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We consider the coupling of quantum massless and massive scalar particles with exact gravita-
tional plane waves. The cross section for scattering of the quantum particles by the waves is shown
to coincide with the classical cross section for scattering of geodesics. The expectation value of the
scalar field stress tensor between scattering states diverges at the points where classical test particles
focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for
plane waves propagating in the presence of quantum particles and that classical singularities are

likely to develop.

I. INTRODUCTION

Plane-fronted gravitational waves with parallel rays
(PP waves) have received some attention recently as it
has been realized that they are exact classical solutions to
string theory.!”3 pp waves are spacetimes admitting a
covariantly constant null vector field /, i.e., I#;VZO, and
were classified by Ehlers and Kundt.*> They admit a
group of isometries G; on a null orbit generated by the
Killing vector [/, all their curvature scalars vanish and
therefore are type N in the Petrov classification. Gravita-
tional plane waves are a subclass of pp waves that admit a
group G5 of isometries with an Abelian subgroup G act-
ing on null hypersurfaces and were first studied by
Baldwin and Jeffrey.® They are assumed to describe the
gravitational field at great distances from finite radiating
bodies®>” and they can be purely gravitational, purely
electromagnetic or both, depending on the source.

As was first pointed out by Penrose® gravitational
plane waves have interesting geometrical properties such
as the absence of a spacelike Cauchy surface as a conse-
quence of the focusing effect they exert on null rays. This
was taken as an indication that regular (i.e., nonsingular)
plane waves could develop singularities when two of them
collided. And, in fact, exact solutions representing two
colliding plane waves have been found with singularities
at the focusing points.’~!! Of course such focusing prop-
erties are due to the energetic content of the waves and
are not expected to be physically significant when the
gravitational field far from the source can be treated in
the weak-field approximation. In fact, the time of focus-
ing is typically inversely proportional to the energy densi-
ty per unit surface of the wave. Such effects, however,
may be physically relevant when strong time-dependent
gravitational fields are involved such as after the collision
of black holes,'>!3 the decay of a cosmological inhomo-
geneous singularity,'* ! or by traveling waves on strongly
gravitating cosmic strings.!®!7 Gravitational plane waves
can be expected to provide local models for such process-
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es, at least qualitatively.

When coupled to quantum fields they also have in-
teresting properties. As was first shown by Gibbons!'®
and Deser!® gravitational plane waves propagate without
hindrance by quantum effects. Namely, they induce nei-
ther particle creation nor vacuum polarization under in-
teraction with a quantum scalar field. In this sense they
behave as electromagnetic or Yang-Mills plane waves in
flat spacetime.’®?° Depending on the source, gravitation-
al plane waves may be considered, in a quantum-
mechanical language, as a coherent superposition of grav-
itons, photons, or both.

In this paper we consider the scattering of massive and
massless scalar particle states by gravitational plane
waves. Since there is no particle creation this may be
considered as the quantum analogue of the focusing of
geodesics. Physical information on this process is given
by the transition amplitude between scattering states (S
matrix) and by the expectation value of the stress tensor
of the scalar field between scattering states. After evalua-
tion of the S matrix we compute the scattering cross sec-
tion and it turns out to coincide with the classical cross
section for geodesics. Furthermore we find that the ex-
pectation value of the stress tensor diverges at the points
of geodesic focusing for all gravitational plane waves.

The divergence of the stress tensor may be taken as an
indication that back reaction must be important when
considering gravitational plane waves in the presence of
quantum particle states and that classical singularities
may develop at the focusing points. In more realistic sit-
uations, however, the wave may have a finite size and the
stress tensor may not diverge at the focusing points;?! still
one should expect that the stress tensor be large there
and, consequently, back reaction important.

Incidentally on a spacetime where there is no particle
production one should be able to use test quantum parti-
cles, as opposed to test classical particles,?? to define the
singularities of spacetime. This is similar to the way
Horowitz and Steif® define singularities by propagating
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test quantum strings on spacetime. In general the classi-
cal and the “semiclassical” definitions of singularities
may differ. This is not the case on a gravitational plane-
wave background; the reason is that the geometrical op-
tics approximation is exact in this case, and thus the rays
of the waves and the geodesics behave similarly. This is
also the reason why the classical and quantum cross sec-
tions coincide.

A few comments on the relation of our work with that
of other authors are in order. ‘t Hooft*} has considered
the scattering of a quantum scalar particle by the
Aichelburg-Sexl (AS) impulsive (or shock) pp wave?* to
study the collision of particles at very high energies. The
AS metric is supposed to represent the gravitational field
of a massless particle?®?’ or equivalently, that of a parti-
cle propagating with kinetic energy larger than the
Planck mass. The idea is that at very high energies one
cannot ignore the gravitational field of the particles. In
this case one of the particles is at rest and its field is
quantized in the gravitational field of the propagating
particle with which it collides. Although the AS metric
is not a plane wave, the scattering has some similarities
with that of plane waves. In particular, the classical and
quantum cross sections also coincide in this case.

Veneziano,?® using results of high-energy superstring
scattering computes the focusing of two colliding finite-
size graviton beams, which can be evaluated in the limit
of small angles and when string size effects are neglected.
He finds that the gravitons of one of the beams are all fo-
cused toward a point located on the beam axis at a given
distance from the plane of collision. This point coincides
with the focusing point of null rays by an impulsive gravi-
tational plane wave with constant energy density along its
(infinite) plane.

Recently Klimcik?! has considered the scattering of
quantum particles by impulsive pp waves and the expec-
tation value of the energy density of the scalar field be-
tween scattering states. Some of his results have been ob-
tained in the particular case of impulsive plane waves.
When we restrict ourselves to impulsive plane waves our
results are in agreement.

