the tidal effects of the vacuum polariza-
tion are negligible, the numerical value of the maximum
energy density is rather impressive: This maximum is
largest near the wormhole throat, and near the horizon's
CNG C or near the first polarized hypersurface, N = l.
There the power in Eq. (13) is N —1 = 0, so for a worm-
hole separation of one meter, the maximum energy den-
sity

oo Ip i ( mp & lp& mph
D I I (~,),

—
I

=
D I Is )I

is lt /D 10 ss of the Planck density mI /P&, i.e., it is
T 10 s g/cm . In the spacetime of Fig. 1, this en-
ergy density is accompanied by an energy flux of the same
magnitude; see Secs. V D, V E, VI D, and VI E for details.
By integrating the energy flux To" (It /D)[mt /(At) ]
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in time from At = —oo to At = —lI and integrat-ail
ing in space over a sphere enclosing the wormhole throat,
we obtain for the total vacuum-polarization energy that
fiows through the wormhole just before the polarized hy-
persurface 'Ri

f 1$ (bzl
«) ~» (15a)

b, M (b/D) m~ (15b)

(Secs. VE and VIE).
Although the detailed computations of the remain-

der of this paper are restricted to the specific wormhole

mouth 1 mouth 2

0, '4
H

~2

FIG. 4. ThThe spacetime of an eternal time machine. " ThisCC

spacetime is analyzed in some detail in Refs. 6, 7 and 16

Notice that this total energy transfer is independent of
Planck's constant, and is of order b/D times the mass of
a black hole whose horizon radius is equal to the radius
of our wormhole.

likel to
or b && D, the mass transfer is so small th t t '

a i is un-
i e y to exert any significant eA'ect on the wormhole; and

whatever effect it has will likely be undone by the equal
and opposite-signed mass transfer that occurs immedi-
ately after the polarized hypersurface 'Ri. For b D,
the energy transfer is of order b/G, which is roughly large
enough to create a black-hole-type horizon around one of
the mouths and very possibly large enough to seal ofF the
wormhole. However, the reversal of the mass transfer be-
gins so quickly after the dangerous value b/G is reached,
and the net transfer is of order b/G for such a brief time
(a few Planck times), that it is far from obvious that a
black-hole-type horizon will be able to form before the
pulse of mass transfer is over.

For the other polarized hypersurfaces Q~ the mass
transfer is even smaller than for 'Ri.. smaller by a factor
(b/D)~ i; and if one integrates the mass transfer onler ony
up to the Cauchy horizon '8, and not up to '8~ with
finite N, the mass transfer is smaller than the Planck
mass:

spacetime of Fig. 1, the above discussion is valid for any
wormhole spacetime with closed timelike curves. For ex-
ample, it can be applied to the "eternal time-machine"
spacetime of Fig. 4, in which there are closed timelike
curves everywhere and no Cauchy horizon. As Frolov
and Novikov s show, in this spacetime the 'Riv are a se-
ries of static, nested, ellipsoidally shaped, timelike hy-
persurfaces. An observer who passes at hi h d,ig spec, e.g. ,

v 0.5, through any of these 'R~ should see a vacuum-
polarization energy density with magnitude given by ex-
p ~ ~„and with accompanying spacetime curva-Dression ~12~ an
ture and metric perturbations given by expressions (9b)
and 9c .

F HawF. HBWkl?1g 8 Clll 011010gg P10f,eCf1011 COIQeCtUX'e

Hawking 3 objects to the above discussion on grounds
that the location at which semiclassical theory (quantum
field theory in curved spacetime) breaks down should be
observer independent, whereas the above discussion as-
serts a breakdown at At l~, and the time At to the
Cauchy horizon (or a polarized hypersurface) depends on
the chosen observer, i.e., the chosen reference frame. We
agree, of course.

The arguments (e.g. , those in Ref 19) suggesting that
classical spacetime breaks down at At Ip, when exam-
ined closely, presume that At is the proper time betwee ween
wo neighboring, spacelike hypersurfaces, and that the

spacetime geometry is being averaged not only over the
time LD but also over a spatial region of 3-volume (At) .

These arguments entail a preferred reference frame: the
frame in which the chosen hypersurfaces are slices of si-
multaneity. However, the issue that concerns us in this
paper is not how well defined is the time between two
chosen spacelike hypersurfaces, but rather how well de-
fined is the spacetime geometry in the vicinities of null
geodesics (those along which the Hadamard function G&i&

and associated vacuum fluctuations propagate). In dis-
cussing this issue, we are to squeeze smaller and smaller
the thickness At of the region preceding and following the
null eo~g odesic (as seen in some reference frame), while al-
lowing the spacetime region to remain macroscopic along
the geodesic. The issue is how small can At be squeezed
until fluctuations of geometry make the geodesic and its
neighbors become so ill defined as to invalidate our com-
putation of the vacuum polarization —i.e., so ill defined as
to cause a breakdown of the semiclassical theory (quan-
tum field theory in curved spacetime) on which our com-
putation is based.

Since this At is frame dependent (an inevitable con-
sequence of the nullness of the geodesic), any assertion

some preferred reference frame. Since the location of the
breakdown is defined only in rough order of magnitude,
the preferred frame will be defined only in rough order of
magnitude. The authors' conjecture (preceding section)
tacitly assumes that the preferred frame is that associ-
ated with the macroscopic features of spacetime which
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are driving the formation of the CTC's. For the worm-
hole spacetime of Fig. 1, that preferred frame is the rest
frame of either wormhole mouth.

Our guess of the preferred frame could be wrong, and
Hawking argues that it is. He thinks it likely that the
semiclassical theory breaks down at points z where the
shortest invariant geodetic interval cr(z, z) connecting z
to itself is l&2. Since o(z, z) Ddt, this corresponds to
a breakdown at Db, t IJ2, (and thus, if D 1 m, at
b, t 10 s l~). If Hawking is correct, then before semi-
classical theory fails, bg„becomes of order unity near
the closed null geodesic C from which the Cauchy horizon
springs, and being so large, this bgvp might (as Hawk-
ing speculates) change the classical spacetime structure
enough to protect it against CTC's.

