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We investigate the stability of general-relativistic boson stars by classifying singularities of
differential mappings and compare our results with those of perturbation theory. Depending on the
particle number, the star has the following regimes of behavior: stable, metastable, pulsation, and

collapse.

I. INTRODUCTION

Currently there is much interest in the problem of the
stability of matter confined by its self-generated gravity.
This self-consistent approach dates back to the geons of
Wheeler. ' Recently, the work of Lee et al. ' stimulated
further progress. They pointed out that a star, regarded
as a gravitational soliton, can have a mass which is
larger than the Chandrasekhar-type limit for gravitation-
al collapse. This opens up a new avenue for studying
the structure of a star under unusual matter conditions.
Its stability is the most important question. So far, the
dynamical stability of boson stars has been analyzed'
by means of perturbation theory. In this paper we will

apply a method which was proposed by one of us (Ref. 14
and references therein) for nongravitational solitons. In
general, the method consists of investigating the critical
points of a mapping and the construction of bifurcation
diagrams. In our case, a two-dimensional subspace of the
dynamical variables of the boson field is mapped into the
space of the integrals of motion, such as the gravitational
mass M and the total particle number X. Using Arnold's
classification' of singularities of differential maps (catas-
trophe theory), we are able to derive general criteria for
the stability of the star.

R„——,'g„„R = AT„(4—),
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d/ei'
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where T„(@)=(8„4')(B,4)—(gz /&~g~ )X(4)
is the energy-momentum tensor and
= ( 1/& Ig I )&„(&Ig ~g" t), ) the generally covariant
d'Alembertian.

In this paper we restrict ourselves to the static,
spherical-symmetric metric

ds = e ~("'dt —e ~~")dr 2 —r (d g2+ sin2g d P2) (2.4)

in which the functions v=v(r) and A, =A.(r) depend on
the Schwarzschild-type radial coordinate r. For the bo-
son field we make the stationarity ansatz

4(r, t) =P(r)e (2.5)

which describes a spherically symmetric bound state with
frequency co. The resulting coupled system reads

v'+A, '=
(tcp +p)re (2.6)

From the principle of least action we obtain the cou-
pled Einstein-Klein-Gordon equations:

II. COUPLED EINSTEIN-SCALAR FIELD EQUATION

1 A. 1
A, '=I4.pre ——e +—,

r r
(2.7)

As a general-relativistic model of a boson star, we con-
sider a self-interacting scalar field 4 describing a state
with zero temperature. This field is self-consistently cou-
pled to its own gravitational field via the Lagrangian

&IglR+-,'&Igl [g" (~„@')(~.@)—U(I@I')],1

P"+ —(v' —1,')+ —P'=e P —e co P .1, , 2, t)„dU g —v

dP'
(2.8)

p= ,'(co P e '+P' e +U—), (2.9)

The energy-momentum tensor becomes diagonal; i.e.,
T„=diag(p, —p„, —p~, —

pj ) with

(2.1) p„=p—U, p =p„—P' e (2.10)

where ~=8+6 is the gravitational constant in natural
units, g the determinant of the metric g„„p,v= (0,1,2,3),
R the curvature scalar, and U ( ~

@
~

) the self-interaction
potential. We wiu investigate to what extent the form of
U influences the stability of the star.

The form of T„ is familiar from an ideal fluid, except that
the radial and tangential pressure generated by the scalar
field are in general different, i.e., p„&p~. This fractional
anisotropy af.=(p„—p~)/p„has already been noted by
Ru%ni and Bonazzola. Moreover, Gleiser' found that
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e ~'")=I—,a(r):= f px dx,)„(„) )ca(r)
r 0

(2.1 1)

where a(r) is the mass function. For the polynomial
self-interaction

all boson stars have the same amount of anisotropy at the
radius of the star.

