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Newton s equations for the motion of N nonrelativistic point particles attracting accord-
ing to the inverse square law may be cast in the form of equations for null geodesics in a
(3N + 2)-dimensional Lorentzian spacetime which is Ricci flat and admits a covariantly con-
stant null vector. Such a spacetime admits a Bargmann structure and corresponds physically
to a plane-fronted gravitational wave (generalized pp wave). Bargmann electromagnetism in
five dimensions actually comprises the two distinct Galilean electromagnetic theories pointed
out by Le Bellac and Levy-Leblond. At the quantum level, the N-body Schrodinger equation
may be cast into the form of a massless wave equation. We exploit the conformal symmetries
of such spacetimes to discuss some properties of the Newtonian N-body problem, in particular,
(i) homographic solutions, (ii) the virial theorem, (iii) Kepler s third law, (iv) the Lagrange-
Laplace-Runge-Lenz vector arising from three conformal Killing two-tensors, and (v) the motion
under time-dependent inverse-square-law forces whose strength varies inversely as time in a man-
ner originally envisaged by Dirac in his theory of a time-dependent gravitational constant G(t).
It is found that the problem can be reduced to one with time-independent inverse-square-law
forces for a rescaled position vector and a new time variable. This transformation (Vinti and
Lynden-Bell) is shown to arise from a particular conformal transformation of spacetime which
preserves the Ricci-Rat condition origina11y pointed out by Brinkmann. We a1so point out (vi)
a Ricci-flat metric representing a system of N nonrelativistic gravitational dyons. Our results
for a general time-dependent G(t) are also applicable by suitable reinterpretation to the motion
of point particles in an expanding universe. Finally we extend these results to the quantum
regime.

I. INTRODUCTION

Over the past few years, a new formalism has been de-

veloped for discussing the symmetries of Galilei-invariant
classical and quantum-mechanical systems associated
with the nonrelativistic spacetime picture.

The key point is that everything can be best han-
dled on an ex/ended spacetime, a well-behaved I,orentz
manifold devised to tackle nonrelativistic physics. The
situation is reminiscent of KaluzaKlein theory: the
classical motions of a particle in a Newtonian poten-
tial correspond to null geodesics in a 5-dimensional —or
(3%+2)-dimensional for N particles —Lorentz manifold

(Q, g) carrying a covariantly constant null vector field (.
These so-called "Bargmann structures" were introduced
in Ref. 3.

The particle trajectories can also be obtained as the
project, ions of string trajectories in the extended space-
time. These strings moreover satisfy the Polyakov =qua-
tions of motion.

The null-geodesic —string formalism on our extended

spacetime naturally leads to studying the associated con-
formal transformations that actually provide the chrono-
projective, Schrodinger, Bargmann, 3 and Galilei
groups with a clearcut geometrical status.

Conformally related Bargmann structures have the
same null geodesics. We show that the metric associated
to a time-varying gravitational constant G(t) is confor-
mally related to the Go case if and only if G(t) changes
according to the prescription of Vinti, whose particular
case is Dirac's suggestion

G(t) = GD —. (1.1)

The theory is readily extended to N part, icles. The
generalized kepler's third lan and the virial theorem arise
due to a certain homothety of the corresponding met-
ric. The celebrated Lagrange-Laplace-lunge-I enz vector
of planetary motion turns out to be associated with three
conformal-Iiilling tensors of the extended spacetime met-
ric.

Incorporating full electromagnet, ism would necessitate
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an entirely relativistic framework. Electric and mag-
netic interactions can, however, be partially incorpo-
rated, namely in two distinct ways. In one way one gets
a "magnetic" theory without the displacement current,
and in the other way one gets another "electric" theory
where the Faraday induction term is missing. VVe here
recover by purely geometric means the two distinct the-
ories of Galilean electromagnetism originally discovered
by Le Bellac and Levy-Leblond.

The Bargmann structures are the 5-dimensional gen-
eralizations of the so called pp-wave solutions of Ein-
stein's equations in four dimensions. The latter describe
plane fronte-d gravitational waves and were discovered by
Brinkmann. They also admit a Kaluza-IZlein interpre-
tation allowing for magnetic mass in dimension D ) 5
and for a Chem-Simons-type modification of the field
equations of prerelativistic electromagnetism, analogous
to the situation studied recently by Jackiw.

It is worth mentioning that Bargmann structures (in
particular their pp-wave solutions in arbitrary dimen-
sion) provide a wide class of time-dependent classical so-
lutions to string theory that have been extensively used
to study string singularities.

In the case of the quantum N-body problem with the
Dirac form (1.1) for G(t); one is able (by using De Witt's
quantization rules in curved space) to associate to any so-
lution of the Schrodinger equation for a time-independent
Newtonian constant Gp, a. solution of the Schrodinger
equation corresponding to a variable "constant" of grav-
itation G(t). In the free case one gets the quantum oper-
ators of the Schrodinger group, as written by Niederer.
It should be emphasized that, in our formalism, quanti-
zation of these systems (and the appearance of symme-
tries) relies heavily on the conformal invariance property
of Schrodinger's equation in its "Bargmannian" guise.

Our present interest in nonrelativistic conformal struc-
tures arose from a study of Dirac's attempt to solve what
is now known as the hierarchy problem. Fifty years ago
Dirac proposed in fact that Newton's gravitational con-
stant G varies inversely as the age t of the Universe (1.1).
Thus N celestial bodies of mass rn& and position vectors
qz moving nonrelativistically would satisfy the equation

d ' = ) G(t)mp, where G(t) = Gp —.
(1.2)

An identical equation would arise if one supposed that
the fine-structure constant varied inversely as the age of
the Universe and one considered the classical motion of
nuclei and electrons in atoms and molecules. Of course
in that case it is more appropriate to consider the non-
relativistic many particle Schrodinger equation

ih = ——) Ai4+ V4,
84' h 1

(1 3)
Ot 2, m,.

where

V= —) G(t)

The classical equation (1.2) also arises if one considers
the motion of particles in an expanding Universe with
scale factor a in a conventional theory in which Newton's
constant really is constant G = Gp. If T is cosmic time
then, as many have pointed out, the relevant equation
is the cosmic Newton equation:

(1.4)

Equation (1.4) can easily be cast in the form of Eq.
(1.2) with an apparently time-dependent gravitational
constant by defining a quasi-Newtonian time coordinate
t by

dT
dt =, where G(t) = a(T)Gp.

a T2' (1 5)

In order to obtain an apparent variation inversely as
the Newtonian time t the scale factor a(T) must be pro-
portional to the cosmic time T. This corresponds to an
empty Milne model.

As emphasized by Lynden-Bell, the classical equa-
tions (1.2) are no more, or indeed no less dificult, to
solve than the usual equations with a constant coupling
constant. That is, suppose we are given a solution q*(t')
of the classical equation of motion (1.2) with G = Gp
independent of t. , then

. (
q (t) = —q,

*
~

——'
I

tp
(1.6)

is a solution of the equations of motion with time-
dependent Newton's constant varying inversely as the
Newtonian time.

The corresponding statement for the quantum-
mechanical problem is the following: suppose that we are
given a solution @,t t,-,(q', t*) of the Schrodinger equa-
tion (1.2) with a time independent potential, then

3Nl2-
@(q, , t) = ~—

t tpi
exp ) m, q,

'

tpx usta. tie
~ gj

is a solution of the Schrodinger equation with a fine-
structure constant varying inversely as the Newtonian
time. The pre-factor (t/tp) s~l guarantees that the
wave function remains normalized.

