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A class of exact solutions of the Einstein-Maxwell equations is presented. It represents the exteri-
or gravitational field of a charged rotating mass. The class contains a generalization of the charged
Kerr metric involving an infinite set of parameters that pertain to an axisymmetric deformation of
the source.

The Newtonian theory of gravitation provides an ade-
quate description of the gravitational field of convention-
al astrophysical objects. However, the discovery of exot-
ic systems such as quasars and pulsars together with the
theoretical possibility of continued gravitational collapse
to a black hole points to the importance of relativistic
gravitation in astrophysics. Moreover, advances in space
exploration and the development of modern measuring
techniques have made it necessary to take relativistic
effects into account even in the Solar System. It is there-
fore important to describe the relativistic gravitational
fields of astrophysical bodies in terms of their multipole
moments in close analogy with the Newtonian theory. In
this connection, we presented a class of stationary ax-
isymmetric vacuum solutions of the gravitational field
equations which could be used to describe the exterior
field of a rotating deformed mass. ' The Kerr solution is
included in this class for a particular choice of parame-
ters. However, it appears from the observational data
that strong electromagnetic fields are associated with
gravitationally collapsed systems. This is consistent with
the fact that the general final state of gravitational col-
lapse of matter is described by the charged Kerr space-
time. The electrodynamics of a gravitationally collapsed
configuration is rather complex; however, any significant
charge separation that may develop is expected to be
short lived since the charging mechanism would be self-
limiting. Therefore, on the average, the net charge on an
astrophysical object is expected to be small. A general
description of the exterior electromagnetic state of a col-
lapsed system interacting with its surrounding matter is
not available; hence, it seems useful as a preliminary step
to find a generalization of the charged Kerr spacetime
containing all mass multipole moments. In this paper
previous work is generalized in order to incorporate the
Kerr-Newman black hole in the general solution. There-
fore, we present a class of exterior solutions of the
Einstein-Maxwell equations containing an infinite set of
gravitational multipole moments as well as an additional
parameter which represents the electric charge per unit
mass of the source.

The formation of a black hole is a complex process:
The catastrophic collapse of matter is generally accom-

panied by the emission of gravitational radiation. In the
last stages of collapse, the system might undergo oscilla-
tions as it divests itself of the vestiges of its original state
and settles down to a black-hole state. To study the
transition from the original system to a black hole as
rejected in the multipole structure of the exterior field, it
is advantageous to have exact solutions corresponding to
both configurations within a given class. In a collapsing
configuration, the effective-mass moments would depend
upon time; thus the stationary axisymmetric solutions
presented in this paper may only suggest certain approxi-
mate forms for the description of the near field of a col-
lapsing system. The main physical result of this paper is
a nonlinear superposition of the stationary Kerr-Newman
metric with the static generalized Erez-Rosen metric,
which represents the exterior gravitational field of a static
deformed mass with arbitrary multipole moments. It
should be emphasized that this extension of the charged
Kerr black hole is simply a special case of the general
class of solutions presented in this paper.

The general stationary axisymmetric line element in
prolate spheroidal coordinates ( t, x,y, P ) is given by
(x ~1, —1~y ~1)

ds = f (dt —cod/)

o f ' e'(x —y—) +
x —1 1 —y

+(x —1)(1—y )dP

where o. is a constant length scale and the metric func-
tions f, co, and y depend only on x and y. The charged
solution is obtained through the application of a Harrison
transformation to a neutral seed solution. In fact, the
Harrison transformation generates an Ernst potential
that is proportional to the Ernst potential of the neutral
solution with a proportionality factor of g '=(1 —e )'
where e is a constant that turns out to be the charge per
unit mass of the source. The requirement that e (1 is
satisfied by all realistic astrophysical configurations.
Once the Ernst potential of the new solution is known,
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f =R (c2+L+e2s&+c L e s&+2c+c R) (2)