Because of the contracted Bianchi identity
'()'"( R„——,

' g R ) =0, a further equation involving

TP = T&~= —
p~ is identically satisfied. Equation (2.7)

possesses a Schwarzschild-type solution

1R =— rjI'd &P

{A,—v)/2 3@2e
o

(3.4)

On account of the fractional anisotropy af another in-
teresting radius Ro could be obtained from the node
p)(RO)=0 in the tangential pressure p). This radius Ro
separates the interior part of the boson star from a mar-
ginal layer in which p~ becomes negative before it de-
creases exponentially. '

U:=m'~C '+-'a C ~'+,')33~@~' (2.12)

these equations have been solved numerically for non-
singular, finite-mass, and zero-node solutions.
Two- and higher-node solutions occurred already in Ref.
6. For a massless scalar field with U=O, an exact solu-
tion is known, cf. Ref. 18. For a massless real scalar field,
Christodoulou' could show that a spherically symmetric
time-dependent field configuration must either disperse to
infinity or, for nonvanishing Bondi mass, form a black
hole.

III. INTEGRALS OF MOTION

The concept of an energy-momentum four-vector for a
field configuration is notoriously subtle in general rela-
tivity. However, the exponential decrease of the radial
function P(r) =exp( —+m 2

cv r) for —
~co~ (m yields

an isolated, static system for which the Tolman mass for
mula

M'= 2TO Tp g d x

=4~f (2cv P e —U)e' + ' r dr . (3.1)

applies (cf. Ref. 6). It can be derived from the local con-
servation law c)„(V„+r„)=0,where V =&g T„and r„'
is the gravitational energy-momentum complex. For a
boson star, the explicit expression (3.1) does not involve
derivatives, in contrast with the Schwarzschild mass
Ms,h„„»,h;&d. =4m.a(ao) that is commonly studied" in
this context. Friedberg et al. implicitly rederived the
equivalence of the Tolman and the Schwarzschild mass
[see (2.27) of Ref. 3(a); cf. also Ref. 7].

A second "integral of motion" arises from the fact that
the Lagrangian (2.1) is invariant under the global phase
transformation 4~We ' . Therefore the Noether
current density

IV. SMOOTH MAPPING (WHITNEY SURFACE)

In order to investigate the stability of soliton-type solu-
tions against radial perturbations, we consider the two-
dimensional mapping

F:(k,cv) ~(M, N), (4.1)

where k is a variational parameter which dilates the ra-
dius R of the star and co the frequency eigenvalue. The
parameter k induces a scaling of the metric, the frequen-
cy, and the scalar field in accordance with their normal
physical dimensions

ds —+k ds, cv~cvlk, P(r) +kP(k—r), (4.2)

such that the particle number N is kept fixed.
In order to classify the singularities of this mapping F,

let us consider the Jacobi matrix

aMyak aMya~=
aeyak amyl~ (4.3)

a~
ak

' '"'
Bk

(4.4)

For the soliton the rank of J is RJ (2 and, consequently,
the singularities of the mapping F may have either RJ =1
or R&=0. In that case, our soliton solution corresponds
to the extremal or critical points of the Whitney surfaces
which has a very definite form (see Refs. 14 and 15). In
numerical examples, the dependence

According to Whitney's theorem, ' ' the singularities of
the mapping F can be one of three types, depending on
the rank RJ=2, 1, and 0, respectively. Since we require
the soliton solution to be an extremal point of the
Lagrange manifold, we have

J~= —&~g~g~ (+*a.e —ea„e*) (3.2)
M =M(cv), N=N(cv) with c=vc(vo(0)), (4.5)

N = ~ =4~~f e" '"r'P'dr-
e o

(3.3)

Since the current density (3.2) is a "measure" for the
radial distribution of the "particles" in the boson star, its
effective radius can be defined by

is locally conserved, i.e., c)p"=0. The time component
j integrated over space yields the particle number X or
the charge Q:

on the frequency co can be smoothly converted into a
function of the central density o.(0)=&lc/2P(0) such
that the critical points coincide (Fig. 1). If the rank of J
is zero, the critical points are degenerate. The maxima
and minima of M =M(o(0)) and N =N(o. (0)), see Fig.
1, correspond to the A2 singularity, in the notation of
Arnold. Other points of the curves in Fig. 1 correspond
to the critical points 3 &.
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FIG. 1. The Tolman mass M( —) in units of (1/m G) and par-
ticle number N( ——) in dimensionless units of (1/m G) as a
function of the central density cr(0) =&a/2I4(0)I for various
a:=(2a/Ii'm ) and P=O in the potential U. For a linear scalar
field (a=0) the Kaup limit MK,„~=0.633 is recovered (Ref. 17).
The maxima and minima correspond to the A2 singularities.