These two results are exact and may readily be verified
by elementary differentiations.

Dirac's original hypothesis is excluded by observations,
however for times short compared with to any time vari-
ability of G can be modeled by a 1/t law, and these clas-
sical results are useful in discussing observations of the
binary pulsar. ~

These results provide a fascinating example where both
the classical and the quantum mechanical adiabatic the-
orems are in some sense exact. Their truth is suggested
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by the work of Vinti who pointed out in the context
of the two-body problem in Dirac's theory, the relevance
of a result of Mestschersky24 showing that the 2-body
problem could be reduced to quadratures. The reader is
referred to Vinti's paper for a detailed consideration of
the solutions in the case N = 2.

In order to explain the relation between the situations
with G(t) and Go, remember that the equation of motion
(1.2) may be derived from the action

Consider furthermore the transformationi4 2i

(1 8)

where j = 1, . . . , N. It is easy to see that if G(t) changes
as suggested by Dirac (1.1), the action, S, changes by a
mere boundary term

where S is the action with Go. This explains the result
of Lynden-Bell.

Observe that the above total derivative actually comes
from the kinetic term. The "Vinti —Lynden-Bell transfor-
mation, " D in (1.8), is therefore a symmetry for a free
particle. But the symmetries of a free particle form a two-
parameter extension of the Galilei group, the so-called
"Schrodinger group". io i 2s The new transformations
are

bq . (q, t) ~ (dq, d t), d p Rg(0] (dilatations),

(1.10)

( q
zy . (q, t) I, l, k C R, (expansions).

pl —kt '
1 —kt) '

a group isomorphic to SL(2, R). This group was later
rediscovered26 as a symmetry of the Dirac monopole and
more recently as a symmetry of a magnetic vortex.

Being a symmetry of a free particle, the Vinti-Lynden-
Bell transformation (1.8) is expected to belong to the
Schrodinger group. It is easy to see that this is indeed
the case since, for to g 0, we have

D = Cto ~l/to &o

In this paper we deal exclusively with the case of three
spatial dimensions. However, all of our considerations
generalize in a straightforward fashion to an arbitrary

They form, together with

e, : (q, t) ~ (q, t + e), e C R, (time translations),

(1.12)

number d of spatial dimensions. In this case, the analog
of Dirac's law for the time dependence of G is

1
G(t) oc

The organization of the paper is as follows.
In Sec. II we provide a review of the geometrical frame-

work we use, that is, of Bargmann structures leading to
a covariant formulation of classical mechanics and pre-
relativistic electromagnetisrn.

In Sec. III we discuss the single-particle case with vary-

ing "constant" of gravitation.
In Sec. IV we review the conformal symmetries of a

Bargmann structure and relate these to the so-called
Vinti —I ynden-Bell transformations.

Sec. V extends this work to the N body p-roblern by
passing to a (3N + 2)-dimensional spacetime and deals
with the homographic solutions and the virial theorem.

In Sec. VI we show how the Lagrange-Laplace-Runge-
Lenz vector is associated to a three-vector's worth of con-
formal Killing two-tensors.

In Sec. VII we relate our work to that of Brinkmann
and we also point out that Newtonian theory allows for
a natural generalization including gravitational "mag-
netic" mass monopoles.

Finally, in Sec. VIII we show how our results can be
extended to the quantum regime, in particular how mass
gets quantized in the presence of gravitational dyons in
this nonrelativistic context.

II. BARGMANN STRUCTURES
AND COVARIANT MECHANICS

In this section we give a short outline of a geometrical
framework adapted to the description of nonrelativistic
classical and quantum physics.

A. Bargmanu structures

Let us first recall that a Bargmann manifold is a
5-dimensional Lorentz manifold (Q, g) with signature
(++++ ) and a fibration by a free action of the ad-
ditive group of real numbers, (R, +), whose infinitesimal
generator ( is null and covariant constant.

A SO(2) action would lead to a topologically nontriv-
ial bundle suitable to generalize Newtonian theory as de-
scribed in Secs. VII and VIII.

As an example, let us consider the extended spacetime
(R, x R) x R. p (q, t, s), where the fifth coordinate s
has dimension [action]/[mass]; start oA' with the Lorentz
metric

gU —= (dq dq) + dt ds + ds Is dt —2V(q, t) dt dt,

(2.1)

v~here (, ) is the standard Euclidean scalar product on
R and put

(2.2)
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g*=Q g and (2 3)

The nowhere vanishing function 0 is necessarily a func-
tion of time only since the new clock 0* = 0 0 must be
closed, implying dB h dh = 0, But conformally related
metrics have the same null geodesics, yielding the same
world lines in spacetime. Because of (2.3), the mass is
also preserved.

B. Syrnplectic mechanics and striu. gs

Classical mechanics can be most elegantly formulated
in a symplectic formalism. We thus wish to present, in

It is a simple task to check that (R, , gU, () is actually a
8argmann manifold.

The base manifold B = Q/(R. , +) is readily interpreted
as spacetime. If we denote by 7r: Q —+ B the correspond-
ing projection, we see that B is canonically endowed with
a Galilei structure, i.e. , a symmetric 2-contravariant ten-
sor h = x,g with signature (+++0) and a one-form 0
defined by g(() = x'0 which generates ker(h). Note that
the "clock" 0 is closed and the integrable spacelike dis-
tribution Z = ker(0) then defines the absolute time axis
B/Z.

In our example [(2.1),(2.2)], we easily find that space-
time B = R, x R, has the following Galilei struct, ure:
h = (0/Bq Im 6/ctq), 0 = dh,

The I evi-Civita connection )7~ql on Q can be shown to
descend to B as a preferred symmetric "Newton-Cartan"
connection 7& & (which, in particular, parallel-
transports h and 0) interpreted as the Newtonian gravi-
tational field. In the particular case (2.1),(2.2), one finds,
using obvious notations, I'P, = B~U = —I z, (A = 1, 2, 3)
and I'i, = —0, V for the nonzero Christoff'el symbols

of 7'&q&. A straightforward computation shows further-
more that the geodesics of (Q, gU) project upon space-
time (B,h, 0, T&+l) as the world lines of test particles in
the gravitational potential U.

Consider now such a geodesic [v —+ q(r)] and set
p = dq/d~. The two quantities p = g~i p'p and
m = g, i,p ( (a, b = 1, . . . , 5) are conserved along the mo-
tion. Comparing with the free case, the three-(co)vector
p —(pi p2 p3) may be interpreted as the linear mornen-
tum, —

p& ——E as the energy and p, = n~ as the mass.
An easy calculation yields

)) = 2m
~

—E+ V) = —2mE),
(p2
(2m

where V = rnU and Ep is thus the internal energy of the
particle under consideration. But, in the nonrelativistic
theory, the internal energy is required to vanish, Ep —O.

The motion of our test particle of mass I in the potential
V can be described therefore by a null geodesic in the
extended spacetime. We defer to Sec. V the general case
of N bodies.

I et us now assume that two Bargmann structures
(Q, g, () and (Q, g", (*) on the same spacetime extension
are related by

this geometric setup, the equations of motion of a point
particle dwelling in spacetime and subject to the action of
an external gravitational field described by a Bargmann
structure.