There is a preferred reference frame in which the ar-
guments of the preceding section give Hawking's loca-
tion DAt l& for the breakdown of semiclassical theory.
This is a frame in which the observer is moving so rapidly
along and near the CNG C that he jshe sees the spatial
length D of C Iorentz contracted to the Planck length.
In this frame, and only in this frame, Hawking s location
for breakdown corresponds to At l~.

At first sight, this choice of preferred frame looks rather
appealing: After all, why should quantum gravity care
at all about the rest frame of the macroscopically huge
wormhole mouths (or whatever else may be driving the
formation of CTC's)? Should not quantum gravity be
atuned only to physics occurring on submicroscopic scales

lp, and thus should not it pick out its preferred frame
by a submicroscopic criterion such as the frame in which
D ~ l~7

At second sight, the Hawking choice of preferred frame
has a peculiar (though not entirely outrageous) implica-
tion: The Hawking choice suggests that in the vicinity
of the CNG C, local fluctuations of geometry (as seen,
e.g. , in the rest frame of a wormhole mouth) have negli-
gible net influence on the null geodesics along which the
Hadamard function G~i) and its associated diverging field
fluctuations propagate. Only globa/fluctuations of geom-
etry, which are coherent over the scale of the CNG C (and
which are Lorentz contracted into a Planck length along
Q as seen in the Hawking frame) would appear to impede
the existence of a well-defined, classical, spacetime struc-
ture along C. This by itself is intriguing. However, it
suggests, by extension, that in the vicinity of a null sur-
face that has no closed null geodesics (i.e. , in the vicinity
of any ordinary light cone), local fluctuations of geom-
etry also should not affect the well definedness of the
classical (null) spacetime structure. In this case, there
are no global fluctuations of geometry, so it would seem
that quantum gravity leaves the classical spacetime struc-
ture well defined arbitrarily close to the light cone—when
one is paying attention in some sense to the entire light,
cone and not just to a segment of it. This seems rather
strange; but, of course, the arguments that have led to it
are awfully fuzzy.

The difference between the Hawking conjecture and

ours is so huge (a factor 10 in where semiclassical theory
breaks down when D 1 m), that there might be some
hope of seeing which (if either) is correct according to
various candidate quantum theories of gravity. Indeed,
the attempt to distinguish between the two conjectures
might provide useful insight into the candidate theories
themselves.

III. HADAMARD FUNCTION
IN THE GEOMETRIC-OPTICS LIMIT

(1) =
4x~o (17)

in the limit as z approaches z'. Here u is the geodetic
interval between z' and z (half the square of the proper
distance along the spacelike geodesic from z' to z).

To see that this singularity structure is correct, de-
spite the presence of CTC's, imagine expanding the field
operator in a complete set of modes such that those ultra-
high-frequency modes which contribute to G~i&, for the
chosen z' and z, are wave packets that do not extend, on
the spacelike hypersurface 8, outside the neighborhood
Af(z'). [The modes may, however, have other nonvanish-
ing components at other locations on 8; such components
may be produced by propagation of the component from
JV'(z') through the wormhole and back to 8. These other
components will have no influence on the form of G& ~ for
z in JV'(z') if they are separated from JV(z') by regions
of 8 in which the modes vanish. That the modes can be
selected in this way is implied by the fact that JV(z') is
bounded away from all the Q~', cf. the discussion below
of the evolution of G~ ~.] The components of these modes
in JV(z') cannot feel any eff'ects of spacetime curvature,
nor any effects of CTC's. They, therefore, must pro-
duce the same singularity structure for the Hadamard
function, Eq. (17), as they would do in flat, CTC-free
spacet, ime.

In this section we sketch a derivation of the geometric-
optics expansion (5) of the regularized Hadamard func-
tion in an arbitrary wormhole spacetime with closed
timelike curves.

We begin with the unregularized Hadamard function

G"'(, ') =(~ li( )~( ')+&( )&( ') I+), (16)
and throughout our analysis we constrain the point z' to
not lie on the Cauchy horizon or on any polarized hy-
persurface or (for pedagogical simplicity) at a location
where there is spacetime curvature. (At the end of our
computation of T~, we will let the coalesced points x
and z' approach '8 or one of the 'H~. ) Then, on some
arbitrary, local spacelike hypersurface 8 surrounding z'
there will be a neighborhood A (z') that is devoid of cur-
vature and is not pierced by Q or any &~ . We initially
choose the point z to lie in this JV (z') and extremely close
to x. For this choice, the singular part of the Hadamard
function must have the standard flat-spacetime form
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l+oo ~1/2 /G(1= ) "
i

+ v~ In[~~~ +mdiv4~ r

We now ask the following question: What singular-
ity structure is enforced on G(il(z, z'), for fixed z' and
for z now allowed to range over the entire spacetime, by
the singular behavior (17) for z in A(z')? We answer
this question by evolving Gt l(z', z) as a function of z
via the wave equation (2). In this evolution we do not
care about smoothly varying pieces of Q( &; we are only
concerned with the singular pieces. The singular pieces
are composed of arbitrarily high frequencies, and thus
evolve in a geometric-optics manner. Since the singular-
ity initially [in the neighborhood A(z')] is confined to
the point z = z', the geometric-optics-evolved singular-
ity will be confined to z on the future and past light cones
of z'. Because our initial z' was bounded away from any
polarized hypersurfaces, its future and past light cones
cannot travel through the wormhole multiple times and
then return to z', the singularity structure thus cannot
propagate back to corrupt the initial data.

The solution to the scalar wave equation (2) in the
vicinity of the future and past light cones of z' is well
known. It has the Hadamard normal form

(20)

where the subscript N denotes the contribution from the
singularity structure associated with piece N of the light
cone near JV(z').

This Hadamard function is regularized by subtracting
off the initial, K = 0, singular piece [Eq. (17)]. By not-
ing that vo vanishes and absorbing the uninteresting too

into the other m~'s, we bring the regularized Hadamard
function inside JV(z') into the form (5) used in Sec. II C:

(i) A~ /' 1X/2 l
G„, = 5 i

-+ v~ ln )o~[+ u)~
i

. (21)4x go iv r

This Hadamard function is regularized in the sense that,
when the points z and z' are pushed together but are kept
away from the polarized hypersurfaces 'R~, it remains
finite.