V. BIFURCATION DIAGRAM

as a function of the particle number (Fig. 2). A further
"magnification" of B(N) is achieved in Fig. 3. Accord-
ing to the Whitney theorem, the cuspoidal points of these
diagrams classify the A2 singularity, whereas the other
points of the diagram correspond to the 3

&
singularity.
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FIG. 2. The binding energy M —mN as a function of N at
different values a= —5,0,5,10 (Ref. 17). In this bifurcation dia-
gram, the lower branch of each cusp corresponds to a stable star
configuration. See, for comparison, Fig. 1.

In order to classify the nondegenerate A
&

we need to
consider the bifurcation diagram M =M(N).
Equivalently we may consider the binding energy

B =M rnN =B (N—)

FIG. 3. "Magnified" view of the binding energy for the same
parameters as in Fig. 2.

Each cusp represents some Whitney surface, which is a
part of the mass-energy surface. As shown in Ref. 14, the
minimum on this surface corresponds to the stable soli-
ton, the maximum corresponds to the unstable soliton.
At the cuspoidal point, the minimum coalesces with the
maximum, and the soliton loses its stability. Thus, the
lower branch of the lowest cusp corresponds to the abso-
lutely stable soliton. The upper branch of the first cusp,
which is, at the same time, the lower branch of the
second cusp, corresponds to the unstable soliton. The
upper branch of the second cusp also corresponds to un-
stable solitons, which, however, suffer from a different
kind of instability than the soliton of the lower branch of
the second cusp.

For the boson star, the degrees of freedom of the
configuration space are very large. The fact that the
lower branch of the lower cusp corresponds to an abso-
lutely stable soliton means that there we have minima for
all directions in configuration space.

The higher branch of the first lower cusp corresponds
to a maximum. This maximum occurs in that section of
the mass-energy surface which depends on the radius R
of the star. For the second cusp the appearance of a new
instability depends on the mutual branching to other
cusps. There are the two possibilities that the next (third)
branch goes higher or lower than the second one. In the
first case, according to Whitney's theorem, the minimum
transforms into a maximum at the transition from the
second branch to the third one, and a new instability'ap-
pears. Vice versa, in the second case, one maximum
transforms into a minimum after the transition through
the cuspoidal point and one instability disappears. The
numerical data (Fig. 3) show that for the third cuspoidal
point one instability disappears, in accordance with the
general picture developed here. This disappearance of
one instability has not been pointed out in previous works
on the stability of boson stars.

In the literature ' ' the corresponding diagrams are ob-
tained by applying the method of sma11 perturbations to
the problem of stability. In our approach, the bifurcation
diagram is a key point of the analysis and is gained by
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analyzing the topology of the Whitney surface. In the
first step of the analysis we calculate the bifurcation dia-
gram for the mapping which relates the integrals of
motion M and N to some degrees of freedom of the boson
star. Following Ref. 14 we connect this bifurcation dia-
gram to the mass-energy surface M =M(R, N).

The mass-energy surface described by the bifurcation
diagram corresponds to some complicated manifold of
catastrophe, which probably has never been seen before
in the theory of singularities. The order of this grand ca-
tastrophe depends on the number of cusps in the bifurca-
tion diagram. The static description of the bifurcation di-
agram is that at every cusp there is a transition from
minimum to maximum or vice versa. For every cusp
there occurs one Whitney surface. As an application to
our case we find that at the first cusp a minimum trans-
forms to a maximum. This maximum will not be affected
at the following cusps, if at the second cusp the following
branch goes to higher mass values. If this branch
reached lower mass values, we will get a more complicat-
ed "Whitney surface" in analogy to the case of the
swallow's tail.