We start with the cotangent bundle T*Q endowed
with its canonical one-form 8 = p dq . The equations
of motion we are interested in can be obtained as fol-
lows. Consider the (closed) 8-dimensional submanifold
C ~ T*Q defined by the two previously introduced con-
straints (a, b = 1, . . . , 5):

Ep ——g p pb ——0ab (2.4)

and

m = p ( = const. (2 5)

where X = C/ ker(cue ) is a 6-dimensional manifold
canonically endowed with the symplectic two-form ~~,
the projection of u&. In Souriau's terminology, (X,wx)
is the space of motions of our test particle.

Hence the geodesics of (B, )7& &) arise from strings
in the Bargmann manifold. Interestingly enough, these
strings satisfy the Polyakov equations of motion in (Q, g).
(An analogous situation appears for "winders" in 5-
dimensional Kaluza-plein theory, where the strings
satisfy the Goto-Nambu equations. ) To see this, note
that the Polyakov action for a string, i.e. , for a map

: (M2 (vv)) - (Q (g ~)): (~' ~') - q (~' ~')
is given by P

Bq Dq
g)2i) . . j ~f dO ($0

cr' o.~

Varying with respect to the q's gives

+pq + I ig Aq ojq 'Y = O)

and varying with respect to the p's gives

g. i, (a, q'a, q' —,'p;, p "D q'D„q') =—O.

(2 8)

We will confine considerations to massive systems only.
The restriction uc = d6~c to C of the symplectic two-
form of T*Q turns C into a presymplectic manifold
with a 2-dimensional null foliation ker(uc), whose leaves
projects onto Q as two-surfaces, physically the world
sheets of strings. These project, in turn, onto space-
time B as curves, i.e. , as the world lines of particles. The
equations of the foliation are indeed

II =0,
(2.6)

q = ~p'+P( (~, P C R),
where the dot in the first equation stands for covariant
derivative with respect to 9'~&. We thus have the dia-
gram

T4 Q m= const
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In the present case, we set y = p;~ do' g do~ = m(du
dv + dv du) for the two-metric and these equations
become

D q Dq Oq
(2.10)

and
bg,be„q'O„q = g, bO„q'O„q = 0. (2.11)

C. G alilean electromagn. etisms

We conclude this section with a novel viewpoint on the
two distinct theories of Galilean electromagnetisrn.

The previously introduced coordinate system (u, v) on
M2 is actually given by

a c
p'—: and (2.12)

u v

and Eq. (2.10) is thus equivalent to T~ p' = 9'z (' = 0, a
system which is clearly satisfied by our string equations of
motion (2.6)—the second equation being automatic since
T( = 0 on a Bargmann manifold. On the other hand,
the constraint (2.4) and the isotropy condition g((, () = 0
become just the tvro equations in (2.11).

B
div B = 0, curl E + =0, (2.18)

div E = p, curl B = j. (2.19)

We have put E+ = F~4, B+ = 2
e+ F~Js (with

A, B,C = 1, 2, 3) to define the Galilean electromagnetic
field (E, B) and j+ = J~, p:—J4 to define the three-
current density j and the charge density p.

In the curved case, however, Eqs. (2.16) and (2.17)
retain the same form as in the Bat case, except for a
possible modification of Gauss's law,

(2.17)

where (h ~) is the 4-dimensional Galilei "metric. " Had
we worked in a truly relativistic spacetime (B, (g P))
by considering, from the outset, a spacelike fibration
g((, () = c 2, Eq. (2.17) would have yielded the sec-
ond group of the Maxwell equations. However, our
"metric" h is degenerate; as a result the disp/acement
current is lost here. For example, in Oat spacetime
(R~, (h ~) = diag(1, 1, 1, 0), (0 ) = (00 0 1)), Eqs. (2.16)
and (2.17) reduce to

div E+ (H, B) = p, (2.20)

1. The rnagneticlike theory

Consider firstly a 2-form X = zX, b dq' A dq on the
extended (Bargmann) spacetime which satisfies the 5-
dimensional Maxwell equations (a, b, e = 1, . . . , 5)

~[a+bc] —0) (2.13)

(2.14)

(Square brackets denote skew symmetrization. )
In order to get a well behaved 4-dimensional theory,

we require furthermore that

that couples the electromagnetic field to the "Coriolis"
components H+—:e&@+I'+&& [see (7.16)j of the gravita-
tional field corresponding to certain solutions of Newton-
Cartan field equations, such as the nonrelativistic Taub-
Newman-Unti-Tamburino- (NUT-) type solutions given
by the metric (7.4). This modification is very remi-
niscent of the Chem-Simons modification of Maxwell's
equations. This point will not be pursued here.

This is the so-called "magnetic limit" of Maxwell's
equations.

2. The electriclike theory

X,b(' = 0. (2.15)

Now, ~ being closed, this last condition entails that
IgT = 0 and, hence, that T is the pullback of a two-
form F = zF p dq h, dq~ on spacetime B. We clearly
still have dF = 0, i.e. , the first group of Maxwell's equa-
tions,

Ol FP~l = 0, (2.16)

where n, P, p = 1, . . . , 4.
We then reduce the second group (2.14). Since ( is

covariantly constant, Eq. (2.15) readily implies that the
five-current g has no "fifth component" (i.e. , gc(' = 0),
or, componentwise (gc) = ((J ), 0). The only non-
vanishing Christoffel symbols of V'~& are I'& and I'

&
in

an adapted coordinate system. The explicit form of I"
&

is given by Eq. (3.25) in Ref. 3 and will not be needed
here. The I'& 's turn out to be nothing but the compo-
nents of the Newtonian connection Q& ~ on spacetime.
The 5D equation (2.14) reduces therefore to

which is obviously equivalent to the covariant form (2.13)
and (2.14). By requiring now the mere invariance con-
dition I,qT = 0, one can push down the two-vector

cI Ob we still denote T and get a two-vector F =
ir, X on spacetime B that satisfies (n, P, y, . . . = 1, . . . , 4)

(2.21)

where J = ~,g and

h"l 0), F~~l = 0, (2.22)

that is, the full second group of Maxwell's equations with
the displacement current included, which retains the fa-
miliar form in Oat spacetime,

Interestingly enough, the 5-dimensional Maxwell equa-
tions admit another subtle "electric limit. " We could
have started with the contra variant form of the 5-
dimensional Maxwell equations, i.e. , with

al.y' l = 0 and V.X' = g',
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div E = p, curl B— tently assumed to depend on time only,
(2.23)

together with a truncated first group, i.e. , with the induc-
tion term missing

div 8 = 0, curlE = 0. (2.24)

Notice that we have 8 = 8 if we again define the
"electr iclike" electromagnetic field (E, B) byE—:I",B = -c~~~I'" + and the current-charge

density by j —J+ = j ) p J
In addition, there are extra fields E+ = E+s„S =

%4s that push forward to zero. One easily finds that
they satisfy in the ffat case grad S+BE/Bt = 0, curl E+
BB/gt = 0 and div E + OS/Ot = p where p = J'5. In
contrast with the more familiar Kaluza-Iklein case when
the fibration is spacelike, one cannot, in our case where
the fibration is null, associate in an intrinsic fashion these
extra components to fields on spacetime.

U(q, t)—:—G(t) with Gp = G(tp) (3 2)

'V*gU —0 gU, (3.3)

plainly defines an SO(3)-invariant vacuum solution of
(3.1) on Q = (R.s)),(0}x R.) x R.