As we have seen in Sec. II, it is the A~~ /u~ pieces
of this regularized Hadamard function that produce the
dominant divergent behavior of T"" near the Cauchy
horizon and the polarized hypersurfaces. Correspond-
ingly, in the following sections of this paper we shall need
to compute the Nth geodetic interval o~ between points
z' and z that are very nearly on top of each other, and
also the Nth scalarized Van Vleck —Morette determinant
+N ~

To compute oiv we shall proceed as follows: (i) con-
struct the unique geodesic giv that begins at z', goes
forward in local time if N is positive and backward if N
is negative, passes through the wormhole ~N~ times, and
then ends at z; and then (ii) use the definition of the
geodetic interval to evaluate o~. half the square of the
length of the geodesic g~ times —1 if giv is timelike and
+1 if it is spacelike.

It would be unpleasant if we had to compute A~ from
its definition, Eq. (19), with o replaced by oiv. we would
have to evaluate 0~ for a bundle of geodesics surround-
ing Qiv and then differentiate twice. Fortunately, Aiv can
be computed, instead, by integrating an ordinary diAer-
ential equation along the geodesic g~. This ordinary
differential equation is a straightforward rewrite of Eq.
(1.63) of Ref. 18. If ( is an arbitrary af5ne parameter
along g~, d/d( is the corresponding tangent vector to
g~, and 0 = 7' d/d( is the corresponding expansion of
a bundle of geodesics around g~ that all emanate from
z' (computable using the standard equations of geomet-
ric optics), then Aiv is the solution to the differential
equation

4'/' /'IG(') =
i

—+ vln alai ~ w)47r2 i,rr

Here o is the geodetic interval between z' and z; 4 is the
scalarized Van Vleck —Morette determinant

V'g(z)g(z')

= (3 —0()A .
dA

(22)

The initial value of A for the integration is L = 1 in the
flat-spacetime region surrounding z' (where 0 = 3), and
A~ is the value that the integration yields at z, the end
point of giv.

with g(z) and g(z') the determinants of the covariant
components of the metric tensor at z and z', and v and
m are functions that, like 4, are smooth across the light
cone. The v ln ~a

~
term is a "tail" produced on the sin-

gularity structure by scattering of the I/tT piece off the
spacetime curvature, and thus is absent in our initial data
in the absolutely flat region JV (z'). The singular pieces
A / (I/O + vln ~cr~) are determined fully by the chosen
points z, z' and the geometric and topological structure
of spacetime, ~ and thus are associated entirely with vac-
uum fluctuations of the field P. By contrast, the com-
pletely smooth piece 4 / iv (which does not interest us)
depends not only on z, z', and the geometric and topo-
logical structure of spacetime, but also on the state iilr)

of the field.
Return, now, to points z that lie in the neighborhood

JV(z'). The Hadamard function at these points will be
dominated by the initial singular contribution (17), but
it will also be infiuenced by weaker singular contributions
associated with pieces of the past and future light cone
of z' that have propagated through the wormhole and
returned to the vicinity of (but outside of) ri/(z') Forthe.
spacetime of Fig. 1, each such piece of the light cone on S,
near JV(z'), can be characterized by the number of times
it has traversed the wormhole (with negative numbers
for pieces of the past light cone, and positive numbers
for pieces of the future light cone). Correspondingly, we

can write G(i& for z in +(z') in the form
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For the specific spacetime of this paper (Fig. 1), even
this integration is more complicated than necessary. We
shall evaluate L~ instead by using the fact that it ap-
pears not only in the regularized Hadamard function, but
also in the symmetric (half-advanced plus half-retarded)
propagator for a classical scalar wave:~

(23)

Here b is the Dirac delta function and H is its integral,
the Heaviside function [H(y) = —1 for y & 0, +1 for
y & 0]. When (as in our case) the geodesic g~ from z'
to z is very nearly null (for example, in Figs. 1 and 2,
Qi is very nearly the same as the closed null geodesic
Ci), then the value of E~ in the regularized Hadamard
function (21) will be very nearly the same as the value
that appears along the light cone in the propagator (23);
and that value in turn is the ratio of the light-cone part of
the propagator in the chosen spacetime to the propagator
in fiat spacetime.

This justifies the following method of computing A~.
(i) Begin with an ultra-high-frequency, classical scalar
wave @ emitted from the vicinity of z'. Take the wave's
amplitude, in the initial, Hat-spacetime region near z, to
be g = I/(, where g is aKne parameter. (ii) Propagate
the wave, using elementary geometric-optics considera-
tions [which are equivalent to the light-cone part of the
propagator (23)], along a null geodesic that is very close
to g~. Propagate the wave through the wormhole N
times, and back to the vicinity of z' and z—a total a%ne
parameter distance (~. (iii) Then A~ will be given by
the ratio of the resulting wave amplitude g~ at its final
point to the amplitude 1/g~ that the wave would have
had if it propagated through Hat spacetime:

(24)

We shall use this method in Secs. V B and VI B to eval-
uate A~ in the spacetime of Figs. 1 and 2.

(X' —b)'+ Y"+ Z" = b' . (27b)

These two balls become mouth 1 and mouth 2 of the in-
finitesimally thin wormhole, when one identifies the fol-
lowing events on them:

(T = 7, X, Y, Z) on mouth 1 is the same as
(T' = 7, X' = —X, Y' = Y, Z' = Z) on mouth 2. (28)

If this is confusing, see Fig. 8 and associated discussion
in Ref. 6, where the same construction is described in a
slightly diA'erent manner.

The structure of the Cauchy horizon '8 for this space-
time is deduced in the Appendix of Ref. 6. 'R is gen-
erated by null geodesics that peel off of the closed null
geodesic C (X = T, Y' = Z = 0) traveling toward the
future. There are caustics in the structure of 'H on the
left side of mouth 1 (X & 2b, Y = Z —= 0) and the
right side of mouth 2 (X' & 2b, Y' = Z' = 0), at which
generators cross each other and leave '8 . This accounts
for the sharp left-hand corner on & in Fig. 1.

