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Vacuum polarization in a locally static multiply connected spacetime and a time-machine problem
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The quantum field theory in a multiply connected locally static spacetime is considered. It is
shown that the vacuum-polarization effect in a spacetime with a nonpotential gravitational field re-
sults in divergences of the renormalized stress-energy tensor for a quantum field near the Cauchy
horizon. Possible applications of this result are discussed in connection with a "time machine"
problem.

I. INTRODUCTION

One of the most intriguing features of general relativity
is the possible existence of spacetimes with a nontrivial
topological and causal global structure. The spacetime
containing wormholes described by Wheeler' is one im-
portant example. One can imagine a wormhole as a
three-dimensional space with two spherical holes
(mouths) in it. These holes are connected one with
another by means of a handle. The length of this handle l
does not depend on the distance I. between the mouths in
the external space and in principle this length might be
much smaller then I.. Recently the interest in this prob-
lem increased because it was shown that a stable
wormhole (if only it exists) can be transformed into a
time machine (i.e., into a spacetime with closed timelike
curves ). Moreover, it appeared that this relation be-
tween a wormhole and a time machine is of a quite gen-
eral nature. Namely, closed timelike curves arise as a re-
sult of the generic motion of a wormhole's mouths
and/or the action of the generic external gravitational
field. The classical gravitational interaction of a
wormhole with surrounding matter also transforms it
into a time machine.

Wormholes with handle geometry that is stationary or
slowly changing in time are of particular interest. It is
possible to enter into such a wormhole, to pass through
the tunnel, to exit into external space again (traversable
wormholes). This property distinguishes wormholes from
black holes. In Refs. 3 and 4 it was shown that, for the
existence of traversable wormholes, the stress-energy ten-
sor must violate the average weak energy condition.
This condition is assumed to be valid in classical physics.
Until now it is not completely clear whether fundamental
laws of physics allow the required violation of the energy
condition (see, e.g. , Refs. 7 and 8). But in any case it
seems that the quantum effects must be important in
wormhole physics and for a time-machine problem.

An infinite blueshift effect near the Cauchy horizon is
another general property of a spacetime with a time
machine. This effect is connected with the existence of a
special class of trajectories which may pass through a
wormhole an infinite number of times before the Cauchy

horizon is formed. For those trajectories the blueshift
which arises after passing a wormhole due to the Doppler
effect for moving and/or due to a nonpotential gravita-
tional field may be accumulated and become infinite. In
classical physics this effect generally does not mean an in-
stability of a time machine because of a zero measure of
"dangerous" trajectories and because of the defocusing
property of a gravitational field of a traversable
wormhole. ' In particular, a wave packet of a classical
massless Geld due to defocusing effect may return and
pass again through the wormhole only a finite number of
times. One can use such a mode to extract finite energy
from a wormhole, but its amplitude at the Cauchy hor-
izon remains finite.

For quantum fields due to the existence of null Auctua-
tions which cannot be isolated or suppressed the situation
is quite different. There are infinitely many modes of a
null fluctuation which may be amplified after passing a
wormhole in a proper direction just before the Cauchy
horizon formation. Though the amplification is finite for
each mode, the contribution of all modes to the renor-
malized stress-energy tensor of a quantum field may be
divergent at the Cauchy horizon.

One can also arrive at the same conclusion by consider-
ing an amplitude of a quantum particle propagation in a
multiply connected spacetime which describes a time-
machine formation. This amplitude G(X,X') for close
points X and X' can be written as Feynman integral over
all trajectories connecting these points. In addition to
the trivia1 paths that do not go through the wormhole,
there are homotopically nonequivalent classes of paths
numerated by an integer winding number indicating how
many times a path passes through the wormhole in a
given direction. In the geometric optics approximation
the main contribution to the Feynman propagator is
given by geodesics connecting X and X'. The existence of
closed null geodesics with n&0 (which are possible in a
spacetime with a time machine) may cause divergence of
the renormalized stress-energy tensor ( T„)""near the
Cauchy horizon. ' Kim and Thorne in a recent paper"
proved that such a divergence does really take place in a
model of a time machine which arises as a result of a
motion of a wormhole's mouths in flat spacetime and
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they describe the structure of ( T„,)""near its singular
points.