In contrast with Einstein s theory in which the con-
stant of gravitation must be independent of time, un-
less one augments the theory by additing an extra scalar
field, ' a time-dependent gravitational "constant" is

quite natural in the Newtonian context. In fact, even if
one is interested in the usual case where G is constant
with time, our results on time-dependent G(t) are di-
rectly applicable to the motion of particles in an expand-
ing universe [Eq. (1.4) using the identification (1.5)].

Suppose now that we can find a (local) diff'eomorphism
'D of Q with the metric gU given by (2.1) and (3.2) and
the vertical vector ( given by (2.2) such that

III. A TIME-VARYING "CONSTANT"
OF GRAVITATION

for some strictly positive function 0, and

(3 4)

R, i, = 4n.Gg(, Iei„ (3 1)

where g is the mass density of the sources. The spacetime
projection of these equations yields the so-called Newton-
Cartan field equations. Those reduce, in the particular
case of a Bargmann manifold (Q, gU, () given by (2.1)
and (2.2) with Q g R, , to the Poisson equation

AU = 4~Gg.

Since the gravitational "constant" G can be consis-

We now apply our general framework to cope with
Dirac's theory in which the gravitational "constant"
varies with the time.

On a Bargmann manifold (Q, g, () Newton's field equa-
tions for gravity can be cast into the simple geometrical
form3

where Up(q) = U(q, tp). The metrics 'D*gU and grr,
clearly have the same null geodesics and, hence, the same
world lines in spacetime. Accordingly, up to a change of
coordinates, the equations of motion governed by G(t)
are the same as those corresponding to Go. I et us show
that this happens for very special functions G(t).

We seek the conformal equivalence (3.3) by putting
(q', t*, s*) = 'D(q, t, s) as shorthand. Being a bundle
automorphism (3.4), D defines a spacetime local diff'eo-

morphism (q, t) —+ (q', t') which, in turn, defines a local
diA'eomorphism t ~ t* of the time axis. Owing to the
fundamental SO(3) symmetry of the problem, we confine
our considerations to SO(3)-equivariant diff'eomorphisms,
i.e. , q' = A(r, t) q where r = ~(q((. But, as previously no-
ticed (2.3), 0 cannot depend on r; after some calculation
we get t' = JQ(t) dt and

hh'ghh = hh(h)
~

(ChhSChh)+ Ch h'hCs+CshhhCh+ 2
'

Ch hhCh) +hh(h) (Ch hhhh ~ hhRCh),

with

@ = ds* —ds+ n(t)rdr+ 2in(t) r dt+ 2 dt,
pt mp

where n(t) = A(t)/A(t) and p(t)—:G(t*)A(t) —Gp. Now
Eq. (3.3) will be satisfied provided @ vanishes. But this
requires d@ = (n —n +2P/r ) dt Adr = 0, that is n = n
and P = 0. Hence,

G(t") = and Q(t) =
Qt t+b'

with a, b = const. We thus obtain s" = s —zn(t)r2+ d

with d = const. Condition (3.4) then holds automatically
because

h9

Ds h9s

Thus t' = —a2/(t + h) + c with c = const. Let us now

summarize.
The solution grr of lhleic)ton's field equation associated

with
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can be SO(3)-equivariantly brought into the conformal
class of gU, where

Up(q, t) = —Gp

provided

G(t) = Gp (3 5)

The local diffeomorphisms 27 mhich commute with the ro
tations and such that 'D*gU ——Q2gU, and 17,( = ( will
be called "Vinti Lynd—en Bell -transformations. " They are
given by

Q
q =t+tq

0t* = — +c,t+6 (3.6)

Q(t) =

This result is consistent with that of Ref. 14. Dirac's
original suggestion (1.1) for G(t) corresponds to choosing
a = tp, b = c = 0 in (3.6). Vinti actually proposed the
slight modification (3.5) to Dirac's prescription in order
"to avoid infinities in the resulting exact classical solu-
tions for the orbit in the two-body problem. " Here, we

get Vinti's formula as the general solution of the problem
of conformal equivalence for Newtonian gravity between
a constant and a time-varying "constant" of gravitation.

Notice that the change (3.6) in the extra coordinate s
is precisely the change of the action as given in (1.9) and
that the spacetime part of (3.7) can actually be obtained
by having the 5 x 5 matrices

1 0 0
0 c/a bc/a —a

l, 0 1/a b/a )
act projectively on the aKne space of the five-vectors

q

1

2(t + b)

a g O, b, c, and d being arbitrary real constants Th. e

conformal factor is finally

early 1970's that the maximal kinematical symmetry
group of the free Schrodinger equation is larger than the
mere Bargmann group, i.e. , the 11-dimensional extended
Galilei group. This group is 13-dimensional and has been
called the "extended Schrodinger group. " In our formal-
ism, it simply consists of those conformal transformations
C of the canonical fiat Bargmann structure (R. , gp, (),
the extended Galilei spacetime, that commute with the
structural group, i.e. , such that

C'gp ——0 gp and C,( = (, (4 1)

w ltll

gp
——(dqdq)+dtds+dsdt and

S

(4.2)

Lx gp —2Agp and Lx( = p(, (4 3)

for some functions A and p. The solutions of this system
form a 14-dimensional Lie algebra for the Lie bracket (the
so-called "chronoprojective Lie algebra" ) and are given

by

x = n x q ~ (y+ ~t)q+ Pt+ g,
X' = Kt +bt+e,
&' = —[~ zq + (p, q) + rl + (6 —2y)s],

(4.4)

with n, p, g C R, ; y, z, b, e, rl C R,. This yields A = y+zt
and p = 6 —2y, and the subalgebra of conformal bundle
automorphisms (p = 0) is thus characterized by

bx=
2

(4 5)

Integr ating this Lie algebr a leaves us with a 13-
dimensional Lie group, the (neutral component of the)
so-called extended Schrodinger group "acting" on the ex-
tended spacetime according to

See Refs. 13 and 9 for a more detailed account. It is
amusing to note that the conformal transformations were
already used in five dimensions to study the parabolic
diffusion equation at the beginning of the century. 3

Let us first determine those conformal transformations
of (Rs, gp, () which simply project down to the base B as
spacetime transformations, i.e., which preserve the verti-
cal direction. Infinitesimally, this amounts to finding all
vector fields X such that

representing spacetime events. We record for further pur-
poses that the matrices (3.7) form an open subset of
SL(2,R).

IV. BARGMANN CONFORMAL SYMMETRIES

Aq+ bt+ c
ft + g

dt+e
ft+g

f (Aq+bt+ c) t

(4.6)

In this section we discuss the general notion of confor-
mal symmetries of the 5-dimensional Bargmann space-
t, ime. It will be shown in Sec. VIII that these symmetries
are actually specific to the Schrodinger equation.

It was recognized by Niederer and Hagen in the

where A 6 So(3); b, c 6 R;d, e, f, g, h

dg —ef = 1. The corresponding conformal factor in (4.1)
is therefore
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0= 1

fh+ g

A short calculation yields 3

U(q, t) =
~ u(t) q + (v (t), q) + io(t), (4.10)

It is now possible to give other nonrelativistic "sym-
rnetry" groups (listed below) a neat geometrical interpre-
tation associated with the Bat Bargmann structure.

(i) The 11-dimensional subgroup defined by d = g =
1, f = 0 in (4.6) is the (neutral component of the)
Bargmann group which consists of those (-preserving
isometric of the extended spacetime.

(ii) The Gah lei 'group is recovered as the 10-
dimensional quotient of the Bargmann group by its cen-
ter, (R., +), parametrized by hi [see (4.6)]. The action of
the restricted Galilei group on spacetime is given by the
first two equations in (4.6) with d = g = 1, f = 0; it
corresponds to the projection onto spacetime R of the
Bargmann group action on H. , the extended spacetime.