The plan of the paper is as follows. In Sec. II we re-
view the geometrical properties of gravitational plane
waves and introduce two sets of coordinates (harmonic
and group coordinates) which are useful in this context.!®
The geodesic equations are solved and discussed in Sec.
II A. In Sec. II B the classical cross section is computed
for a general “sandwich” plane wave. In a sandwich
wave the spacetime curvature is only different from zero
in a certain compact region in the null coordinate
u =t —z, where z is the axis of propagation of the wave.
In Sec. IIC we discuss the focusing of geodesics by
sandwich waves, with some attention to the particular
case of impulsive plane waves.

In Sec. III we quantize a scalar field of arbitrary mass
coupled to the plane-wave background. The Bogoliubov
coefficients between the “in” and “out” modes are com-
puted in Sec. IIT A for a general sandwich plane wave. In
this case we have flat “‘in” and “out” regions and the par-
ticle concept is physically unambiguous. The scattering
matrix and the cross sections are computed in Sec. III B

and, finally, the expectation value of the stress tensor of
the scalar field in vacuum and between scattering states is
considered in Sec. ITI C.

II. GEOMETRICAL PROPERTIES

In this section we shall consider the geometrical prop-
erties of gravitational plane waves. In particular we shall
analyze the behavior of test particles on such back-
grounds.

We start with the most general gravitational pp wave.
In the standard form,*? its spacetime metric is given by

ds*=—du dV +F(u,X)du’+ 3 dX°dX° , 1)

where (u, V) are null coordinates, X¢ are spacelike trans-
verse coordinates, and F(u,X?) is an arbitrary function.
For generality and for its possible relevance to string
theory® we assume a =1, . . ., n, with n an arbitrary num-
ber of transverse dimensions. The set of coordinates
{u,V,X?} which range over all real values are called har-
monic coordinates.”® From (1) it is clear that / =29 is a
covariantly constant null Killing field and that the metric
can be written in the form

8uv=nuwtTFlL,, )

where Ip= —Sﬂu (u=1,...,N with N=n +2), then
ghv=mn""—FI*]¥ and the Riemann and Ricci tensor take
the form

R#VPU :21[uaV]a[pFlal ? 3)

R, =1(r?8,8,F)l, I, . )

From this it is clear that all curvature scalar invariants
vanish and the metric is Petrov type N; this plays an im-
portant role in showing that these metrics are solutions to
string theory.? In particular the Ricci tensor is propor-
tional to the stress tensor, and from (4) we see that the
source is in general a null fluid or, if F is an harmonic
function, vacuum.

Gravitational plane waves are the particular case when
Fis quadratic in X°, F (u,X*)=H,, (u)X°X?, i.e.,

ds*=—du dV +H,,(u)XX%du*+ Y dX%dx°, (5

where H_,(u) is, without loss of generality, a symmetric
matrix. From (4) the only nonvanishing component of

the Ricci tensor is R,, = —H/, which corresponds to the
energy density (Rogo=R,,)
—1
T..=——H?. 6
0 grG e ©
The weak-energy condition?? thus implies
H:=<0. (7)

Two particular cases of interest are pure gravitational
waves which correspond to HZ=0, i.e.,, a Ricci flat
metric, in which the Weyl and Riemann tensors coincide,
and pure null electromagnetic waves* which correspond
to H,,(u)=H(u)5,,(H <0), in which the Weyl tensor
vanishes.
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In a quantum-mechanical language pure gravitational
waves may be interpreted as a coherent superposition of
gravitons and pure null electromagnetic waves as a
coherent superposition of photons; in the general case
both components are present. Note that the energy den-
sity is constant on the plane of the wave which is defined
as u =const, and that the only curvature singularities we
may have are at the points where H,(u) diverges, in
which case one also finds incomplete geodesics.?

Harmonic coordinates are a convenient set of coordi-
nates because they cover the whole plane-wave spacetime
with a single chart and also because direct information on
the curvature is contained in a unique metric component.
However they do not display some of the symmetries of
the spacetime and thus they are not the best coordinates
to use for studying the kinematics of test particles or the
wave equation on such spacetime. It is convenient to in-
troduce the so-called group coordinates {u,v,x®} where
a=1,...,n and the coordinates range over all real
values. In these coordinates the metric (5) takes the form

ds?>=—du dv +g,,(u)dx°dx® . ®)

The relationship between the two sets of coordinates is
given by

V=v +%g'ab(u)x“xb, X?=PHu)x", 9)
where
8ap(W)=Pi(u)Ps(u) , (10)

and the matrix Pg(u) is determined by solving the
differential equation

P¢(u)=H, (u)P{(u) . (11)

Moreover, the system of equations (11) must be solved
with initial conditions satisfying the constraint

P (u)Pg(u)—P§(u)PE(u)=0, (12)
which is stable against evolution; i.e., once imposed on
the initial conditions it holds for all values of u, as can be
seen using (11) and the fact that H, (u) is symmetric.
Conversely, given a plane wave in group coordinates (8)
one can find its form in harmonic coordinates (5) by solv-
ing Egs. (10) and (12) to find the matrix P{(u) and then
using Eq. (11) in order to obtain H,(u).

The nonzero Christoffel symbols and nonzero com-
ponents of the Riemann and Ricci tensors in these coor-
dinates are

bu=38"8er> Tap=8ab >
:buz_auFZu_Fgu iu ’ (13)

Ruu = _%g abgab _%gabg‘ab .