The main aim of the present paper is to prove that the
divergences of the renormalized stress-energy tensor is a
general property of a quantum field in a locally static
spacetime with a nonpotential gravitational field describ-
ing time-machine formation.

We begin by considering properties of a locally static
multiply connected spacetime which possesses one or
several wormholes (Sec. II A). The main feature of these
spaces is that there is no global Killing vector field while
such a field exists in each simply connected part of the
space. If we consider a continuous Killing vector along
a closed curve with a nonvanishing winding number, we
find out that the Killing vector at the final point coincides
with the Killing vector at the initial point in direction but
has a difFerent norm and hence a global Killing vector
field exists only as a multiply valued one.

The quantum field theory of a massless scalar field in a
locally static multiply connected spacetime is discussed in
Sec. II B. The main idea is the use of the covering-space
method developed for quantum mechanics and quantum
field theory in a multiply connected space by Schulman, '

Dowker, ' and Banach and Dowker. ' ' This method
allows one to reduce the quantum field theory in a multi-
ply connected space to the theory in its universal cover-
ing space. It should be stressed that in a locally static
multiply connected spacetime there is neither global time
nor a global Killing vector field, so that the standard ap-
proach is not directly applicable and it requires some
modifications. Nevertheless the covering space method is
ideally suited for our case because the universal covering
space is not only simply connected but also allows a glo-
bal Killing vector field, which can be used for a natural
definition of positive and negative frequencies and for a
vacuum state choice.

Quantum effects in two-dimensional models of space-
time with a time-machine formation are considered in
Sec. III. The spacetimes in such models are locally con-
formally Oat, but the nontriviality of their topologies and
causal structures makes a quantum theory of massless
fields nontrivial on this background. A locally static
two-dimensional spacetime is connected by a regular con-
formal transformation with some "standard model"
where the spacetime not only has the same global proper-
ties but also is of constant curvature (Sec. III A). In Sec.
III B the general covering space method is illustrated by
its application to the theory of a conformal massless sca-
lar field in a standard model. By using this method it is
shown that the renormalized stress-energy tensor for the
scalar field is divergent near the Cauchy horizon in any
locally static spacetime with a nonpotential gravitational
field. In Sec. III C it is shown that this result is generic:
it does not depend on the particular choice of a quantum
state and it is also valid when the gravitational field is
time dependent, provided the time machine is formed.

In Sec. IV a four-dimensional locally static multiply
connected spacetime is considered. We prove that for an
arbitrary spatial point there exists a closed null geodesic
which begins and ends at this point and has a given wind-
ing number n (Sec. IV A). This result is used in Sec. IV B

to prove that the renormalized stress-energy tensor in
such a spacetirne is divergent at a system of hypersur-
faces lying above the Cauchy horizon and to describe the
structure of its divergence. Section V contains a discus-
sion of the obtained results in connection with a general
problem of quantum stability of a time machine.

In this paper we use the natural units c =6 =fz= 1 and
the sign convention of Ref. 17.

II. QUANTUM FIELD THEORY
IN A LOCALLY STATIC

WORMHOLE GEOMETRY

A. Locally static spacetime with wormholes

(2.1b)

The first equation is a definition of a Killing vector, while
the second equation means that g is "surface orthogonal"
in U. Equations (2.1) allow one to show that in a simply
connected locally static spacetime the Killing vector ex-
ists as a global vector field and hence the spacetime is
static. In a more general case of a locally static multiply
connected spacetime (e.g., when wormholes are present)
such a global Killing vector field may not exist. In this
section we consider some general properties of locally
static spacetimes (for more details, see Ref. 6).

Let u" be a four-velocity of a Killing observer, i.e., a
unit timelike vector defined by the relation

(2.2)

The vector u)' does not depend on the norm of P and it is
well defined globally in a locally static spacetime. The in-
tegral lines X"(r) of u",

dX"/dr =u", (2.3)

are known as Killing trajectories or trajectories of Killing
observers. It is easy to show that Eqs. (2.1) are locally
equivalent to the following system of equations:

(2.4a)

up;v wctu v,
M( . )=0

(2.4b)

(2.4c)

Equation (2.4b) shows that u)" is a four-acceleration of a
Killing observer (u)"=u u". ). In other words one can
define a locally static spacetime as a spacetime which ad-
mits two global vector fields u~ and m" obeying the con-
ditions (2.4).