T=D+y~, X=D —Py7-, Y=Z=0.
Here, as usual, p = I/gl —P~. The origins r = 0 of 7

on the two world lines are so chosen that (i) they are sep-
arated by the null line X = T (which will later become
the curve C from which the Cauchy horizon springs, cf.
Fig. 1), and (ii) they have a spatial separation D. Intro-
duce a second Lorentz coordinate system, one in which
the second world line is at rest at the origin:

X' = y(X —D)+ Pp(T —D), Y' = Y, Z' = Z,
(26)

T' = 7(T —D) + pp(X —D) .

Cut out of the Minkowskii spacetime the world tube of
a ball with radius b and with right edge attached to the
first world line,

(X + b)'+ Y'+ Z' = b',
and similarly cut out the world tube of a second ball wit, h
left edge attached to the second world line,

IV. SPACETIME GEOMETRY

T=r, X= Y=Z=O, (25a)

and the second world line moves with speed P toward the
first:

In this section we shall spell out, in greater detail
than heretofore, the geometry of the wormhole space-
time (Figs. 1 and 2) in which we carry out our detailed
calculations.

The spacetime is constructed in the following manner
[cf. Sec. II and Fig. 3(b) of Ref. 6]: In flat, Minkowskii
spacetime with I,orentz coordinates (T, X, Y, Z), identify
two world lines parametrized by their proper times r,
which will become the right edge of mouth 1 and the left
edge of mouth 2 (cf. Fig. 1). The first world line is at
rest at the origin of the Lorentz coordinate system,

V. VACUUM POLARIZATION
ON THE WORMHOLE'S THROAT

In this section we shall sketch a detailed calculation of
the vacuum polarization and its implications arbitrarily
close to, but just outside the wormhole's throat/mouths
in the spacetime of Fig. 1. We begin in subsection A by
calculating the Nth geodetic interval sr~ for rightward-
propagating geodesics between our split points z' and z
(positive N), and from this o'~ we deduce the locations,
on the throat, of the polarized hypersurfaces g~ and
the Cauchy horizon '8 . In subsection B we compute
the Nth scalarized Van Vleck —Morette determinant L~.
In subsection C we combine these and use symmetry con-
siderations to obtain the full regularized Hadamard func-
tion, including both leftward geodesic contributions and
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rightward ones. In subsection D we compute, from the
regularized Hadamard function, the renormalized stress-
energy tensor. Finally, in subsection E we compute, from
the stress-energy tensor, the total four-momentum car-
ried through the throat, by vacuum fluctuations, in the
vicinity of 'R~ and in the vicinity of 'R

Throughout our analysis we restrict ourselves to a
wormhole whose radius b is far smaller than the mouths'
separation D at the moment the Cauchy horizon reaches
mouth 2.

A. 2Vth geodetic interval

Our original computations of the Kth geodetic interval
o.~ were carried out by brute force. However, after ob-
taining the answer, we found the following simpler, but
somewhat delicate way to derive the result (delicate in
the sense that one has to think hard at several points to
be sure the steps taken are correct).

We begin by computing a~ for split points z, z that lie
on the X axis and very close to, but just outside mouth
1. Then we shall graft on the effects of a transverse dis-
placement of x' and z from the X axis.

Paints z', a on synametvy axis

/xx

Dg Dp2 Dp&

FIG. 5. Covering space for the X-T plane of the wormhole
spacetime of Fig. l.

T = T —D/(1 —(), X = X —D/(1 —(), (29)

where g is the inverse of the Doppler blueshift that light
acquires when it passes along the X axis and through the
wormhole:

When z' and z lie on the X axis (the spacetime's
axis of symmetry), the rightward-propagating geodesic
g~ connecting them will lie in the X Tplane. C-ompu-
tation of the interval 0~ along g~ then involves only the
two spacetime dimensions X and T, and it becomes the
same as computing sr~ in the two-dimensional Misner
universe20 [two-dimensional Rat spacetime with the lines

(X = 0, T = r) and (X = D —Pp7, T = D+y7) identi-
fied]. That computation has been carried out by Hiscock
and Konkowski in an analysis that has strongly influ-
enced our own work. We shall sketch a slightly altered
version of their computation, because a clear understand-
ing of it will be essential to the subsequent steps in our
analysis.

The computation is carried out in the covering space
of the T Xplane of -our spacetime (which is the same
as the covering space of the Misner universe); see Fig.
5. This covering space depicts successive copies of the
region between the right edge of mouth 1 and the left
edge of mouth 2 (which both coincide with the worm-
hole throat). The world lines of the throat/mouth edges
are labeled To, Ti, T2, . . ., and the copies are sandwiched
between these throat world lines. The covering space's
Minkowski coordinates T and X are related to the phys-
ical spacetime's Minkowski coordinates T, X in copy 0
by

(30)

The Cauchy horizon is at T = X in the physical space
and thus also is at T = X in the covering space. Copy
2p of the throat is at X = —D/(1 —g), and copy 1„is at

(31)

In our discussion we shall find the covering-space null
coordinates

U = X —T, V = 2(X + T) (32)
l

more useful t'han the Minkowski coordinates (T, X).The
factor z in Eq. (32) makes V the same, in copy 0 of
the physical spacetime, as spatial distance X along the
horizon or along any other X-directed null geodesic; and
the fact that the covering space has Minkowski geometry
guarantees that this V is an a%ne parameter along these
geodesics, not just in copy 0 but throughout the cover-
ing space. Our peculiar choice of sign for U makes the
geodetic interval take the simple form o. = AVIV.

The mapping between copy 0 and copy n of the physi-
cal spacetime takes a very simple form in the null coordi-
nates: An event z which appears at Uo(z), Vo(z) in copy
0 will appear in copy n at

U (z) = g Uo(z), V (z) = & Vo(z) .