Ka)= gK 1+—
1

2+ M 8 26tt'+ ~ e
—2+8 (3)

e r= IC2(x 1) R—

the corresponding metric coefficients can be calculated
algebraically from those of the neutral solution. ' The
methods developed by Kinnersley, Hoenselaers, and
Xanthopoulos, usually referred to as HKX transforma-
tions, have already been used to obtain the neutral solu-
tion. It is a stationary axisymmetric vacuum solution
possessing an infinite set of parameters which may be de-
scribed as follows: (i) q„(n =0, 1,2, . . . ) are proportion-
al to the Newtonian multipole moments of an axisym-
metric mass distribution; (ii) a, and a2 are two indepen-
dent parameters which can be fixed in order to obtain the
Kerr-Taub-NUT (Newman-Unti-Tamburino) metric as a
special case, (iii) 5 is the Zipoy-Voorhees parameter and
generalizes each specific solution to a one-parameter class
of solutions by taking diFerent real values, and (iv) r cor-
responds to an Ehlers transformation. This general solu-
tion contains, as a special case, a nonlinear superposition
of the Kerr spacetime with the generalized Erez-Rosen
static spacetime, ' "which involves an infinite set of pa-
rameters Iq„] that takes the static deformation of the
source into account. Thus q„determine in part the gravi-
toelectric multipole moments of the source. The defor-
mation of the source due to rotation is also reAected in
the infinite set of gravitomagnetic multipole moments
which involve tq„[ and the Kerr parameter a. In the
general case, the parameters qn, n1, n2, 6, and v. may be
used to obtain different sets of gravitoelectric and gravi-
tomagnetic multipole moments corresponding to different
configurations of the source. For instance, a source dis-
tribution with equatorial symmetry would have only even
gravitoelectric and odd gravitomagnetic moments, etc.

The metric functions of the general charged solution
can be expressed as

M+ =(x+1) '[x (1—y )(A.+p)a+

+y(x —1)(1—Ap, )b+] . (8)

with

A=a, (x —1)' (x +y)

Xexp 25 g ( —I)"q„P„
n=1

@
—~ (x2 1)1—s(x y)25 —2

(10)

X exp 25 g ( —1)"q„P„+
n=1

where a, and e2 are constant parameters associated with
two rank-zero HKX transformations and, for n ~ 1,

+ 2
11 x+y

x —1

n —1

(12)

Finally, the general expression for the function I ' "~(x,y)
is cumbersome and will not be presented; however, this
function has been given explicitly in Eq. (44) of Ref. 11.
We have set q0 = 1 for the sake of simplicity; this choice
guarantees that the Schwarzschild solution is the simplest
nontrivial static solution contained in Eqs. (1)—(12) as a
special case. For the general charged solution, the exteri-
or electromagnetic potential 4, as defined by Ernst (cf.
Ref. 8), is given in terms of the Ernst potential g by

(13)

where /=go/2) and go is the Ernst potential of the seed
vacuum solution:

Here q„, n =0, 1,2, . . . , are constant parameters, q0 = 1,
and P„(y) and Q„(x) are, respectively, the Legendre poly-
nomials and the associated Legendre functions of the
second kind. Furthermore,

a+ =(x+1) '[x (1—Ap)+( I+Ap)],
b+=(x+1) '[y(A+@)+(X—p)],

Xexp 25 g ( —1) +
q q I'

m, n =0
(4) a +ib

exp( —25$) .a++ib+ (14)

and

A =a+a +b+b, I + =a++b+,

where K1 and K2 are constants which can be fixed by
demanding asymptotic ftatness of the metric, the con-
stants c+ and K are defined as

2c+ =1+2), ~=(2—e )2) —2,
and the functions f, R, L+, and M+ are given by

The electromagnetic field can be determined, in principle,
from Eqs. (1)—(14); however, the explicit construction of
the electromagnetic-field tensor is rather complicated.