(iii) Again, factoring the extended Schrodinger
group (4.6) by its center, (R., +), yields the 12-
dimensional Schro dinge'r group, originally discovered as
the "maximal invariance group of the free Schrodinger
equation. " The Schrodinger group is thus isomorphic to
(SO(3) x SL(2, R)) Qs (R, x Rs), i.e. , to the rnultiplicative
group of those 5 x 5 matrices

(A b c
0 d e

(0 f g)
(4.7)

C'(Udt Cm dt) = 0 Up Ch g) dt (4 8)

with entries as above.
(iv) The 14-dimensional group of conformal automor-

phisms of the Oat Bargmann structure, the "chronopro-
jective group" that preserves the directions of g and (
separately [see (4.3),(4.4)], can be thought of as a pre-
ferred Lie subgroup of O(5,2); its commutator subgroup
turns out to be the extended Schrodinger group (4.6).

(v) Finally, the three-parameter subgroup (A = 1,b =
c = 0) of the Schrodinger group (4.7) is the group of non
relativistic conformal transformations (1.10)—(1.12) iso-
morphic to SL(2,R) interpreted as the group of projec-
tive transformations of the time axis. The dilatations
and expansions introduced in Sec. I form the triangular
Borel subgroup (A = 1,b = c = 0, e = 0).

Ihemark 1. Comparing with (3.7) we conclude that, for
each value of the parameters a, 6, c, the spacetime projec-
tion of the Vinti —Lynden-Bell transformation (3.6) be-
longs to the SL(2, R,) subgroup. This can also be under-
stood by observing that for an element C of the extended
Schrodinger group, one has C*g~ = 0 gp —2C" (UdhCh),
see (2.1) and (4.1). Thus, Eq. (3.3) is satisfied as soon

where u, v, m are arbitrary functions of time. Physically,
we can have a time-dependent spherically symmetric har-
monic oscil/ator plus a homogenous force Th.is explains
why the classical symmet, ries of these systems are related
to those of the free particle. This fact has been exploited
in the quantum-mechanical framework to conformally
relate the general solutions of the free Schrodinger equa-
tion to those of the Schrodinger equation in the presence
of a potential of the form (4.10), e.g. , a (time-dependent)
harmonic oscillator.

Ihemar/' 5'. One could also ask which central potentials
U are invariant with respect to nonrelativistic conformal
transforrnations given by Eqs. (1.10)—(1.12). Because of
(4.8), this requires

const
q2 (4 11)

A generalization of this result to the case of N bodies
has been obtained i.n Ref. 36.

Finally, adding a Dirac magnetic monopole would only
change the symplectic structure introduced in Sec. II by
a term proportional to the area two-form of S2, which
is manifestly invariant with respect to our nonrelativistic
conformal transforrnations.

The most general conformally invariant system is
thus an inde rse square po/ential plus a Dirac
monopole.

V. THE 2V-BQDY PROBLEM

A. The lV-body Bargmann structure

The metric of this {3N + 2)-dimensional Bargrnann
structure is

gv = ) (dqi dq~) + dt ds + ds Ck
rnj=1

2——V(qi, . . . , qiv, t) dt dt,

In nonrelativistic physics, it is consistent to confine
attention to a finite number N of bodies moving in Eu-
clidean space B. . An equivalent description is to give
a curve in the configuration space R. ~. To obtain a
spacetime description, we may then add one extra ab-
solute time variable to obtain a Newtonian spacetime of
dimension 3N+ 1. The motion of the bodies corresponds
to a world line in this N-body spacetime.

A closer inspection shows that this corresponds to the
calculation of Sec. III.

Remark 9. In the same spirit, one can ask which poten-
tials U are conformally related to the free case, namely

where m1, . . . , m~ are the masses of the bodies and rn =
m1+ . + m~ is the total mass of the system. As before

(5.2)

A*g~ ——gp alld A.( = (. (4 9) is the (R, , +) generator that defines the principal null,
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covariant-constant fibration.
For the planetary N-body problem of celestial mechan-

ics, we take

mj IIt

g&k

(5.3&

and thus define the metric in Q = (R, (A) x R, x R,
where L is the collision subset.

Note that the potential V in (5.3) consistently leads
to a Ricci-flat metric gv given by (5.1), i.e. , a solution of
the vacuum field equations (3.1).

The nonzero ChristoKel symbols are

r"„=(1/m, )a~, V, r'„., = —(I/m)a„, V

and r« ——(1/m)D, V where we have put q+&—:q with
A = 1, 2, 3, and j = 1, . . . , ¹ The equations of the null
geodesics are readily interpreted as Newton's equations
of motion, viz. ,

Substituting this ansatz into the equations of motion
(5.4), where V is given by (5.3) with G = const, yields

0 0
0 1 q —qp

(5 8)

and

The solutions qo = (qoi, . . . , qo~) of these equations (with
A = const ) 0) are called central configurations and pro-
vide by (5.7) some exact solutions of the N-body problem
that, up to now, have not been completely classified (see
Ref. 40 for an account of recent progress in the classifi-
cation of the nonplanar central configurations with equal
masses .

To gain some further insight, let us first observe that if
we set Cto = dt/A(t)2 and, of course, q = q /Q(t), then

2qAq 1
0~,. V,

mj
(5 4) V(q) dt = QV(q ) dt .

together with a supplementary equation for the action

d2s 1 dV
dt m

Dvl
Bt J

(5.5)

2 1
e oc —.

t (5.6)

B. Homographic solutions

The only known general class of nonplanar exact so-
lutions of the N-body problem are the so-called homo-
graphic solutions. Their existence is related to the con-
formal structure of the Bargmann manifold. These par-
ticular solutions have the form

q, (t) = Q(t) qo. (5.7)

Note that the metric g~ is indeed conformally defined
by its null geodesics, i.e., the solutions of the N-body
equations of motions. In other terms, the "shape" of
the extended spacetime is defined, up to a factor, by the
motions of matter in the universe.

Regarding the time-variation of the "constant" of grav-
itation, our previous arguments for the external Newto-
nian field apply here just as well. We can therefore claim
that the only gravitational "constant" G(t) in (5.3) that
can be SO(3)-equivariantly associated with Go is again
given by Vinti 's formula (3.5) .

We remark in passing that, had we been considering
the analogous problem in electrostatics with a Coulomb's
p otential

eje~

y&k

for a system of charges e1, . . . , e~, we would have found
exactly the same possible time dependence for the fine
structure constant

Thus, up to a total derivative, we get the Lagrangian of N
particles interacting with a combined repulsive oscillator
and Newtonian gravitational field (with time-dependent
coefficients). But this latter system admits a static equi-
librium configuration, namely when the gravitational at-
traction is canceled by the linear repulsion.