These various copies of z all lie on a hyperbola in the
covering space (dashed curve in Fig. 5).
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The geodesic g~, with N positive, reaches from copy
0 of z' in the covering space to copy N of z; and corre-
spondingly, the Nth geodetic interval is given by

~~ = [I'~(z) —&o(z')) l~~(z) —~0(z')] . (34)

4 = ).D("=
I&1 —0) (36)

The second factor in the geodetic interval (34) is tiny,
and is readily seen from Eqs. (33), (32), and (29) to be
given by

V~(z) —Vo(z') = (X —T)$ —(X' —T') . (37)

Combining Eqs. (34), (35), and (37), we obtain for the
geodetic interval

~~ = &~[(X —T)& "—(X' —T')] . (38)

The first factor is huge, and since the two points are very
close to the wormhole throat and also close to the Cauchy
horizon, it is very nearly the same as the total aFine
parameter lapse b, V along the Cauchy horizon from copy
0 of the throat to copy ¹ We shall call this total afFine
parameter lapse (~, so

&iv(z) —I o(z') = Car,

and from the lengths marked off in Fig. 5, it should be
clear that

AX~(z) = (' (b —Qb2 —pz) ) 0 . (40b)

(As we shall see in the next section, at all intermediate
throat crossings, g~ is very nearly on the X axis, p &( b;
and consequently, we do not need to correct the covering
space's descriptions of these crossings. ) As a result of
the end-point displacements (40a), (40b), the geodetic
interval (38) is altered to read [cf. Eq. (34)]

From this expression we can read oA'the location of the
Nth polarized hypersurface 'R~ on the inner face (right
face of mouth 1 and left face of mouth 2) of the wormhole
throat/mouths. If we denote by 8 the polar angle on that
inner face,

p = bsin0, X+ b = bcoso, (42)

and if we collapse the two points z' and z together, then
expression (41) becomes

o.~(z z) t,"~[(1+(—
)b(1 cos 8) + T(l g- )]

The polarized- hypersurface is the location where this
geodetic interval vanishes (i.e., where the Nth geodesic
g~ from z to z is null). It thus is given by the equation

&~ = &~ [(b V'—b' —p' T)(— ( b—+—v'b' —p" T')]—.

(41)

8. Points ~', e on wormhole throat

pI —gym+ Zn (39)

the transverse distance of z and z' from the X axis, then
at fixed T' copy 0 of z' (left end of the geodesic g~) is
displaced from the covering-space throat location by an
amount

AX, (z') = b+ gb' —p" & 0—, (40a)

and at fixed T copy N of z (right end of g~) is displaced
from the covering-space throat location by

We ultimately, in this section, are interested in split
points z', z that lie very close to the wormhole throat
and not necessarily on the symmetry axis. As a next
step in working our way toward such points, let us put
them precisely on the throat, but off the axis.

Displacing z' and z off the symmetry axis and onto
the throat aff'ects the geodesic g~ between them, and
correspondingly its geodetic interval o~, in two ways. (i)
gN acquires some transverse motion, which produces a
contribution to o~ that is quadratic in b, the wormhole
radius. VVe shall ignore this eA'ect, since the other one
is linear in b and thus is far larger. (ii) The points z
and x', though on the throat, are displaced in the X
direction relative to the throat positions shown in the
covering-space diagram, Fig. 5. Specifically, if we denote
by

&1+g~lT = T~„(8)—:
~ ~ I

b(1 —cos8) for 0 & 8 ( z./2.

(43)

This equation exhibits the nesting of the polarized
hypersurfaces, which we deduced in Sec. IIA. On the
throat's polar axis 0 = 0, all the 'R~ occur at the same
time, T = 0, but away from the polar axis one meets
the g~ one after another as T increases, beginning with
arbitrarily large N and ending with N = 1.

The Cauchy horizon on the inner face of the
throat/mouths is the limit of these 'R~ as N ~ oo, i.e.,
it is located at

T = T~ —— lim T~~ ——b(1 —cos8) for 0 ( 8 ( ir/2 .
N —+oo

(44a)

The location of the Cauchy horizon on the outer face
of the throat/mouths can only be understood if one re-
laxes slightly our demand that the throat be infinitesi-
mally thin (cf. Fig. 10 of Ref. 6). With a tiny but finite
throat thickness, one recognizes that on the outer face
the Cauchy horizon is generated by null geodesics that
get caught on the throat at (8 = 7r/2, T = b) and then
travel along the throat until they reach the outer polar
axis, 0 = m, where they cross each other thereby exiting
from the Cauchy horizon. The null-geodesic world lines
of these generators are given by

T = T~ (8) = b[1+ (8 —ir/2)] for ir/2 ( 8 & n. . (44b)
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8. Points z', z slightly displaced f7om throat

Now move the points z' and z slightly oA the throat
in the X direction. If X and X are their new X coordi-
nates, then their displacements in the physical spacetime
from the throat locations assumed in Eq. (41) are b,X =
X —( b+—Qb2+ p2) AX' = X' —( 6+—gbz+ p'2).
Correspondingly, we must add these AX and XXI to
the two terms in parentheses in Eq. (41) [cf. Eq. (38)].
The result is

o.~ = g~[(2b —2+hz —p2+ X —T)g —(X' —T')],
(Car& I' b

( D) (2D (48)

length b/2), followed by propagation over the distance
D )) b/2 from mouth 1 to mouth 2. (It is important
in these considerations that Doppler shifts have no afFect
whatsoever on the amplitude of a scalar field. )

The square root of the scalarized Van Vleck —Morette
determinant is the ratio of this giv to the amplitude,
I/(N, that the wave would have had if there had been no
defocusing; cf. Eq. (24):

which we shall rewrite in the following form, in order to
simplify later notation:

Aw(z, * ), (45) C. Regularized Hadamard function G~ ~

where

A~(z, z')—:2(b —Qb2 —p~) + X —T —(X' —T')(

(46)

In view of expression (45) for o~ and expression (48)
for A~, the order-N piece of the regularized Hadamard
function (3), for N ) 0, is

Equation (45) is our final expression for the ¹hgeode-
tic interval, with N & 0, when the points z and z' are
very close to the throat. A~(z, z') '

1/2
g

/' t,g
H 1-

N
4w2 o~ 4w~D (2D) (49)

B. Scalarized Van Vleck —Morette determinant

Turn, now, to the scalarized Van Vleck —Morette deter-
minant b,~ in this wormhole spacetime. We shall eval-
uate it using the method of Eq. (24): propagation of an
ultra-high-frequency classical scalar wave @ via elemen-
tary geometric optics.