For neutron stars or white dwarfs, we get a complicat-
ed bifurcation diagram consisting of the many cusps (see
Fig. 8 of Ref. 8). Again, each cusp corresponds to a
Whitney surface. The first four lower branches of this bi-
furcation diagram (in the direction of increasing density)
describe a section of manifold of catastrophe which is
usually called a butterAy. Consequently, for these four
branches this two-dimensional manifold of catastrophe
corresponds to the two-dimensional Whitney surface in
the bosonic case.

For the second cusp of the bosonic bifurcation diagram
there is a Whitney surface also; i.e., at a cuspoidal point
of this cusp there is a transition from minimum to max-
imum. At the following cusps, if there is a transition to
higher mass values, the maxima stay maxima. We under-
stand such applications of catastrophe theory not only
for the boson star, but also for fermion Q stars, white
dwarfs, and neutron stars. The latter have been con-
sidered by Harrison et al. They "saw" the Whitney sur-
face without drawing knowledge from catastrophe
theory.

The simplest way to identify the instabilities, which
have been qualitatively predicted by catastrophe theory,
is to consider perturbation theory. Because the perturba-
tive equations set up a Sturm-Liouville eigenvalue prob-
lem, the characteristic frequencies of the perturbation
series have increasing absolute values. This holds also in
the case of the boson star. " ' Moreover, it was shown
for the boson star" and for the neutron star that, at each
cusp, one of these frequencies changes sign. Thus, each
such instability can be identified with a corresponding
one obtained from applying catastrophe theory.

Until now we have considered only the mapping of the
two-dimensional space (k, co) into the two-dimensional
space (M, N). Since the first space counts the number of
the degrees of freedom of the star, we may extend the
domain (k, co) of the mapping by including the charac-
teristic frequencies. In the next step, new states of the
star with different dynamical behavior could be taken

into account than those we see already in the bifurcation
diagram. These states correspond to other points on the
mass-energy surface. For burning stars, for example, os-
cillations with large amplitudes occur at their final stage
as red giants. The evolution of these oscillations cannot
be described by perturbation theory. This kind of
dynamical behavior of the star will be discussed in Sec.
VI.

In Bat spacetime, the dependence M on N has been in-
vestigated by Friedberg et al. ' Although they pointed
out that the minimal energy branch of M versus N is
stable, which is true, they have not investigated the sta-
bility of these solitons for all values M and N.

VI. THE DIFFERENT REGIMES
OF THE STAR'S BEHAVIOR

In our method, like in the theory of singularities of
smooth mappings, the bifurcation diagram plays an im-
portant role. It is a skeleton of the catastrophe or
skeleton of the mass-energy surface. The extremal point
of this surface corresponds to the soliton solution. There
exist also other types of solutions, with a different dynam-
ical behavior. Perturbation theory gives small oscilla-
tions near the soliton solution. We went beyond pertur-
bation theory, which helped us to investigate the stability
of the star.

Using the catastrophe theory we can construct the
mass-energy surface. Each section of this mass-energy
surface contains the different degrees of freedom of the
star, which can be identified, by perturbation theory, with
the characteristic frequencies. Using such sections one
can predict dynamical regimes of the star which cannot
be described within the framework of perturbation
theory.

In order to predict the different regimes of behavior of
the star we construct the section M (1/R ) (where R is the
eff'ective radius of the star) of the mass-energy surface
M(R, N) at fixed N. In other words, we construct an adi-
abatic potential. The shape of M(l/R) follows from
the bifurcation diagram.

The type of regimes depends on the critical values
N&, N&, Nc, of the particle number. For the coupling

1 2 3

constants a=(2a/i~m )=10 and P=O in self-interacting
potential (2.12), we find that Nc =0.42, Nc =0.52,

1 2

N& =0.96 are the cuspoidal points, see Fig. 2.
3

A. Stable soliton and oscillation

From the bifurcation diagram (Fig. 2) it can be inferred
that, for N (Nc the function M (1/R ) has only one

1

minimum, which corresponds to the stable soliton solu-
tion (lower branch of the first cusp).