Again, this can be rephrased geometrically in terms
of conformal transformations of the N-body Bargmann
manifold (Q, gv, (s) with Q = (Rs~(A) x R x R, and

gv, ——P. i (m~/m)(dqs dq ) + dto dso+ dso dto—

(2/m)V(q ) Ct dt and g = 0/Os with V given by
(5.3). A simple calculation, akin to the previous remark,
shows that the mapping A: (qs, to, so) ~ (q, t, s) of Q,
whose inverse is given by

0

Q(t)
'

)0 Ch

A(t)z '

0 0
S =S+

N

) m, q,',

(5.9)

1V

Vfr(q, t ) = 0 V(q )+ ziQ 0) m q, (5.11)

The critical points q of V,~ are the static equilib-
ria (or the central configurations), i.e. , the solutions of
gradi Vfr(q, t ) = 0 (implying A = —020 = const).
These actually define some specific null geodesics of

transforms the original Bargmann structure according to

gi = (A )'gi, —0 gv and ( —= A,(
(5.10)

where
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g& „, which, according to Eq. (5.10), happens to be
conformally related to gv. We again note (5.10) that
the total mass is preserved by the transformation A.
Central configurations are indeed associated with null

geodesics of gv, hence to some particular solutions [t ~
(qi(t), . . . , q~(t))] of the original set (5.4) of Newton's
equations.

Remark A. similar explanation can be given to the
observation of Forgacs and Zakrzewski, who found that
the action If(t)y (t) dt can be brought into that of a free
particle by the change of variable t —+ Jdt/ f(t).

and thus if Y g ker(d6o) is a generator of the equa-
tions of motion (2.6), we have Y(&c(A)) = ~Bc(Y).
Using (2 6), —p, = E (energy) and p' = m (total
mass), this can be rewritten as Y (Pp~, q ~}—2Emn =
2 n (Pp~,.p & —Em} . Introducing the kinetic energy
T = P p~, p"~/(2m) we get

V ~ A (5.17)

If we assume that the system is in equilibrium then the
average of the right-hand side of (5.17) vanishes and we
are left with

C. The (cosmic) virial theorem

Vfe conclude this section with a remark about scaling
and the virial theorem.

Consider the Newtonian N body -problem described by
the metric gv in (5.1) with V as in (5.3) and G = const.
This Bargmann structure admits a 5-dimensional Lie al-
gebra of fiber-preserving conformal Killing vectors. This
algebra consists of four isometrics (rotations and time
translations) and of the homothetic-Killing vector field

2T = V (time average).

All these results can be extended to include the case
of a time-dependent gravitational "constant" G(t). As
we previously mentioned in Sec. III, this case can also be
reinterpreted as giving the equations of motion for par-
ticles in an expanding universe [Eq. (1.4) if we use the
interpretation (1.5)]. The virial theorem (5.17) then be-
comes the "cosmic virial theorem. "2o If G is not constant
with time, 0/cit will no longer be a Killing vector field of
the metric gv given in (5.1). In fact,

0 3 ci 1 0X=) q~ + —t —+ —s —.
Bq; 2 Bt 2 Os

(5.12) 2 G(t)
(~s/si gv )ab — V(a(b ~mGt (5.18)

This latter generates the homothety group (A ) 0)

q~ ~q'=Aq,

s s* = X'~'s,
(5.13)

with j = 1, . . . , N, under which gv ~ A gi and ( ~
A-'/'( Thus

Ex gv = 2gv and Ex( = —
2 (. (5.14)

Such homotheties lift to the cotangent bundle (T*Q, 6)
as canonical symplectic similitudes (6 = Ai/ 6), namely
as

Using this equation, it is easy to obtain the "cosmic en-
ergy equation. "

VI. HIDDEN SYMMETRIES
AND KILLING TENSORS

We now briefly describe the appearance of "hidden"
symmetries.

In our formalism, a manifest symmetry belongs to
the group of conformal automorphisms of the bundle

(Q, g, (), whose infinitesimal generators are the confor
mal ECilling vector fields z that corrunute with the (K, +)-
generator, namely (a, b = 1, . . . , 5),

zbl = Ag, b and [g, x] = 0, (6 1)

JS PS~

(5.15)

where A& ——1,2, 3, and j = 1, . . . , ¹ These homoth-
eties (5.15) preserve therefore the (6X+ 2)-dimensional
submanifold C defined by the constraints (2.4) and (2.5)
and the null foliation ker(d6o). Hence, they permute the
classical motions. This yields a generalized Aepler third
latu: if [t ~ q(t)] is a solution of Newton's equations for
N bodies then so is ft ~ Aq(A s/~t)].

As a by-product, we get the virial th eorem used
by astrophysicists to estimate the mass of clusters of
galaxies. We have seen in fact that if X denotes the
canonical lift of the vector field A to T'Q, then 1 abH„= 2p pox (6.2)

are conserved along null geodesics of (Q, g) whenever

for some function A on Q. (Parentheses denote sym-
metrization. )

The functions H. = p K, linear in momentum on
T*Q, are constants of the motion of our test particle.

For example, in the case of the one-body problem with
G = Go, rotations, time-translations, and vertical trans-
lations act by isometrics and the associated conserved
quantities are respectively the angular momentum I, the
energy E = —H~~~&, and the mass I = H~.

Now, the so called "accidental" or "hidden" symme-
tries associated with the Lagrange-Laplace-Runge-Lenz
vector can also be discussed in this new setup. Observe
that the quadratic quantities
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+(a&bc) = ~(agbc) (6.3)

I(K =0, (6 4)

i.e. , projectable ones.
In the Kepler case, a lengthy calculation is needed to

prove that the following expression is indeed a solution
of the Killing equations (6.3) and (6.4):

for a symmetric and trace-free tensor z (see, e.g. , Refs. 42
and 43). These objects are called conforma/ Ailling two

tensors Since we want to preserve the principal bundle
structure on the extended spacetime (Q, (), we will only
deal with conformal-Killing tensors r such that

of the Vinti-Lynden-Bell transformations.
Brinkmann then went on to determine explicitly all

Einstein-Bargmann structures in 4 and 5 dimensions and

to give a set of necessary and suf5cient conditions in all

higher dimensions.

A. Case &=4
In 4 dimensions the most general Einstein-Bargmann

structure is expressed as

g = dq (3 dq + dq (3 dq + dt(3 ds + ds(3 dt

—2U(q', q, t) Ch g) dt (7.1)

~ b = g" ——,'gg" with g= g"g., (6.5) with

where the nonvanishing contravariant components of rl

are given by and

(7.2)

AB A B B A - pAB (6.6) ~ U = (a,'+ a,') U = 0. (7.3)
with A, B,C = 1, 2, 3 and

45 54 -
( C) (6 7)

for some ~ g B.3.
It is finally easy to check, with the help of Eq. (6.2),

that H„= (w, A) where

Metrics of this form are referred to as plane fronted g-rav

ihational waves with parallel rays (or pp waves) in gen-
eral relativity literature. The special cases when V is

quadratic in the g's are called exact plane gravitational
waves. They admit a five-parameter group of isometrics
acting on the null three-surfaces t = const.

A=Lxp+m m, pGp-q (6.8)

is the Lagrange-Laplace-Runge Lenz vector-See R.ef. 44
for an alternative treatment in the 4-dimensional setting.

VII. RELATION TO THE WORK OF
BRINKMANN AND KALUZA-KLEIN THEORY

VVe now wish to point out the relation of our results
to the work of Brinkmann, who discussed the circum-
stances under which two metrics g and g' related by a
conformal rescaling

B. Case D' = 5

In 5 dimensions, the most general Einstein-Bargmann
structure is, according to Brinkmann, of the form

g = (dq dq) + Ch (ds+ A dq) + (ds+ A . dq) dt

+(—2U+ —,'V') Ch g Ch, (7.4)

with ( just as before; A, U, V being functions of q and t
such that

g*=O g curlA = grad V and AU = 0. (7.5)

might both be Einstein type, i.e., both satisfy

He distinguished thr ~ cases:

(A) fl = const,
(B) g' c),Ac)qQ g 0,
(C) g'~ c),AcjqA = 0, c),A g 0.