In the general solution presented above, the Ehlers pa-
rameter ~ has been set equal to zero for the sake of sim-
plicity. In fact, the explicit form of the metric function m
would have become very complicated if ~ had been in-
cluded in the general solution. However, the possibility
of an Ehlers transformation should be left open; this is
especially useful for the discussion of the gravitational
multipole moments of the general solution. The remain-
ing parameters I o,q„,e, a„o.2, K„K2 j should be chosen
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in such a way that any particular solution could describe
the exterior field of a realistic axisymmetric body. It is
therefore necessary to impose the conditions of asymptot-
ic fatness and regularity of the axis of rotational symme-
try. This can be achieved by restricting the values of the
parameters a&, o.'2, K&, and E2. The set of parameters q„
remains totally arbitrary. To see an example of this in a
general setting, let us calculate the multipole moments
using the invariant definitions proposed by Geroch' and
Hansen' for vacuum fields and generalized by Hoense-
laers and Perjes' to include stationary Einstein-Maxwell
fields. Using the procedure outlined in Ref. 11, we
present here only the first two gravitoelectric (M„) and
gravitomagnetic (J„)moments as well as the general elec-
tric (E„)and magnetic (H„) multipole moments:

a &o.2
Mo 1o. &+2

1 —0.&o;2

2 2
CX2 O,')

M, =q~' ——6q, +
(1—aia2)

etc. ,

CX2 CX )
Jo =go.

1 cx )cx2
(16)

CLi+CXp
J, =i)o.~

[ I —3a,a2 —26(1 —a,az)],
(1—aia2)

etc. ,

Q„=eM„, H„=eJ„. (17)

M„' =M„cos~—J„sin~,

J„' =M„sin~+ J„cos~ for n =0, 1,2, 3,

It is interesting to note that the parameters K, and E2,
which appear in the metric functions as constants of in-
tegration for the Ernst potential, do not contribute to the
gravitational moments. The proportionality between the
electromagnetic and gravitational moments in Eq. (17) is
a consequence of the Harrison transformation that results
in the simple relationship between the electromagnetic
and Ernst potentials given in Eq. (13). To ensure asymp-
totic Aatness, it is necessary that the gravitomagnetic
monopole moment should vanish. This can be achieved
by setting ai=az in Eq. (16). It should be emphasized
that it is also possible to have an asymptotically Aat solu-
tion without the requirement that e&=0.2. That is, one
can have a vanishing gravitomagnetic monopole moment
by introducing a parameter ~: An Ehlers transformation
generates new moments M„' and J„', n =0, 1,2, . . . , via a
rotation

a=a, =a~=(o —m/ )i/)a,

4o.o. 1K)= and K
1 —o. (1 2)2

(19)

leads to an asymptotically Oat solution with a regular
symmetry axis. This solution can be expressed in terms
of the well-known Boyer-Lindquist coordinates by using
the coordinate transformation

simplicity. For the special case o.'&=e2=e=O, all the
gravitomagnetic and electromagnetic moments vanish
and the arbitrary parameters q„n =1,2, . . . , have a
simple interpretation in terms of the Newtonian moments
of the matter distribution. " Therefore, the parameters
o.'& and a2 characterize the rotation of the source. The ar-
bitrariness of the set of parameters q„ implies that under
certain conditions one may regard these constants as
functions of other constant parameters in the solution.
This possibility can be advantageous in some cir-
cumstances;' however, it can also lead to rnisconcep-
tions. ' For instance, q„may be replaced by
p„+o.'&u„+a2v„, where p„, u„, and v„are constants.
One is then tempted to interpret p„as representing the
static gravitoelectric part of the stationary field, and u„
and v„as determining the gravitomagnetic part of the
field. This redefinition of q„provides no advantage from
a physical point of view, however, since the invariant mo-
ments depend upon q„=p„+a &u„+a2v„and the actual
determination of the constant parameters in the solution
must come about as a result of a comparison of observa-
tions (e.g., investigation of the motion of test particles in
the exterior field) with the theoretical predictions, which
necessarily involve q„.