The scalar wave is to be propagated along a null
geodesic C~ that is very nearly the same as the geodesic
g~ which begins at z', travels through the wormhole N
times, and ends at z. Since z and z' are both close to
the Cauchy horizon and close to the inner pole, 0 = 0,
of the wormhole throat/mouths, a reasonable choice for
C~ is that portion of the Cauchy horizon which reaches
from its intersection with copy 0 of the throat, To, in
the covering space of Fig. 5, to its intersection with copy
N of the throat. VVe use as the a%ne parameter for this
Civ the covering-space null coordinate V, which coincides
with proper distance X traveled on the first leg of the
geodesic's trip (in copy 0 of Fig. 5). Then the total affine
parameter distance traveled is the g~ of Eq. (36) [which
is why we used the same notation for it and for the g~
in our discussion of the computation of b~, Eq. ('24)].

The amplitude that the wave has at the end of its trip
Ls

where A~(z, z') is given by Eq. (46).
The corresponding piece of G~,&~ for N ( 0 can be

obtained from this one for N & 0 by symmetry consid-
erations: leftward (past-directed) travel from z' to z is
equivalent to rightward (future-directed) travel from z
to z'. Correspondingly, for N ) 0, a ~ and E ~ can
be obtained from o.+~ and A+~ by simply interchang-
ing the roles of the points z' and z. This interchange
has no influence on the A~ of Eq. (48), while in the a~
of Eq. (45) it corresponds to interchanging z' and z as
arguments of the function A~. Correspondingly, the full
regularized Hadamard function, with leftward (K ( 0)
contributions included as well as rightward (N ) 0) ones,
is given by a sum over the contributions (49), augmented
by the same sum but with z' and z interchanged in A~.

, +() - & && &
/'

4 D 2D j (A~(z, z ) Aiv(z', z) j

Here A~ is given by'Eq. (46). Notice that this Hadamard
function is symmetric under interchange of z' and z, as
its definition (1) in terms of field operators and its regu-
larization procedure (3) demand.

D 2D

Here the 1/D is the amplitude when the wave first hits
mouth 2 (after propagated freely a distance D from its
starting point at mouth 1); and each factor of b/2D is
the result of defocusing by the wormhole (which acts, in
the rest frame of the wormhole, like a lens with focal

D. Renormalized stress-energy tensor T~"

It is straightforward to difFerentiate the regularized
Hadamard function (50) twice and then collapse the
points z' and z together and onto mouth 1 of the worm-
hole, to get the renormalized stress-energy tensor [Eqs.
(4)]. The result is
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—( . 6 b( 5 (1+4( +( )k"k'+ (2+ 4( ) tan0(k"p'+ p"k")+4(tan 0)p"p'
6n.~D (2D) [b(1 —cos 0)(1 + (iv) —T(1 —(~)j

Here p" is the unit transverse vector at the wormhole's
mouth 1 (left mouth), and k" is the null vector, with unit
spatial length, pointing along the X direction:

B 1 ( B B &

Bs 4»+&2 E W
+

BZp '

( B B

(BX BT

0 is polar angle on the wormhole throat [Eq. (42)j, ( is
the inverse Doppler shift produced by the motion of the
mouths [Eq. (30)j, b is the throat radius, D is the distance
between the mouths when the Cauchy horizon arises, and
T is I,orentz time at the wormhole's left mouth (mouth
1).

The divergent behavior of this stress-energy tensor as
0 ~ x/2 (i.e. , as tan 0 ~ oo) is caused by our idealization
of the wormhole throat as vanishingly short. If we were to
give the throat a finite thickness a, then the tan 0 factors
in Eq. (51) would be cut off at a maximum value of order
b/a as 0 ~ z./2.

Note that the stress-energy tensor (52) agrees with the
order-of-magnitude estimate (8) derived in Sec. II.

E. Four-momentum carried by vacuum polarization

The total four-momentum carried by vacuum polariza-
tion out of mouth 1 and into mouth 2, up to a time AT
before the Nth polarized hypersurface Q~, is

T~ —&7 ~/2
pP T" n„b sin 0 dP d0 dT

—OO 0 0

2b ( l~ )— t'6) (b() 1+2(
3ir (AT) (a) '(2D) (1 —( )

(53)

Here n—:cos 0B/BX + sin 0p is the unit radial vector at
mouth 1, and we have integrated only over the inner face
of the throat/mouths, 0 & 0 & ir/2, because, for our ar-
bitrarily short wormhole, the stress-energy tensor should
be vanishingly small on the outer face, 7r/2 & 0 & x. The
reason is that the geodesics g~ on the outer face should
experience arbitrarily large defocusing and thus have ar-

bitrarily small L~~ —and thence arbitrarily small T&";
cf. the figures in the Appendix of Ref. 6. The dominant
contribution to the 0 integral in Eq. (53) comes from 0
near, but slightly less than x/2, where the integrand goes
like tan 0, producing the ln(b/a} term. Here a is the tiny
length of the wormhole throat, which provides a In(b/a)
cutoA on the integral; cf. the discussion in the next to
the last paragraph of the preceding section.

Notice that the four-momentum (53) is null and is di-
rected along the A axis, and its time component, the

—m~ &~ ~" t "(i+4("+g'")
Gn. AT 2D ( (1 —(~)2

(54)

(Here it is justified to keep the terms of all orders N, since
the dominant contribution for each N comes from very
near the closed null geodesic C to which the polarized
hypersurface Q~ is tangent, and thus comes from very
near 'R~. ) Note that if our conjecture of a cutoff at
AT l~ is correct, the total four-momentum transfer up
to the Cauchy horizon is of order b/D times the Planck
mass, m~ 10 g. If Hawking's conjecture of a cutoA'

no sooner than DDT l& is correct, the total four-
momentum transfer is of order b.

VI. VACUUM POLARIZATION
BETWEEN THE WORMHOLE MOUTHS

%e now turn from vacuum polarization at the worm-
hole throat to vacuum polarization in the region be-
tween the two mouths. Our calculations here will be
patterned after those at the throat. Throughout our
analysis we shall assume that (i) the throat size is small
compared to the mouth separations, b (( D, (ii) the
split points z', z are far from both wormhole mouths,
X )) b and (D —X) )) b, and (iii) the transverse sepa-
ration of the split points from the X axis is small corn-
pared to their distances from the mouths, p && X and
p « (D —X). In making approximations, we shall re-
gard X (D —X) D.