It is case (C), called "improper conformal rescalings, "
that is relevant for us since our coordinate t and hence
any function of it satisfies condition (C). Brinkmann in-
cluded the possibility that g* was the pull-back of g under
a difFeomorphism so his results are directly applicable.
He showed that in case (C), g and g* must admit a co-
variantly constant null vector field. Thus, in particular,
they must be Ricci flat. In other words he established
that g and g' must admit what we have referred to as a
Bargmann struc/ure. This implies a uniqueness property

( A 0
tbsp
0 0 1)

(7.6)

(with A g So(3);b, c g R. ; h g R.), acting on the
"position-action" afTine plane spanned by

(i) If V = 0, we obtain the obvious generalization to
five spacetime dimensions of plane-fronted waves.

(ii) If U is taken to be quadratic in the q's, the metric
admits, in general, a seven-parameter group of isometrics
acting on the surfaces t = const and, hence, preserving
the fibration.

(iii) In the fiat case, U = V = O, A = 0, the group
of isometrics that preserve the slices t = const is larger;
it may be viewed as the commutator subgroup of the
Bargmann group called the Carroll gronp, isomorphic to
the 10-dimensional Lie group of all 5 x 5 matrices
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as deduced from (4.6), where we have set h = 0 with
d = g = 1 and e = f = 0. It is worth remembering
that the Carroll group has been orginally introduced by
Levy-Leblond as the contraction c ~ 0 of the Poincare
group.

(iv) If we set V = 0 and U given by Eq. (3.2), we

obtain the Bargmann structure associated with a single
Newtonian point particle.

(v) If V g 0 we obtain something more, namely a gen-
eralization of Newtonian nonrelativistic theory which, al-

though not envisaged in the usual elementary treatments,
occurs in the formulation due to Cartan. ' In fact,
Cartan's version of the theory is not merely a reforrnula-
tion but an extension since it allows a new phenomenon,
the possibility of magnetic mass. In general relativ-
ity, this possibility was recognized first in the Taub-
NUT solutions. By taking a suitable limit as c —+ oo,
Koppel4 found a new solution of Newton-Cartan field
equations on spacetime. Here, we interpret it as the
"nonrelativistic Taub-NUT solution" of the vacuum field
equations (3.1) corresponding to the Bargmann structure
((R. Ij, (0j x R.) x R, g, () where g is given by (7.4) and

m—:ds —t' cos 0 dP (7.9)

appearing in the metric (7.4) turns out to be directly
related to the canonical connection n living on the Hopf
circle bundle S ~ S2, viz. ,

U(q) = —G, A dq = Icos 0—dP, V(q) =—

(7.7)

The vector field g is still given by (7.2) and E is a new
constant homogeneous to an [action]/[mass]. To interpret
V, we note that the equations of motion of a test particle
read in this case

d2 = —grad (U —
4 V ) + x grad V, (7.8)

thus 8 corresponds to a Newtonian magnetic mass
monopole. The solution (7.7) is clearly singular at the
origin q = 0 for all nonzero values of the two parameters
mp and Z.

Et is worth mentioning that the gravitational "con-
stant" G could actually depend on time. If G varies
inversely as time while 8 remains a constant, the Vinti-
Lynden-Bell transformation (3.6) still brings the system
into a time-independent form. This is so because both the
monopole term coming from curl A and the E2/r2 term
coming from V are symmetric with respect to nonrela, -
tivistic conformal transformations. The metrics (7.4) and
(7.7) fall short of having an extra "hidden" symmetry: if
one had U —V2/2 rather than U —V /4 in (7.8), the
metric would admit a conformal Killing tensor yielding
a conserved Lagrange-Laplace-Runge-Lenz vector.

The one-form

1 8
2E 0@

(7.11)

However, in contrast with the relativistic Taub-NUT
solution in which the relativistic time must be peri-
odic, the Newtonian time variable need not be peri-
odic in our case. The periodicity has an interesting
quantum-mechanical consequence, which we will discuss
in Sec. VIII.

Remarks. When U, V, and A are independent of t,
the metrics (7.4) and (7.5) admit an additional Ikilling
vector field 0/Ot, which, if —2U+ 2 V ) 0 will be space-
like. This allows us to give the five-metric a conventional
Kaluza-Klein interpretation. If V = 0, and

—2U(q) = 1+) (7.12)

one obtains a metric representing N-point particles in
equilibrium. The masses, scalar charges, and electric
charges are in the ratio 1:~3:2, which implies that the
gravitational and scalar attractions are exactly cancelled
by the electrostatic repulsion. These metrics are in a
certain sense dual to the multi-Taub-NUT metrics which
have an interpretation as Kaluza-Iklein monopoles.
The case N = 1 may be obtained from the 4-dimensional
Schwarzschild metric by boosting it in the fifth direction
up to the speed of light.

In the case where V g 0, we obtain metrics whose
Kaluza-Klein interpretation is that of particles with both
electric and magnetic charges, i.e. , Aaluza-Atein dyous.

C. Case D&5

Let us complete our review of Einstein-Bargmann
structures by giving Brinkmann s result for spacetime di-
mensions D exceeding 5.

The metric takes the form (A, B, . . . = 1, 2, . . . , D —2):

g = g~~(q, t) dq dq +dtm+mdt+H(q, t) dtCk,

(7.13)

where

m = ds+ Air(q, t) dq~

zv
Qi

2Z'

provided s is taken to be periodic with period 4~1.
The associated parameters (0, $, $), with g = s/(2E)
(mod 2x), are the Euler angles on S whilst our Taub-
NUT-like Bargmann structure (Q, g, () is now globally
defined by the SO(2) bundle Q = (S x R+) x R ~ B =
(S2 x R+) x R endowed with the metric

g = dt dr + r gs2 + 2E (n ch + dt n)

+~2G +, ~dhgdh,
mo

2r2)

and the circle generator
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and

+AB —+AB —O)

RAi —
2 [~A(g CjtgKL) + 7 FKA] = 0)

defines an otherwise arbitrary direction —the direction of
the Dirac string —entering the Iocal expression of the one-
form (7.18). Finally, the masses mj and magnetic masses
8& are skew-symmetrically encoded into the coefIicients

Rig ———
~ [4 H + Oi (g cjigE&L)

(7.14)
Z~ m@ —Sp rn~

rn
(7.20)

Here I" is defined to be

+ ,'FKL-FLK —2V'KD, AEC] = 0. where m = Q i mj. Again, the global diff'erential struc-N

ture of this Bargmann manifold can be worked out in a
similar (although more involved) way as before.

FEcL = cjE&AL &FLAK cjigKL. (7.15)

A AI'Bc = I'BC
A 1 AKIBt—

I gi —g (l9iAK g DEC H) )

rEr~ = 0(jsAo) AKI Eic —gl9igEEc,

r~, = —,
' gKLFKEEAL + ,'cjEEH, —

r,', = —,
' gK'A (a,a —a, A, ) + —,'a, a.

(7.16)

The metric (7.13) is likely to have a number of ap-
plications to Kaluza-Klein supergravity and superstring
theory. We could, for instance, take g to be the met-
ric on a Calabi-Yau space. We defer discussion of these
possibilities to another time.