In the general case (e&0), the physical significance of
the constant e follows from the expressions for the elec-
tromagnetic moments given in Eq. (17). The constant e
corresponds to the charge per unit mass of the source.
Higher electric and magnetic moments are nonzero, but
are determined uniquely by the constant e and the gravi-
tational moments. This specific relationship between the
multipole moments leads to the interesting property that
the magnetic monopole -moment vanishes identically for
asymptotically flat spacetimes. It should be noted that the
gyromagnetic ratio of the source is equal to its specific
charge. The same is true for an electron; however, the
magnitude of the specific charge of an electron is
~e =2X 10 ', while for the source under consideration in
this paper

~
e

~

( 1.
We will now investigate an important special case of

the general solution (1)—(14), namely, a nonlinear super-
position of the Kerr-Newman metric with the generalized
Erez-Rosen metric. The choice of parameters 5 = 1,
cr =(mls)) —a,

and by similar but more complicated transformations for
n & 3; the Ehlers parameter ~ could then be so chosen as
to ensure JO=O. This condition determines ~ in terms of
a, and a2. Thus, for a,&a2, the Ehlers transformation
will result in an asymptotically Aat spacetime with new
multipole moments M„' and J„' that depend upon
r=r(a„a2). However, we choose a, =a2 for the sake of

x = ( r —m ) /o. , y =cos8 . (20)

M, = —
—,'i) 'q, (m —a r) ),

M2= —ma + —' i) q2(m —a r) )
(21)

The corresponding multipole moments are E„=eM„and
H„=eJ„with Mo=m, JO=O,
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etc. ,

J, =ma, J2= ——23ri 'q, a(m —a rl ), (22)

etc., where m ~
~
a g ~. The Kerr parameter a is the

specific angular momentum, i.e., the proper angular
momentum per unit mass. Even in the presence of
charge, the mass and angular momentum remain I and
ma, respectively, and the electric monopole moment is
Ep=me. Thus all the solutions in this class must have
~a~/m ~ 1; this ratio is =0.2 for the Sun' and =10 for
the Earth. In the limiting case q„=0, n =1,2, 3, . . . ,
this general solution reduces to the charged Kerr solu-
tion. The length scale o ~ 0 is related to the total mass of
the system, which is equal to m since we have set qp =1.
It is important to point out that the limitation

~ ay ~

&I is
a characteristic feature of the generalized charged Kerr
solution, this property is not shared in general by other
members of the general class of solutions under con-
sideration in this paper. That is, the exterior field of rap-
idly rotating configurations can also be described by the
solutions discussed in this work.

Some important properties of this genera/ized Kerr-
Nemrnan spacetime should be mentioned. In the limiting
case I =a +e m, the solution reduces to the extreme
Kerr-Newman solution regardless of the values of q„,
n =1,2, 3, . . . . In the general case, the Kerr-Newman
horizon (x = 1) becomes singular in conformity with the
black-hole uniqueness theorem. ' Outside this singular
horizon, the metric is free of singularities. These particu-
lar properties may be of special importance in the study
of the evolution of a real star into a black hole since the
generalized solution contains the Kerr-Newman metric
as a special case. The final state of gravitational collapse
is described by the Kerr-Newman spacetime; therefore,
the decay of the multipole moments of the initial
configuration with time and the subsequent emission of

gravitational and electromagnetic radiation must be tak-
en into consideration. Hence the generalized Kerr-
Newman spacetime can be considered as the first prelimi-
nary step in the investigation of the collapse of a realistic
star. The next step would involve the development of an
appropriate interior solution which should be smoothly
matched to the general exterior solution. The continuity
of the first and second fundamental forms at the (non-
null) boundary of the star is expected to lead to relations
connecting the multipole moments of the exterior space-
time with the distribution of matter.

Finally, it should be pointed out that the charged
Kerr-Taub-NUT rgetric is also contained in our general
solution as a special case. Let 5 = 1,
cr =(m +I )/g —a

cr —I /g cr —m /g
a+i/g ' a —llrl

(23)

(24)
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where I is the Taub-NUT parameter. Then the coordi-
nate transformation (20) leads to the charged Kerr-
Taub-NUT metric for q„=0, n =1,2, . . . . The total
charge of the system is Eo=e(m +l )'r . The space-
time is not asymptotically Hat in this case. The general-
ized Kerr-Newman spacetime is recovered as the Taub-
NUT parameter l approaches zero. In the limit of van-
ishing o., we recover the extreme Kerr-Taub-NUT metric
regardless of the values of q„, n = 1,2, 3, . . . .
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