The group coordinates do not cover the whole space-
time with a single chart, because they become singular
for some value of the null coordinate u. The reason is
that, defining y(u)=|detg,,(u)|'/?", the weak energy
condition implies'®

Y <o, (14)
14

which means that y(u) is a convex function [the equality
in (14) can only hold for flat space] and since y is positive
for some value of u, then it must vanish for at least some
other value u =u,,y(u,)=0. Let us prove (14). Denot-
ing by g the matrix whose components are g, (u) and us-
ing (13) it is easily seen that

% 1 1 C 1y 1 —1.
L= | 2Rt @ g ) 5 ) |
(15)
Defining T =g ~!g, Eq. (15) can be rewritten
%zﬁ —2Ruu—%tr(T2)+$tr2(T) . e

Since g is by hypothesis nondegenerate and positive
definite it follows that the quadratic forms g and g can be
simultaneously diagonalized and therefore T is diagonal-
izable. (In fact, T is the endormorphism associated with
the simultaneous diagonalization of g and g.) Then the
traces in Eq. (16) can be expressed as sums of eigenvalues
and it is a simple matter to show that the contribution of
the terms involving traces is strictly negative unless all ei-
genvalues of T are equal, in which case these terms just
cancel out. On the other hand, the weak-energy condi-
tion implies R,, =20, which completes the proof of (14).
If all eigenvalues of T are equal it is easy to see that
R,,=0 implies H,,(u)=0, so the equality in (14) can
only hold for flat space. [Incidentally, there seems to be a
misprint in Ref. 18 since it asserts that (¥2)/y%<0, for
which counterexamples can be found.]

In summary, there is a coordinate singularity at u,
where detg,,(u,)=0 and at least two coordinate charts
are needed in group coordinates. As we shall see shortly
this coordinate singularity is related to the focusing prop-
erties of the plane waves.

A. Geodesic equations

It is a simple task to compute and solve the geodesic
equations for test particles in group coordinates. These
may be deduced from the Lagrangian

__dudv dx dx"

¢ T dn dn B Mg Tan

where we have introduced the affine parameter A=7/m,
with 7 the proper time of the particle and m its rest mass.
This also includes massless particles, taking the limit in
which both m and 7 tend to zero. The momentum of the
particle is then p#=dx*"/dA. Since the Lagrangian does
not depend on the coordinates v and x“ (i.e., 9, and 9d,
are Killing vectors) we have that p,=g,p* and
P.=8gmp" are constants of motion. The conservation of
momentum in the v direction implies that u is propor-
tional to the affine parameter, u =2p_ A, where we have
introduced p_ = —p, for convenience in the notation.
p_ is positive definite for timelike or null geodesics and it
vanishes only for massless particles traveling in the same
direction that the wave, but these are not very interesting
because they never collide with the wave. The conserva-

(u) 17
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tion of the transverse momentum can be rewritten as
Po=2p_g.x° where the overdot means derivative with
respect to u as usual. All that remains, thus, is an equa-
tion for v(u) that can be obtained from the constraint
pupf‘:—mz, which implies 4p20=2p _p,%x°+m? The
general solution is thus

a_—_a b ¥ _ab '
x xo+2 f"o (u')du',
5 » (18)
P
v=vy+ (u —ug)+ azb “g(u)du’
l 4p< o

where x§, v, are the initial positions at ¥ =u, and we
have assumed that the coordinates do not become singu-
lar in the interval (ug,u). If that were the case then one
should use two overlapping charts near the singularity of
one of the charts. We see that the explicit solution of the
geodesic equations is reduced to single integrations. A
particularly simple case is that of perpendicular incidence,
i.e., p, =0, then
2

x=x§, v=v,+ 7 (u—ug) ; (19)
4p-
i.e., the particles always remain in the same transversal
coordinates and describe a straight line in the (u,v) plane.

The focusing of geodesics will be discussed in detail in
Sec. II C using harmonic coordinates, which are better
suited for this purpose. However, some intuitive argu-
ments can be advanced using the results obtained in
group coordinates. Let us define a family F(vq,p _,p,) of
parallel geodesics as the set of all geodesics having the
same parameter v, and p_,p, but different values for x§
(i.e., same momentum but different impact parameters).
For the particular case of perpendicular incidence we are
interested in families with p, =0. Consider two geodesics
from ¥ whose transverse coordinates differ by Ax§, and
recall that at u =u, we have detg,,(u,)=0. Therefore
8a(uy) has at least one null vector and if Ax§ is
chosen to be proportional to this null vector then
8 (7 )Ax§Ax =0, which means that the two particles
converge at the same point at the same time; i.e., their
transverse distance becomes zero and their z coordinate is
the same.

An interesting question that arises now is whether the
perpendicularly incident parallel beam of geodesics F
focuses into a point or into a more extended structure.
This depends obviously on the number of null vectors of
8a(tp). We may define an equivalence relation in the
space of transverse coordinates at u =u, as follows: two
coordinates x{,x§ correspond to the same point if their
transverse distance is zero. Then if there are n transverse
coordinates and the number of null vectors is k, the fami-
ly & will focus into a space of dimension equal to the
rank of g, (u,), r =n —k. For instance, if n =2 and
8a»(uy) has two null vectors the geodesics will focus into
a point, but if there is only one null vector they will focus
into a line. The shape of the focusing surface, however, is
better elucidated when we use harmonic coordinates.
This is specially true in the case of oblique incidence
(p,#0) since 8ab(#y) is not invertible and the integrals in

(18) are ill defined.

Therefore, let us now consider the geodesic equations
in harmonic coordinates. These equations are interesting
because the harmonic coordinates can be interpreted as
ordinary Minkowski coordinates in the “in” and ‘“‘out”
regions, far from the wave. They can be derived from the
Lagrangian

du dV ayb | AU dX® dx*
Ln=an an T Ha XX 55 gdx i’
(20)

where again A=7/m is the affine parameter. The Euler-
Lagrange equations imply that

1 du
p_E—pV_Ed—k:COnSt (21
so u is proportional to the affine parameter, and
X*=H,(uX", (22)
V= HabX“Xb+zX”X°+ , (23)

4p2

where (22) indicates that the geodesics suffer a transverse
force in these coordinates and (23) is, as previously, the
constraint equation. Overdots indicate derivatives with
respect to u.