We would like to finish this section by giving a Taub-
NUT like exact solution for the Newtonian N-body field
equations. It actually generalizes the preceding solutions
(7.10) and (7.11) as well as the classical "inverse square
law" (5.1)—(5.3) to a situation where the N massive bod-
ies are allowed to carry an additional "magnetic mass, "
viz. , gravitational dyons. The corresponding Ricci-flat
metric of the Bargmann manifold we are dealing with
in dimension D = 3N + 2 is of the general form (7.13):
namely,

We display, for completeness, the associated nontrivial
Christoff'el symb ols:

VIII. QUANTIZATION

We are now ready to derive the quantum version of the
preceding classical results. We follow the general rules
given by DeWitt of quantization in a curved manifold.
In dealing with topologically nontrivial solutions of New-
tonian gravity, we will resort to prequantization in order
to establish a mass quantization formula analogous to the
Dirac quantization formula for the electric charge.

A. The covariant Schrodinger equation

Egg = 0 and
h

(8 1)

The kinetic energy g' p~pk (2.4) is quantized as
h(A& ——sR&), where A& is the Laplace operator on

(Q, g) and Rz is the scalar curvature —we have identi-
cally R& ——0 as a consequence of Newton's field equa-
tions (3.1). This result can also be obtained by geo-
metric quantization using the vertical polarization of
(T*Q,cu). It is consistent with the quantization rule of
the Killing tensors given in (8.8).

The mass Hamiltonian p ( (2.5) is linear in momen-

tum; its quantization is therefore canonical. By quantiz-
ing the constraints (2.4) and (2.5) according to Dirac's
prescription, we obtain the following set of partial differ-
ential equations on the Bargrnann manifold (Q, g, ():

g—:) (dq, C3 dq, ) + dt m+ m Cm dt + H (q) dt qy dt,
j=1

(7.17)

with

and

(lljk X qj k, dqj k )c7 = Gs+ c&p

j&k
r 'k + rjk (u'k qjk)

(7.18)

H(q) =
(2G ~ mjBlk ~ Bl ~ Ejk+

m rjk 2rll~ [ Pjk )
(7.19)

The notation»«as fo llo ws: qjk =—qj qk» jk =—llqjkll
with j, k = 1, . . . , N, while the unit vector uzi ——const

q(q, t, .) = .™I"e(q, t), (8 2)

where q = (qi, . . . , qjv) and m = mi + + mdiv denotes

which was shown to be strictly equivalent to the
Schrodinger equation on a general Newton-Cartan space-
time. (Higher spin wave equations can also be formulated
in a similar fashion. This has been worked out for
the spin-2 Levy-Leblond equation on a spin Bargmann
manifold. )

In the N body problem wi-th metric gv and the (R, , +)
generator ( given by (5.1) and (5.2), we find that (8.1)
can be cast into the form

N

) Aj@+ 2DiB, @+ D, @ = 0.
j—1 2

The second equation in (8.1) tells that the wave fun«i»
@ is indeed of the form
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the total mass. Hence the wave function 4 finally satisfies
the N-body Schrodinger equation

ff2+3N/ 2~g

whenever
(8 5)

—) A, @+V~I = ih
h . O@

. -2m 2

j=l
Recall that, on any n-dimensional (pseudo) Rieman-

nian manifold (Q, g) with scalar curvature Rz, the oper-
ator A& —(n —2)/[4(n —1)]R& is conformally invariant.
For a Bargmann manifold with R~ = 0 (e.g. , when New-
ton field equations hold), and, for n = 3N + 2, (b-i)* (P

—sl~g) (8.6)

g —3N/2 q

(i) In particular, this fact entails that the extended
Schrodinger group (the local diffeomorphisms C such that
&'gp = fl gp and C,( = () "acts" on the space of the
solutions g of the free Schrodinger equation (e.g. , for
N = 1) according to

implies that

(8 4) Using Eqs. (4.6) and (8.2), this "representation" takes
the form

[U ((A, b, c, e, f, g, h) ') 4](q, f)

3/Q im f ( 4q + bt + c) t z l AZ + bt + c Ch + e

)
=( f+g) exp b, Aq ——b2+ h

~ff+g ' 2 P ff+g ' ff+g

Infinitesimally, this yields the operators h'
H„= ——V', ]c V'g.

2
(8.8)

p= —ih (linear momentum),
q

L = q x p (angular momentum),

g = mq —fp (boost),

Applied to the conformal-Killing tensor r given by (6.5)—
(6.7), this formula yields the following expression for
the quantized Lagrange-Laplace-Runge-Lenz vector A in
(6.8):

H = ih —(energy),
Of

D = 2fH —(q, p) + ih (dilatation-),

Ii = f H —fD —2mq (expansion).

A =
2 (L x p —p x L) + m mpGp —.

B. Mass prequantization

(8 9)

/ ) 3N/2—
@v(q, f) = I—

&fp)
exp,

' ) m, q,
'

I
2hf )

fp
x@g, ——q, ——

t ' t (8.7)

is a solution of the Schrodinger equation with the time-
varying gravitational "constant" as given above.

Let us mention that a second-order conserved quantity
associated with a Killing tensor x should be quantized
according to

(ii) In the case of a time-varying gravitational "con-
stant, " G(f) = Gpfp/f studied in Sec. III, let B denote
a (local) diffeomorphism of the extended spacetime, and
set g = g~, , g* = D*g~. A short calculation shows that
both g = i/1v, and i/1*:—17*i/1v. satisfy the Schrodinger
equation (8.1) if 27 is a Vinti —Lynden-Bell transformation
[a straightforward generalization of (3.6) to the N body-
case]. By (8.2) and (8.5), we find that if iIiv, is a solu-
tion of the Schrodinger equation for the N body problem-
with G = Gp, then

Let us finally discuss how the mass gets quan-
tized when the Newtonian Taub-NUT solution [(7.10)
and (7.11)] is considered, i.e. , when the fibers of the
Bargmann bundle Q ~ B are compact.

The basic object is the classical space of motions
(X,vp-) of our test particle of mass m already introduced
in Sec. II. As a widely accepted rule, we require that this
symplectic manifold be prequantizable. 2 In other words,
we suppose there exists a circle bundle V ~ A carrying
a connection one-form 6~ whose curvature descends to
X as the symplectic two-form ~~. It is a well-known
fact that the prequantization (Y, 6i.) exists if and only if
ux jh defines an integral cohomology class, which in our
case just means

hIE=n —, neZ.2' (8.10)

Under these circumstances, the one-form 6c of the 8-
dimensional constrained manifold C [(2.4) and (2.5)] de-
scends to the discrete quotient C„= C/Z„obtained by
taking @ (mod2ir/n) where @ denotes here the S coordi-
nate of the Hopf bundle S3 ~ S2 [see (7.11)].The latter
integrality condition is, indeed, expressed as
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~

= 2m' E hZ.

Thus 8~ is the pullback of a one-form 6c . Moreover,
the integrable distribution F„:—ker(ill„) fl ker(dtlo„)
turns out to be 1 dimensional and the quotient manifold
V = C„/F„ is, at last, our 7-dimensional prequantum
bundle carrying the connection form 6~, which is the
image of 6~„.This construction is shown on the following
d lag r aIIl:

Note that the prequantization condition (8.10) provides
us, in this topologically nontrivial situation, with a
mass quantization in a purely nonrelativistic setting, i.e. ,

purely as a consequence of nonrelativistic quantum grav-
ity theory in which c ~ oo but both G an h are nonzero.
Mass quantization has already been discovered in the rel-
ativistic context by Dowker and Roche.
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