In subsection A we shall derive sr~ for rightward-

total energy transfer, is negative. For AT /~, the time
component is in accord with the order-of-magnitude es-
timate in Sec. II, Eq. (15a).

In response to the negative energy transfer, the active
gravitational mass of mouth 2 goes down, and that of
mouth 1 goes up. In response to the momentum trans-
fer, the two mouths experience an impulsive force toward
each other However, because of the factor (b/2D) in
the four-momentum transfer, these mass changes and im-
pulsive forces are arbitrarily small, for arbitrarily large
b/D; and independently of the size of b/D (if our conjec-
ture of a quantum-gravity cutoff at AT 1~ is correct)
they last for only a time of order the Planck time: In the
first few Planck times after the polarized hypersurface,
there is an equal and opposite four-momentum transfer
that cancels out the earlier mass changes and counteracts
the earlier impulsive forces.

The total four-momentum that exits from the inner
face of mouth 1 up to a time AT before the Cauchy
horizon Q is

T~ —AT n. /2 2'
T" n, b sin 0 dP d0 dT
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propagating geodesics, N & 0; in subsection B we shall
derive AN, in subsection C we shall combine these and in-
voke symmetry to obtain the regularized Hadamard func-

tion G~~zl, in subsection D we shall derive the renormal-
ized stress-energy tensor T"; and in subsection E we

shall compute the four-momentum carried between the
two mouths by vacuum polarization, in the vicinities of
the polarized hypersurfaces and the Cauchy horizon.

A. Nth geodetic interval

As at the throat, so also between the mouths, our orig-
inal calculations were done by brute force, but we present
here a far simpler, ez post facto derivation.

For z' and z on the symmetry axis, the Nth geodetic
interval o.N can be derived with ease using covering-space
arguments (Fig. 5). As in Sec. V A 1, the result is

(55)

[cf. Eqs. (34) and (35)], where AV is the tiny covering-
space V-coordinate length of the geodesic g~,

b.V = (X —T)g —(X' —T')

[Eq. (37)], and where the total affine parameter length
t,'~ of Q~ is changed from Eq. (36) because of the new

locations of the split points. It is easy to see from Fig. 5
that, with the new longitudinal locations (depicted spa-
tially in Fig. 6),

N —j.

t,'~ —D —X+ ) D("+X(

(57)

As an aid in deducing the eR'ect of moving z' and z
oR' the X axis, we draw in Fig. 6 a spatial diagram of
the trajectory of the geodesic Q~ for the illustrative case
N = 3. The geodesic has four successive legs, labeled
1,2,3,4.

Whenever a ray passes through a strongly diverging
lens, in order to keep its outgoing slope less than or of
order its ingoing slope, the ray must hit the lens very
close to the optic axis: at a transverse distance less than
or of order the lens's focal length times the incoming
slope. This principle, applied to our wormhole (with its

xx'
p/

D —X

FIG. 6. Spatial diagram of the geodesic g3 when the split
points x', x are in the region between the two wormhole
mouths.

focal length b/2 and with the ray slopes of order p/D
on the first and last legs) implies that all the legs must
intersect the wormhole throat in a region near the X axis
with transverse size

pi & pb/D . (58)
This size is tiny compared to the transverse location p of
the split points. Correspondingly, transverse motion of
the geodesic is important only on its first and last legs.
These first and last transverse motions increase the U
length of the geodesic by

I2 2

2(D —X') 2X (59)

Here the terms p'2/2(D —X') and p~/2X are the in-
creases in the physical lengths of the legs, and the factor

~ is the quantity by which physical lengths must be
multiplied to get affine lengths V for the last leg; cf. Eq.
(33). By adding this bb, V onto the V length 4V of the
geodesic Q~ [Eq. (56)] and then combining with Eq. (55),
@re obtain our final expression for the geodetic interval:

o~ = ('~( A~(z, z'), (60)
where

2 I2

A~(z, z') = (X T) (X—' T'—)( +— +,)(
(61)

By setting this expression for o.N to zero and collapsing
the points x' and z together, we can read ofF the locations
of the polarized hypersurfaces &N..

2X(D —X) (I —(~ )
(62)

As must be so (cf. Sec. IIA), these hypersurfaces are all
tangent to the geodesic C (T = X, p = 0) from which the
Cauchy horizon springs; and they are nested in order of
decreasing ¹ Their shapes in the vicinity of C, to which
our analysis is confined, are paraboloidal; cf. Fig. 1.

The Cauchy horizon is the limit of these Q~ as N ~
OO:

2

T=T~ =X+

B. Scalarized Van Vleck —Morette determinant

Next we compute AN by the classical-scalar-wave1/2

propagation method of Eq. (24). The scalar wave, emit-
ted from the vicinity of the split points z, z, arrives at
mouth 2 with amplitude 1/(D —X). It then experiences
N —1 events of defocusing plus propagation over a dis-
tance D, and thereby is driven down in amplitude by
N —1 factors of b/2D The final defocu. sing and travel
back to the vicinity of z', z reduces the amplitude by a
factor b/2X. The resulting amplitude, multiplied by the
total affine parameter distance traveled [the (~ of Eq.
(57)] is b,



43 DO VACUUM FLUCTUATIONS PREVENT THE CREATION OF. . . 3945

X(D —X) 2D

C. Regularized Hadamard function G~ ~

(64)
Q ~ [obtainable from Eq. (65) by interchanging z' and
z, cf. Sec. V C], and by then summing over N:

(i) ~- 47r'X(D —X) q2D

By combining Eqs. (60) and (64), we obtain for the
order-N piece of the regularized Hadamard function, for
N)0,

xi 1 1

&&~(*,*') &~(*',~)r '

where A~ is given by Eq. (61).

(66)

D (I(i"Pf
4m~ o~ 4m2X(D —X) i2D) A~(z, z') (65) D. Renormalized stress-energy tensor 1'~"

The total, regularized Hadamard function (or, rather,
its dominant singular part, which is all that interests us
in this paper) is obtained by adding to expression (65)
the contribution from the leftward-propagating geodesic

I

By diA'erentiating the regularized Hadamard function
(66) twice and then collapsing the points z', z together
[Eqs. (4)], we obtain the following renormalized stress-
energy tensor:

). I

—De~a f b( 5 1 + 4gN + g2N

6&~X(D X) q2Dy ((X —&)(I —(iv) + (p2/2X) + [p /2(D —X)](~)s

Here k" is the null vector pointing along the X direction
[Eq. (52)], and fractional corrections of order p/X and
p/(D —X) have been ignored. This stress-energy tensor
agrees with the order-of-magnitude estimate (8) derived
in Sec. II D.