It is interesting to consider the geodesic deviation
suffered by two nearby geodesics of the family ¥ (defined
as before). Let us call AX? their transverse coordinate
separation, then using (3) and (5), or more easily from
(22), the geodesic deviation equation is simply

AX=H, AX", (24)

which gives the local tidal forces between the geodesics.
Note that when we have a pure gravitational wave
(H?=0) these geodesics suffer the same pattern of tidal
forces that geodesics in a weak gravitational field
in the transverse-traceless gauge.”’” On the other hand
when we have a pure null electromagnetic wave
[H,,=H(u)d,,, H=<0] the geodesics suffer symmetric
attractive tidal forces. It becomes apparent here that
only when H,,(u) diverges arbitrarily rapidly near some
value of u the tidal forces become infinite and the geo-
desics [see Eq. (22)] meet a singularity of the spacetime.

B. Sandwich waves. Classical cross section

In order to define a cross section the spacetime must
have asymptotically flat “in” and ‘“out” regions. For
simplicity we shall restrict ourselves to sandwich waves.
In harmonic coordinates a sandwich wave is simply
defined as a plane wave for which H,,(u)=0 for u <u,
and u >u,, where u; and u, are finite real numbers that
without loss of generality can be assumed to have nega-
tive values u; <u, <0. We shall further assume that the
wave is “sufficiently weak,”® which means that focusing
occurs at some u >0. Since there is no focusing inside
the wave we avoid the need of having to use different
group coordinate overlapping charts.
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The matrix P§(u) defined in Sec. IT will play an impor-
tant role in the following discussion. When dealing with
sandwich waves we shall impose that the metric in group
coordinates has the Minkowski form in the “in’ region;
i.e., the group and harmonic coordinates coincide in this
region. This is achieved by solving Eq. (11) with initial
conditions P{(uy)=8,,, Pj(uy)=0 [which also satisfy
Eq. (12) trivially] for some uy <u,. Note, however, that
both sets of coordinates will be different inside the wave
and also in the “out” region.

The classical cross section for scattering of geodesics
can be calculated for a general sandwich wave. This will
be done in harmonic coordinates, since it is in these coor-
dinates that the metric takes the Minkowski form both in
the “in” and “out” regions. Denoting by p# the momen-
tum of the incident particle before scattering and by g*
the momentum of the same particle after scattering we
have [see Eq. (21)]

a

dX ;
a— — a
q an | 2p _ X oue (25)

where, as indicated, the derivatives must be calculated in
the “out” region. Now, X is given according to (9) by
X%u)=P§(u)x"(u)+Pf(u)x"(u), and x* and its deriva-
tives can be obtained from (18). For simplicity let us con-
sider the case of perpendicular incidence first, i.e., p, =0.
From (25) and (18) we have

g°=2p_P¢(out)X}§ , (26)

where we have used the fact that x§=Xg in the “in” re-
gion (where the initial conditions are taken).

By Eq. (21) we have that ¢g_ =p_ (this equation is
analogous to the conservation of energy in flat space), so
regardless of the direction of scattering q_ will be the
same and equal to the initial value p _ and Eq. (26) can be
viewed as a linear relation which gives the transverse
momentum g° in terms of the position X4 where the par-
ticle “hits” the wave. Denoting by J the Jacobian corre-
sponding to such linear transformation we can write

da!classicalganOZ |J|dnqa
= 1 d"q*
2"|det[ PE(u)]| (g_)"

) (27)

where P¢(u) has to be calculated in the “out” region (i.e.,
u >0). Here we have defined the classical cross section in
the usual way as given by the surface element in n trans-
verse dimensions. From Eq. (11) we have that P¢=0 in
the “out” region. This has the general solution

P{=Bi+udf, (28)

where A and B are constant matrices, which by (12) must
satisfy the relation A TB =BT 4.

Therefore det(P¢) is constant as required for the con-
sistency of (27). Introducing (28) into (27) we get

1 d"q“

—_— . (29)
2" det 4| (go)"

do | classical

Although in the preceding discussion we have assumed

perpendicular incidence for simplicity, Eq. (29) is also
valid for the case of oblique incidence. The reason is that
the only modification required is to replace Eq. (26) by
[see Eq. (18)]

q°=2p_P}

b Pe “ o be(,, 1 ’
Xg+3 - J g )du

+2P¢

P pe
2p7g (u)] ,

but this does not affect the Jacobian of the linear trans-
formation relating ¢ to X§, which is all that is needed.
Of course Eq. (29) is only valid as long as the matrix 4
is nonsingular. If 4 were a singular matrix then the
differential cross section defined in (27) is physically
infinite because the linear relation (26) is degenerate and
one should have to modify the definition of cross section
in order to obtain a finite answer. Since we are mainly in-
terested in comparing the classical and quantum results
and, moreover, the singular case should be obtained from
the nonsingular one by a suitable limiting procedure, we
shall assume for simplicity that det 4 %0 throughout.

C. Focusing of geodesics

As mentioned in the Introduction, plane waves exert a
focusing effect on null rays and also on massive particles.
Before proceeding to consider the case of a general
sandwich wave, it is convenient to review the simpler
case of an impulsive plane wave.?!!3

The metric for an impulsive plane wave is given by (5)
with H,, (u)= A, 8(u), and it can be understood as the
matching of two pieces of flat space through a hyperplane
u =0 which has an energy density per unit transverse
surface, see (6), given by p=— A47/8wG. Without loss of
generality one can choose A4,, to be diagonal, by an ap-
propriate rotation of the transverse plane. So let

Ls,, . (30)

AabE_)\
a

In spite of the Dirac § function appearing in H,,(u) it is
easy to see, using group coordinates, that the metric is
continuous. For this we solve (11) taking as initial condi-
tions P(u,)=38% and P%(u,)=0 for some uy<0. Then
Pi(u)=056}+uO(u)A;, where ©(u) is the Heaviside step
function, and

5 [A, —uO(u))? 1)
8ab ab )\% .