The dependence of M on R at some fixed value
N &Nz is schematically presented in Fig. 4. The smooth

1

extremal point which corresponds to the minimum of the
curve M(1/R) is associated with the soliton solution.
The value of M in this point we call M„&;„„.The margin-
al extremal point at R = Qo corresponds to the "homo-
geneous state, " or plane-wave solution in Hat spacetime.
In the self-generated gravitational field, it can be defined
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M=mN

M"1'to

FIG. 4. "Adiabatic" potential M =M(1/R) of the star for
N & Nc (schematic construction following Refs. 22 and 24).

1

as an e+ectiuely free boson field solution for which the
binding energy 8 =M —mN is vanishing. At an infinite
value of the radius R of the star the values M and X are
finite ones. This follows from the fact that in the limit
R ~ oo the density of the star goes to zero (see Ref. 14, p.
29). The exact construction of the corresponding solu-
tion will be deferred to a future publication. These two
extremal solution characterize a static configuration of
the star. As we see from this figure, the "free boson" field
is unstable. This extremum corresponds to the max-
imum. It means that the homogeneous state of the star
will collapse from the size R =Ro = ao to the size R =R

&

(see Fig. 4). From R „the size of the star will again in-
crease. The value of R increases up to the initial value
Ro. Thus the star will be in an oscillating regime. For
such oscillations of the star, the curve presented in Fig. 4
is a kind of "adiabatic" potential which can also be ob-
tained from a scale transformation. There are also other
oscillations of the star in this potential that correspond to
other values of M. For example, the other oscillation re-
gime of the star corresponds to the horizontal line 1. In
this case the amplitude of the oscillation is lower than the
oscillations in the regime associated with the unstable
free boson field described above. On the other hand, the
oscillating regime, corresponding to line 2, has a smaller
amplitude than the one corresponding to line 1 and so on.
The limiting case is a stable soliton without oscillation.
In the region of N &Xc, Fig. 4 gives a complete picture

1

of the star's behavior.
The interesting point here is that any arbitrary

configuration of fixed particle number X cannot have a
mass smaller than M„„„„.The reason is that the
configurations of the star are limited by the mapping F.
For instance, the mapping F:( ,kor)~( M, N)allows only
a class of configurations away from the static soliton
which preserve the integrals of motion M and X. Of
course, the perturbed configurations of the stable soliton
will evolve along the line dictated by the differential map.
But there may arise other ways of choosing the parame-
ters k and co. Moreover, one could think of extending the
domain (k, co) of the mapping F to a higher-dimensional
space (k„.. . , k~, co„.. . , co~), where k, , . . . , k~,

co, , . . . , co~ correspond to additional degrees of freedom
of the star. Such a space provides us with further lines of
evolution of the perturbations, but the stability will still
be determined by the bifurcation diagram M(N). Such a
diagram comes from a numerical solution describing the
stationary points of a Lagrange manifold of Einstein's
equation. In this way one can describe virtually all per-
turbations which preserve the integrals of the motion M
and N. If we considered configurations which cannot be
categorized by this chosen map, for example, when the
total mass M and the total number of particles X are not
necessarily fixed, then one could presume that the star,
via some oscillation process, settles down to a stationary
stable configuration with some reduced mass M„d„„d.

The oscillations arise for M & M„„„,„of the mass of
the star. In this region N & X&, at some value of

1

M &M„~;„„,there may occur a gravitational collapse.
VVe expect that the configuration will oscillate rather
than collapse to a black hole not up to arbitrarily large
mass M. There should exist the critical value of
Mg Msch~m'zsghjQ which dePends on the radius of the
star R, with given mass M, (R, ). At this radius R, the
star will stop oscillating and start collapsing to a black
hole. However, in order to show this rigorously the
analysis of Christodoulou' has to be extended to the case
of the massive or even nonlinear scalar field.