Note that this T"" has the "double null form" (pro-
portional to k&k") that one normally associates with ra-
diation. Because of the minus sign and the direction of
k", just before the Nth polarized hypersurface it has the
form of a beam of negative-energy radiation propagating
from mouth 1 to mouth 2; and just after 'R~ it resem-
bles a beam of positive-energy radiation from mouth 1 to
mouth 2.

The stress-energy tensor does not, however, represent
real particles. If it did, then its energy would splay out
from the vicinity of mouth 1 along straight lines and
much of it would escape to future null infinity. By con-
trast, the energy emerges from mouth 1 and then con-
verges onto mouth 2; cf. the factor X(D —X) in the de-
nominator of Eq. (67). [The directionality k"k" in (67)
does not exhibit this expansion followed by convergence
because we have computed only the leading-order part of
the directionality and have confined ourselves to points
far from the mouths. However, one sees the expansion
followed by convergence in the throat's stress-energy ten-
sor (51), which also exhibits strong deviations from a
radiative-type, double null structure. ]

The physical nature of the vacuum polarization, in
fact, is much more akin to that of the Casimir vacuum
than to that of radiation. To see the connection with the
Casimir vacuum, consider a fiat spacetime that is closed
spatially along one direction by, e.g. , identifying X = 0
with X = L . The vacuum of this spacetime is of the
Casimir type, and its nonzero T" arises from the peri-
odic boundary conditions on the field P imposed by the
identification of X = 0 with X = I . The simplest way to

compute the Hadamard function for this spacetime is by
the method of images, which is equivalent to introducing
a covering space. The covering space is identical to that
of the X Tpart of-our wormhole spacetime (Fig. 5) in
the limit ( ~ 1 that the boundaries between the copies
of the spacetime (the curves labeled 2~ in Fig. 5) are all
vertical. Tilting the boundaries toward each other has
roughly the same eAect as switching to the viewpoint of
an observer who moves at high speed toward the bound-
aries. Correspondingly, our T"' is roughly like that of
the Casimir vacuum, viewed by an observer who moves
at high speed along the X direction. Our energy density
is negative, just as in the Casimir case, but the high ef-
fective speed causes the tensorial structure of our T&" to
become nearly radiative.

E. Four-momentum carried by vacuum polarization

The total four-momentum that the vacuum polariza-
tion carries across a plane perpendicular to the X axis,
and up to a time AT before the Cauchy horizon, is

oo T~ —AT
T" dT 2vrp dp

0 —oo

-m~ i~
6n AT - 2D) (1 —(iv)'

(68)
Notice that this P" is independent of X and is the
same as the total four-momentum that Bows through
the wormhole throat up to one Planck time before the
Cauchy horizon. That they are the same is to be ex-
pected from energy-momentum conservation, T"". = 0,
plus the fact that, on the part of the hypersurface T =
T~ —AT where T"" is very large, it is very nearly par-
allel to the hypersurface.
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It is interesting to compute the total four-momentum
transferred per unit area across a plane perpendicular to
the X axis, at times up to one Planck time before 'HN,
the N th polarized hypersurface:

d+P i~w

& dA

( Kl
12+2% (D —A ) E2D j

1+4(
(1 gN)3

Notice the following properties of this four-momentum
per unit area: (i) It is independent of transverse location
p in the regime p && D to which our analysis is con-
strained; (ii) it is independent of Planck's constant; (iii)
since N ) 1, it is & Ii/Dz, and thus becomes arbitrarily
small when b/D gets arbitrarily large.

VII. CONCLUSIONS

In this paper we have computed the details of the di-
vergent vacuum polarization for a massless scalar field
in spaceti mes with closed timelike curves. While we are
quite confident of our computations, there are two ways
in which we might have erred.

(i) Our computations rely on the assumption that
the quantum field theory of a massless scalar field can
be formulated in the standard manner, in terms of the
field's modes, in wormhole spacetimes with closed time-
like curves; see Sec. II B. We see no obvious way that
this can fail, but we have not explored all the nooks and
crannies of the quantum field theory to be certain.

(ii) Our derivation of the regularized Hadamard func-
tion, Eq. (20), might be fiawed. For example, our deriva-
tion relies on a tacit assumption that the wormhole space-
times are benign for a classical, massless scalar field . If
this is not so, then we cannot pose initial data in tiny
neighborhoods in the region with CTC's and evolve those
data forward in local time in the manner that underlies
two pieces of our derivation: (a) the wave-packet modes
used to derive the singular part (17) of the Hadamard
function, G(i) = 1/4n 2O, and (b) the propagation of that
singular part to get our multiple-geodesic, Hadamard
normal form (20) of G( &. To shore up confidence in (or

invalidate) our G( l, one might try to tie it to past null in-
finity, from which the posing and evolution of initial data
are known to be well behaved. For example, one might
do so using a variant of the Ford-Parker formalism. ~s

We have argued in this paper (and Hawking has ar-
gued to th'e contrary) that quantum gravity cuts off the
vacuum-polarization divergence near the Cauchy horizon
when it is still far too small to prevent the creation of
closed timelike curves. If we are correct, then how might
the laws of physics protect the universe from CTC's—or
do they?

In view of everything that we and others have
learned about this issue during the past several
years 4

~
i z there seems to be only one

other likely method, besides divergent vacuum polariza-
tion, for protecting against CTC's: The laws of physics
might completely forbid the existence of traversable
wormholes, e.g. , by enforcing the averaged weak energy
condition on null geodesics that thread a wormhole, 2 s s

or by preventing wormholes from forming dynamically. z

Whether this is the case is far from obvious.
Alternatively, it just might be that the fundamental

laws of physics find closed timelike curves acceptable.
Hints that this might be so have been seen recently in
the surprisingly good behavior of the Cauchy problem
for evolution of physical systems in wormhole spacetimes
with closed timelike curves. s
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