In these coordinates the interpretation of the metric as
the matching of two flat regions at ¥ =0 is clear. In one
of the regions u <0 we have chosen that the metric has
the Minkowskian form, but in the other u >0 the trans-
verse coefficients are proportional to (1—u /A, )?, i.e., flat
space in non-Minkowskian coordinates. The matching is
continuous but it has discontinuous first derivatives, a

feature of the impulsive waves.
Now from (7) and (30) we see that at least one of the A,
must be positive. Let A, be the minimum positive value
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in the set {A,}. Then for u =A,; we have from (31) that
detg,,(A;)=0. This means, according to Sec. II A that
the focusing point is at u,=A, for perpendicularly in-
cident geodesics. Note that the time of focusing is rough-
ly proportional to the inverse of the energy density per
unit surface of the wave. For a purely gravitational im-
pulsive wave p=0, but one may be tempted to define the
energy of the wave as the inverse of the focusing time.

The geodesic equations (22) and (23) can be easily in-
tegrated for impulsive plane waves. One finds

a ba
X%u)=b"+L—u—2yow), (32)
2p_ Ag
ppytm? b}
V(u)=cy+ u—> —O6(u)
° 4p> Ea: Aq
b  bp
+3 | = ——"% |lu6(u), (33)
g [Kﬁ Aep—
where the impact parameters b%=X%u =0)=x{

~p“uy/2p_ and the constant co=V(u =0)=v,—(p°p,
+m?)uy/4p> have been introduced. In (33) we see the
typical shift'® in V' (u) at u =0, AV =—3_ (b2/A,) due
to the impulsive nature of the wave. The transverse coor-
dinates on the other hand simply change direction as the
wave is crossed.

In the degenerate case all A, >0 are equal A=A, =u,.
For the case of perpendicular incidence, p, =0 we can in-
troduce polar coordinates r =1/ X °X,, b=1"b%,, and
Egs. (32) and (33) become

r=b 1—-%6(14) , (34)
e m? b2 u_
V(u)=cy+ 2y +5-0w) | = 1] . (35)

In this case all geodesics of the family F(vy,p_,p, =0)
focus at the same point r(u,)=0, Viug)=cqy
+m?u;/2p_ independently of the impact parameter b. '3
This result was already anticipated in the last subsection
using group coordinates. In an analogous way we may
consider the case of oblique incidence (p,#0). Without
going into details we shall only mention that subfamilies
of F with the same value of the projection b%, meet at
one point in the degenerate case and that for different
values of b, these focusing points span a straight line
parallel to the Z axis, at transverse coordinates given by
XNug)=p,A/2p_.

In the nondegenerate case, or when some of the A, are
different, not all geodesics will meet at the same point.
For instance, let us assume that n =2 and A,71,. As we
have argued in the previous section we expect a one-
dimensional focusing structure. In fact, for perpendicu-
lar incidence all geodesics in a subfamily with fixed b,
meet at the same point:

Xl(uf)——O, Xz(uf):bz(l—)kl/kz) , (36)
V—u 1 m?
Z(uf)_— ) ———2 co— A+ 2 A
b2 Al
—_ 1___
Ay ‘ Ay ] (37

Subfamilies labeled by different values of b, meet at
different points and the focusing points span the parabola
(eliminating b, in the above equations) X ! =0,

Z=[co+(m?/2p_—1)AM—X3/(Ay—A))]/2

in the (X2, Z) plane.

The shape of this parabola, however, is not very
relevant if we are interested in comparing with the
scattering of quantum particles. Indeed, geodesics of a
new family F(vg+Avg,p_,p, =0) will focus into a simi-
lar parabola shifted an amount Av, in the Z direction,
and the set of all parabolas that one could build using
different values for v, would span the whole (X2 Z)
plane. We can define a larger family of geodesics
H(p_,p,) as the union of families Fvg,p_,p,) for all
possible values of v,. In the “in” region F represents a
swarm of particles filling the whole space and all of them
having the same momentum. This would be the classical
analogue of an “in” quantum scattering state with well-
defined momentum |p_,p, ). What is important in com-
paring with the quantum case, therefore, is not the para-
bola itself but its projection onto the transverse space X ¢
i.e., the focusing is characterized by the equation
X u,)=0 in the preceding example.

Let us go on to consider the focusing of geodesics for
the case of a general sandwich wave. Although Egs. (22)
and (23) cannot be integrated in general, a formal solu-
tion can be obtained by simply substituting Egs. (18) into
the change of variables (i). Restricting attention to the
transverse coordinates (because shifts in the z direction
are generated by similar shifts in v, as explained in the
preceding paragraph) we have

Xu)=Pg(u) x8+2§i Jlgtwnau | Gy
As mentioned before the integral in Eq. (38) diverges as
the upper limit approaches u, because g, (u ) is not in-
vertible, but as we shall see the factor PZ(u) appearing at
the beginning of the right-hand side (RHS) compensates
for the divergence. The integral can be split into two
terms:

0 beg,, 1 ' L ’ ’
du'+ “(u')du’ . 39
fuog (u')du'+ [ "g"(u")du (39)
The first term is just a finite constant because g®(u) is
well behaved for u <0. The second term can be explicitly

integrated by noting that the matrix —[ 4 TP(u)] 'is a
primitive for the matrix [g] ™! in the “out” region, so that

fo“g‘”(u'>du'=~(1>—1)g(A*1)§+(B*1)5(A*l)g . (40)

Introducing this into (38) we have
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P

P 1
_ e c 41
2 (47) (41)

X u)=Piu) |x5+ Kb . ¢,

where u has to lie in the “out” region and K’ is just a
constant matrix which is the sum of the first term in (39)
plus the second term on the RHS of (40). Note that the
potentially divergent matrix P! appearing in (40) is not
present in the final equation (41).

In the fully degenerate case g,,(u) has n null vectors,
ie., gu(up)=0 and Py(u,;)=0, so the geodesics in F
focus into a single point in transverse space

P
2p_

X usp)=— (A7he, (42)
which is independent of vy and the impact parameters x §.