B. Collapse

On the other hand, for N )Nc, the section M (1/R)3'

following from the bifurcation diagram of the mass-
energy surface, has only the marginal extremum corre-
sponding to the effectively free boson field solution. As
we can infer from Fig. 5, the section M(1/R) is a mono-
tonically decreasing function. The homogeneous free
field solution corresponds to the marginal extremum. It
is a maximum of M (1/R). For the increase of the kinet-
ic energy of the star, the radius decreases. This means
that in "this region" of N there exists a collapse for any
value of the mass. In the first stage, when
R„„))(~/4n )Ms, h „„,„;~d, it is a wave collapse (see Ref.
24 for details and references therein) which later induces
the gravitational collapse.

Due to this collapse, this state is unstable. The
different horizontal lines, drawn in Fig. 5, correspond to
different collapse regimes of the star with different initial
radii. A similar case is known for the creation of the
two-dimensional plasma cavitons.

C. Pulsation, oscillation, and collapse

In the region N~ &X & X~ the dependence of M on R
2 3

has as many extremal points as there exist branches of
cusps at a given value of N. In the case where there are
two cusp branches at given N, the dependence M(1/R)
has two extremal points and a marginal extremum corre-
sponding to the "free boson field" solution M =mN (Fig.
6). The point of the minumum of M(1/R) corresponds
to the stable soliton with the mass M„&;„„.The instabili-
ty of the homogeneous state results in an oscillation re-
gime similar to that which has been described in Sec.
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/R

FICx. 5. "Adiabatic" potential M =M(1/R) of the star for
N )N&, describing the collapse.

VIA. The maximum of M(1/R) corresponds to the un-
stable soliton with mass M„. The instability of this soli-
ton can occur in two possible ways. One of them is col-
lapse, decreasing the radius of the star. The second one is
increasing the star s radius (dispersion). Such an instabil-
ity gives rise to an oscillation in the same manner as the
marginal free-particle extremurn. There can be a lot of
such oscillations (see Sec. VIA) before the boson star will
collapse. That means that this oscillating regime may be
also unstable and, after several periods, collapses to the
state of unstable soliton. Thus the existence of this unsta-
ble oscillating regime is due to the existence of the unsta-
ble soliton.

Thus, in the most interesting region Nc & N & Nc, the
2 3'

function M(l/R) has two extremal points, which corre-
spond to the stable soliton (lower branch of the first cusp,
see Fig. 2) and the unstable soliton (higher branch of the
first cusp), respectively, and one marginal extremum (free
boson field solution). The shape of such a function indi-
cates that at each value of N there exist the following
configurations: a stable soliton with a mass M„~;„„(N)
and an unstable one with a mass M„(N). At
M(N) )M„(N) it is very difficult to predict the evolution
of the star.

In the region Nc & N & N& the dependence of
1 2

1/R

FIG. 6. "Adiabatic" potential M=M(1/R) of the star for
XC [Nc, Nc ], describing oscillation and collapse.2' 3'

M ( 1/R ) may have more than two smooth extrema which
are minima and maxima. For definiteness, let us consider
the case when M(1/R) has three extremal points. Two
of these points correspond to stable solitons with the
mass M, and M, and one corresponds to the unstable

1 '2
soliton with mass M„. There are two types of oscilla-
tions, corresponding to the minima M, and M, which

1 2

exist of M &M, . In the first case, the maximal kinetic
energy of the star corresponds to the radius of the first
stable soliton. It is an oscillation in the first minimum.
For the second case, the maximal kinetic energy corre-
sponds to the radius of the second stable soliton. It is an
oscillation in the second minimum.

There is also a very interesting regime, for which the
star has a mass M =M„. In this case, there will exist a
spatial type of oscillation in which it is difficult to predict
in which direction (first or second minimum) the star will
move from the point of maximum. It is connected with
the indefiniteness of the behavior of the star in the state
of the unstable soliton (dispersion or collapse). Such a re-
gime of the star's behavior is characterized by a pulsa-
tion. The pulsation consists of at least two difFerent types
of oscillations.