In the general case g,,(u,) will have rank r; i.e., it will
have kK =n —r independent null vectors, which are also
the null eigenvectors of Py(u,). We define the matrix
M{(u)=(i/4p _)P%(u)( A ~1)§, which has also rank r be-
cause A is nonsingular (the numerical factor in the
definition has been introduced for later convenience).
Equation (41) can be rewritten as

P

Xu)+
(u) e

(4

=—4ip_MXu) Af xg+2’;—chC] . (43)

It is easy to see, using Eqgs. (12) and (28), that M is sym-
metric and therefore it can be diagonalized by means of a
rotation matrix R (in transverse space) whose columns

—n/2

) _ v (u) e i
Yie_k, V 2k _ (2m)n 172 tkox® =ik _v—"2—

€
P 4k _

where k_,k, are the separation constants, y(u)
=[detg,,(u)]'/?" as in the previous section, and a nor-
malization constant has been introduced according to the
scalar product of Eq. (48) that follows. In fact, the scalar
product between two solutions ¢, and ¢, of the Klein-
Gordon equation is defined as usual®® by
(¢1,¢2)=Nf2J-cT), where J is the Klein-Gordon con-
served current, J, =i (40,645 —$33,6,), N the spacetime
dimension (N =n +2), and @ the volume form restricted
to the Cauchy hypersurface . Now for the modes we
are interested in, modes which represent particles in-
cident to the wave front, the hypersurface © =u,=const
is a good substitute Cauchy surface,'® and we have

($1,0)=—i [ y"(w)($,d,65 —$33,8)dv I dx" .
0

47)
The modes (46) have been normalized so that

Cupe_stayr 0 ) =8k, —k)8(k_ —k") . 48)

We can now proceed to quantize the field ® by imposing

are the eigenvectors of M (i.e., R TMR is diagonal). Let
R, for m =1 to k be the null eigenvectors. Then from
Eq. (43) the pattern of focusing points is characterized by
the set of equations N

Pc
2p_

Y, (up)=— (47 NeRE , (44)
where Y,, =X, R/ are the first k rotated coordinates. We
shall find the quantum analogue of Eq. (44) in Sec. III C.

III. QUANTUM FIELD THEORY IN A
PLANE-WAVE SPACETIME

In this section we review the quantization of a field
coupled to a gravitational plane wave.'® As it was the
case for the geodesic equations, the use of group coordi-
nates simplifies the problem. As usual, we shall consider
a scalar field ¢ with mass m. When coupled to the
metric (8) this field satisfies the Klein-Gordon equation

(Oy —m)®(u,0,x%)=0, 45)

where the g in the d’Alembertian operator refers to the
metric (8). Note that the coupling parameter £ between
@ and the curvature does not appear in this equation be-
cause the Ricci scalar is zero, R =0. It will be present,
however, in the expression for the stress tensor of the
field. The hyperbolic partial differential equation (45) can
be separated in all coordinates and it is easy to see that
any solution can be written (in a region where the coordi-
nates are not singular) in terms of the following normal-
ized modes and their complex conjugates:

fou(g"”ka ky+m¥du |, (46)

[

the usual commutation relations between ® and its conju-
gate momentum 7. 28

The field operator ® can then be expanded by means of
the modes (46) in terms of creation a,:r _x, and annihila-

tion a; , operators as
—a
ay— n * T
(I)(u,U,x ) d kadk_(ukkkﬂak*ka+uk~kaak;ka) N

(49)
where the operators a,:r _« and @, , satisfy the commu-
tation relations

[ax_k»an_x 1=8"k, —k,)8(k_—k"). (50)

A. Bogoliubov transformations for sandwich waves

As we have defined earlier, a sandwich wave is a plane
wave in which spacetime is flat for u <u,; and u > u, for
finite values of #, and u,. In order to be able to use a sin-
gle group coordinate chart we assume as before that the
chart is “sufficiently weak” and that u, <u, <0. The
practical convenience of using sandwich waves is that
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now we have “in” and “out” modes defining unambigu-
ous “in” and “out” physical vacua. Our purpose in this
section is to find the Bogoliubov transformations relating

the “in” and “‘out” modes.
As usual the normal modes defining the “in” vacuum
are the positive frequency modes that are proportional to
J

i 1 i
n — : a__; P
u g e (272 exp |ik, X —ik_V ik (
where the constant phase
qozﬁ (m2+k kD, + [ [g%uw)k, k, +m?]du
— 1
(53)

has been introduced so that these “in” modes agree with
(46) in the “in” region (u <u,). We have also used the
fact that in this region we can take the transverse metric
84 =08, so that the group and canonical coordinates
coincide (x?*=X?%v =V). Recall, however, that once this
election has been made the group and harmonic coordi-
nates will differ in the “out” region (u =u,). Since (52)
and (46) coincide in the “in” region it is clear that the
“in” modes u;" k, are given by (46) in the whole coordi-

nate chart where the group coordinates are regular.

We need now the expression of the “out” modes in the
out” region. These are simply expressed in terms of
harmonic coordinates, since in such coordinates the
metric takes the Minkowski form there, as

Y3

1

uft, =——— exp |il,X°—il _V
1_1, \/21ﬁ(27)‘n+1)/2
i
—_ 119+ 2
i (1,1°+m*)u
(u>u,). (54)

The Bogoliubov coefficients relating the two kinds of
modes are defined by?®

aij=<u,~°“‘,u}“), ﬁijz__(ulput’u}n*), (55)
J
—n/2
a =8(k_—1_)1— ex
F-lark-ty (2m)" Jup=0""P
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—il Pfxb—ik,x"— ék_gabx“xb
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exp(ik,x®+ik,z —iwt), where o=(k>+m?)"2 If we
define

k_=(w—k,)/2, k,=(0+k,)/2, (51)
the “in” modes can be written for u <u, as
m2+k,ku +ig |, (52)

-
where i and j stand here for the quantum numbers k,,k _
and /,,/_. We shall use the hypersurface u =0 to com-
pute the scalar products. Since u =0 lies in the “out” re-
gion and no derivatives with respect to u are involved in
the scalar product, we only need u?"(u =0), which is
given by (54), and u,-i“(u =0), which is given by (46). This
means that we need to know u/™(u =0) in terms of har-
monic coordinates. For this we note that, from (9),

x=[P Nu=0)x",
(56)
v=V—1g,(u=0)x%".

It is very easy to see that 3;;=0. For this it suffices to
note that the integrand in the corresponding scalar prod-
uct, see (47), has all the dependence on V in the form
exp[—i(k_+I_)V] which, after integration with
respect to ¥V, will become proportional to 8(k_ +1_).
But k_ +/_ 20 because 2k _ =w—k, >0 and similarly
I_20. As aresult,

31“111,/(_1(0:0 s (57)
which means that the positive-frequency “in” modes do
not develop negative-frequency ‘“‘out” mode parts and
consequently the “in” vacuum and ‘“out” vacuum can be
identified; i.e., there is no particle creation as was first
shown by Gibbons. 8

This, of course, does not mean that the coefficients a;
are ‘““trivial,” since all the focusing properties of the
spacetime on the modes are described by these
coefficients. Fortunately these coefficients can be explicit-
ly evaluated. Using (47), (55), and (56), after the trivial V'
integration we have

n,dx°, (58)

where we have written the integrand in terms of the group coordinates which are better suited for this integration. In
fact, the Jacobian of the transformation between {x“} and {X*]} is, see (56), just det(Pf)=1/detg,, =" which depends
only on u, and therefore is a constant on the surface u =0. We can write

n/2 . :
Qo ok =8(k_—l_)—(%exp —Z—Ik_gabxgxg]fd"xaexp ék“g'ab(xa_xg)(xb—xg) ) (59)
—‘ta'™—"a ar n
where we have introduced
a__ —1 s\y—1ijab/ pc
xozk—[(g) 1°2(PgL —ky) (60)
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so that we are finally left with a Gaussian integral. The result is

8(k_—1_) [detg,(u=0)]"*
(—2mik _)"/? [detg,, (u =0)]'"?

—i

A1k _k, T exp

which can be simplified using the results in Sec. II B to
yield
S(k_—1_) 1

(—2mik _ )" V2" |det A|

Qp 1k _k,

Xexp (62)

—i .
kagabeXg

Note that the term 8(k_ —/_) is expected because 9,
is a Killing vector, which implies conservation of momen-
tum along the v direction. It should be emphasized that
the expression (62) is valid for any sufficiently weak
sandwich wave and for any scalar field with arbitrary
mass m and coupling parameter &.

B. S matrix and cross section

In this section we compute the scattering cross section
for quantum scalar particles colliding with a sandwich
plane wave. We need to evaluate the scattering matrix (S
matrix) between “in”> and “out” particles, i.e., the transi-
tion amplitude from an “in’” one-particle state with quan-
tum numbers (k_,k,) to an “out” one-particle state with
quantum numbers (/ _,[,):
Cout,I_I,|k_kg,in) = (out,0laf"; af™; [0,in) .  (63)
Since there is no particle creation the two vacua can be
identified |0) =10,in) =0,0ut), and since B;; =0 there is
a simple relation between the “in” and ‘“‘out” annihilation
(and creation) operators,”® namely, a/'= [dk aja"
Using the commutation relations (50) the transition am-
plitude becomes

(out,/_1,|k_k,,in)=(0[0)a} | , « , (64)
which gives explicitly the elements of the scattering ma-
trix.

In order to calculate the scattering cross section we
start with the transition probability

W(i—Af)=[{out,l_1I,|k _k,,in)|?dl_d"l, . (65)
For sandwich plane waves,
Sk _—1_)
[Cout,I_I, |k _k,,in)|= L
2wk _)""? V2" det A
(66)

Of course the 8*(k _ —I_) term that will appear in (65) is
ill defined because the wave travels an infinite amount of
time, so we calculate the transition probability per unit
coordinate v:

dW(i—Af) _ 1 1 dnl,
dv 2m)" T 27 det 4| (1_)"

(67)

‘Z_k—g.abx?)xg} ’

I

To obtain the cross section this has to be divided by the

incident flux of probability, i.e, the probability per unit

transverse surface and unit v coordinate: 1/(27)"*1.

"tI)‘herefore the quantum differential cross section is given
y

1 d’l,
2"|detd| (1_) "

do(i—>Af)= (68)

which is exactly the same as the classical differential
cross section.?’ For an impulsive wave, for instance, in
the degenerate case this cross section is simply propor-
tional to (Gp) ™", where p is the energy density per unit
surface of the wave.

The coincidence of the classical and the quantum re-
sults can be traced to the fact that for a plane-wave
spacetime the optical approximation is exact and thus the
rays of the waves follow geodesic paths. In fact one may
write the solutions (46) as ¢=f (u)exp{iS(u)} and note
that they satisfy VSVS =m? exactly. But this is the
equation of ray propagation (i.e., eikonal equation of
geometrical optics) or alternatively it can be seen as the
Hamilton-Jacobi equation for the geodesics with action S.
The equivalence of the classical and quantum cross sec-
tions, though, is not an exclusive property of plane
waves. For instance, it is easy to check that for the
Aichelburg-Sexl (AS) metric?* (which is an impulsive pp
wave but not a plane wave) the quantum cross section de-
rived by ’t Hooft?3 also coincides with the classical cross
section for geodesics. This seems to be, thus, a feature of
high-energy scattering, meaning that the relative velocity
between the wave and the test particle is the speed of
light.