In the same manner one can analyze the case when
M (1/R) has more than three extremal points.

One general conclusion which can be drawn here is
that in the region Nz & N & Nc there is a significant dis-

1 2

tribution of the instabilities of the star. The number of
instabilities depends on the number of cusps and on the
mutual branching of these cusps. If the next branch of
some cusp corresponds to the higher values of the star's
mass, then the number of instabilities increases by one.
Vice versa if the next branch of this cusp corresponds to
lower values of the star's mass, then the number of insta-
bilities decreases by one.

VII. DISCUSSION

Our stability criteria include the results of Refs. 10—13
obtained by perturbation analysis.

Until now, there exist some more or less successful at-
tempts to prove the stability of the boson star. These re-
sults fight with the difficulty of the mathematical prob-
lem; they tried to solve the problem of stability in a quan-
titative way like Harrison et al. or Shapiro and Teukol-
sky. ' Gleiser' and Jetzer' got an upper limit for sta-
bility for the linear case and an additional 4 potential.
This limit was much higher than the first maximum in
the {M,o(0)) diagram.

Later, Gleiser and Watkins" showed that in the linear
case a change in stability occurs at the first extrernum.
At the following extrema, the higher modes (in the con-
text of Refs. 8 and 9) are negative so that the star be-
cornes more unstable. This result perfectly complies with
those which are known from the analysis of neutron
stars. Furthermore, Jetzer' showed that the zero-node
solution of the boson star is stable until one reaches the
first cusp. Lee and Pang' did not require the particle
number N to be constant, so they found that these solu-
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tions are unstable.
The picture of the star's behavior, obtained here on the

basis of the application of catastrophe theory to soli-
tons, ' has a general character and has an analogous
form for neutron stars (Refs. 7 and 8, see Fig. 8), fermion
Q balls, and for dilaton stars. In fact, for neutron
stars the diagram M(N), obtained from numerical in-
tegration of a certain equation of state for cold, catalyzed
matter, exhibit similar bifurcations as in the case of boson
stars (see Fig. 8 of Ref. 8 and and Fig. 47 of Ref. 7). For
the first cusp, Harrison et al. could even deduce correct
stability criteria from the analysis of the mass-energy sur-
face M(po, N), see Fig. 9 of Ref. 8. Although this was
done without knowledge of catastrophe theory or
Arnold's classification of singularities, these results of
1965 are in complete agreement with the more general
criteria developed here.

In comparison with Ref. 19 one should point out that
in the limit m~0 all solutions, corresponding to the
stable solitons with 0 &M„„„„&mX disappear and only
unstable solutions remain. Such solutions disperse either
to infinity or collapse. The collapse configuration can
form a black hole. This agrees completely with the re-
sults of Ref. 19.

After the submission of our paper, the recent paper of
Seidel and Suen appeared, in which the numerical evo-
lution of various configurations of boson stars using the
full nonlinear Einstein equations have been studied.
Moreover, perturbations which include a redistribution
of scalar particles in the star and also accreation and an-
nihilation of the bosons are considered so that the total
mass M and the total number of particles N are not

necessarily fixed. Their result, that the U-branch star
(unstable soliton) will either collapse to form a black hole
or will disperse, agrees with our conclusion. The excep-
tion is that the unstable soliton will eventually settle
down to a stable soliton. This is due to the possibility
that the star is allowed to change the value of % or M.
Such damping mechanisms have not been considered in
our paper. The crucial role of the migration of unstable
soliton ( U branch) to a stable soliton (S branch) has also
been pointed out in Ref. 28. According to this paper, a
stable soliton (S-branch star), which is slightly perturbed,
will oscillate with a fundamental frequency. This coin-
cides with our conclusion about the oscillation regime of
star near a stable soliton configuration. Thus the picture
of the star's behavior obtained on the basis of theory of
singularities of smooth maps (nonelementary catastrophe
theory) completely coincides with conclusions obtained
on the basis of extensive studies of the numerical evolu-
tion of boson stars.
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