C. Focusing of modes and the energy-momentum tensor

The quantum analogue of the focusing of geodesics dis-
cussed in Sec. II is the focusing of the normal modes
u” . . In order to investigate this issue we have to find

- a

the form of such modes in the “out” region. We already
know that from Eq. (46). However, Eq. (46) is given in
terms of group coordinates, which break down precisely
at the points where the focusing phenomenon is expected
to occur. Therefore we should find a corresponding ex-
pression in harmonic coordinates which should also hold
at u =u,. This can be accomplished using the Bogo-
liubov transformations and the relation

(69)

in — out
Uk _k, fdlfdlaaz,la,k, kM1,

Using (54) and (62) we have, in the “out” region,
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1 —ilk_V+m2u/ak_)

e
u o ——e
“ta (—amik )" Tdet Al (2m)n D2/ 2k

where k is the vector with components k¢ and 7 is the
Gaussian integral,

I(u):fdlae*lTMl+le’ . (71)
where [ is the vector with components /¢ and M and w
are given by

i

w =—i—-[kb(A “hd 4ok _x9].

If we are not at a focusing position, i.e., u#uf, then we
have detP(u)70 the matrix M is nonsingular, and the
Gaussian integral yields

n/2 Top—1
v w'M w/4 . (73)
VidetM

I(u#uf)= e

Obviously the preceding expression does not hold at the
J

7" TR WM g2

IHu=u,)=———
4 VvV detMy

k
2m* 1T 8
m=1

where My and wy are the restrictions of M and w to the
subspace orthogonal to the null eigenvectors and
Y,,=X,R/} are, as in Eq. (44) the first k-rotated coordi-
nates. Thus, similarly to what happens for classical geo-
desics, the “in” modes become focused by the § functions
into the same pattern of dimension r =n —k [see Eq.
(44)].

This is also true for the expectation value of the
energy-momentum tensor in a one-particle scattering
state, as we shall see shortly. But let us first consider the
vacuum polarization. The renormalized vacuum expecta-
tion value (VEV) of the energy-momentum tensor van-
ishes in a plane-wave spacetime.'® This is easily seen us-
ing the Pauli-Villars regularization prescription.?3° One
defines a regularized VEV as

(01T, (x)10) = [ “dAp(MCOI T, (x;0)l0) . (76)

where (0|7,,(x;A)[0) is the nonregularized expression
for a field of mass V'A and the distribution p(A) satisfies
the relation

S drptonr=o (77)

for n =0,1,2. Moreover, the integral (76) must contain a
term representing the nonregularized VEV corresponding
to the physical field of mass m itself, so we write

p(A)=8(A—m?)+p,(N),

(—is4k_ kT[4 ‘HBT)*‘)/(I

(70)

focusing position, u =u,. Let us see what happens in the
case of full degeneracy, i.e., when g,,(u,)=0. In this
case M(uf)=0 and one obtains, from (71),

1
I(u=ug)=(2m)"8" | X+
(u=uy)=(2m)"8 i

ky(A~He |, (79

so the modes u,i“f k, become completely focused by the &

function into a single point in the transverse space, in
analogy to what happens when classical geodesics are
considered [see Eq. (42)].

In a more general situation the matrix M (u,) will have
a zero eigenvalue of multiplicity k, and the rank of
8ap(uy) willbe » =n —k. As explained in Sec. II C M can
be diagonalized by means of a rotation matrix R in trans-
verse space whose columns are the eigenvectors of M.
We denote by R, for m =1 to k the null eigenvectors.
Then the integral (71) can be expressed as a product of
two factors, one of them similar to (73) and the other
similar to (74):

Ym+5kl—kc(A*‘);R,; , (75)

r

where p;(A) is different from zero only for A > A and the
limit A— oo is taken at the end of the calculation. In ad-
dition it is required that

lim fowdka(K)k_1=O,

A— 0

although this condition does not play any role in our
case. The nonregularized expression of the VEV has the
form

(OIT“V(x;}\)|O)=fdkfdkaTL)‘v)[u,i"ika(x;k)] ,  (78)
where u;" ; (x;A) is given by (46) with m*=A and*®

TL}L) [ui ] = ( 1 _2§)ui,,u,uifv +(2§_%)guvgpgui,puifo

2
—zgui;yvui*+ngyvuimui*+€va|uitz
N [ & |Ag . lu;l? (79)
4 N gy,v ui ’

where £ is the parameter of direct coupling of the field to
the curvature and we have used that the Ricci scalar van-
ishes for a plane wave. Since all the dependence of u " K,
on A is in the form exp(—iAu /4k _) [see Eq. (46)], it is
easy to see by inspection that the dependence of
T [u™ k,(x;A)] on A is a polynomial of degree 2.

It is essential to the Pauli-Villars method that the (con-
tinuous) mode summation in Eq. (78) should be done after
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the integration over A in Eq. (76), but this integration
vanishes due to Eq. (77) and the fact that T;f;,’ is a
polynomial of degree 2 in A. As a result we have
(0IT,,(x)|0),,=0.

Finally, let us consider the expectation value of the
energy-momentum tensor in a scattering state |k_k, ).
This is given by

(ke | T () k kg ) =2T8 " [uf 1. (80)

The RHS of Eq. (80) is indeed a complicated expression,
but from (79) it is easy to see that it will have focusing
properties similar to those of the modes u;" K, In partic-

ular it is easy to compute the expectation value of the
trace in the conformally coupled case, &§=¢&,
=(N —2)/(4N —4), since in this case all terms involving
derivatives in Eq. (79) disappear and we obtain, from (80),

(k_kg| Tk _ky ) =2m?ujt |2 (81)

From this expression it is obvious that the expectation
value of the trace will share the same focusing properties
than the modes: using Eq. (73) in (70) we see that for
u?ﬁuf (81) is finite and well behaved, but for u =u;
we should use (75) instead of (73) and then
(k_k | Th(u =u)|k_k, )¢ will be infinite on a sub-

space of dimension » =n —k and zero elsewhere. There-
fore as remarked earlier one expects that back reaction
will be important when the gravitational wave propagates
in the presence of quantum particles.
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