It is convenient to consider a locally static spacetime M
as a collection 8'of Killing trajectories. ' That is, an ele-
rnent of 8'is a curve in M which is everywhere tangent to
u". For each point of M one can find the trajectory of u"

Consider a spacetime, i.e., a four-dimensional manifold
M with a metric g„. We call it locally static if in any
simply connected region UCM there exists a uniquely
defined (up to normalization) nonvanishing timelike Kil-
ling vector field g, obeying the relations

(2.1a)
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7r, ( W~)=sr, ( W~) (2.5)

and that the fundamental group m, ( W~) is a free group
with N generators. In the simplest case of a space with
one wormhole W„one has

vr, (W, )=Z . (2.6)

The generator of this fundamental group is the class of
homotopic paths which begin at a given point x0, pass
once through the handle in a chosen direction, and return
to x0. The integer winding number n EZ numerating
different homotopic classes indicates how many times a
chosen closed path passes through the wormhole in the
chosen direction. (For the opposite direction n is nega-
tive. )

The free group ~, ( Wz ) has X generators.
y', y, . . . , y, where y' is a homotopic class of a closed
path passing once through the i handle in a chosen direc-
tion. For X ) 1 the group n&(W&) is non-Abelian. The
first homology group H&( W&) is connected with the fun-
damental group vr&( W& ) by the relation

H, ( W~) =sr, ( W~)/[~)( W~), ~)( W~) ], (2.7)

where [n&(W&), vr&( Wz)] is a commutant of the group
~, ( W~). It is easy to see that

H, ( W~) =Z

H, (M)—:Hi(TX W~)=Z

(2.8a)

(2.8b)

For X =1

H)(W))=~, (W, )=Z . (2.9)

which passes through this point so that there exists the
natural mapping +:M~ 8'. We assume that the topolo-
gy of Killing trajectories T is R ' and that M = T X 8.

Before considering further geometrical properties of a
locally static spacetime we make some comments con-
cerning its topological structure. T is a topologically
trivial space; that is why the homotopic groups hark(M)
and nk(W) are identical (isomorphic): mk(M)=mk(W).
In what follows we assume that 8'is a three-dimensional
asymptotically flat space with a wormhole. Such a space
can be obtained from R by cutting two balls B& and B2
from it and by further identification of the two-
dimensional boundaries BB& and M2. We denote by 8'&
the space obtained as a result of these operations. A
three-dimensional space W& with N wormholes can be
obtained in a similar manner by cutting N pairs of balls
and gluing the boundaries of each pair. Sometimes it is
more convenient to deal not with an asymptotically flat
space R' but with its compactified version 5 =R U ~.
We shall use the notation 8'„' for the space S with X
wormholes. In particular one has W; =S XS'. (For
more details, see Ref. 2.)

By using Seifert —Van Kampen theorem' ' one can
show that

db, , (ro) =1—exp(I'[w]) .
d70

(2.12)

This relation means that the time gap for the clock
synchronization along any closed path passing through
the i wormhole is growing with time and the period I'[w]
may be considered as a measure of this growing. When
this gap becomes greater than the time needed for a light
ray to propagate along the closed path passing through
the wormhole and to return back, closed timelike curves
become possible and the so-called "time machine" arises.
The existence of nonpotential gravitational fields with
I'[w]%0 is a quite general property of nonsimply con-
nected spacetimes. That is why locally static wormholes
are generally unstable with respect to their transforma-
tion into a time machine. (For more details, see Ref. 6.)

In any simple connected region U of spacetime, the
closed form m is exact,

through the wormhole) with a winding number n =1 is
the generator of H&(W&). For X)1 any cycle can be
specified by its winding number n =

I n &, n 2, . . . , n& ],
where n; indicates how many times the cycle passes
through the i handle. Denote by C' a cycle which passes
once through the i wormhole. The set of these cycles
forms the generators of H

&
( W& ).

After these quite general topological remarks we re-
turn to discussion of the geometrical properties of locally
static spacetimes. Equation (2.4c) shows that the one-
form w =w„dX" is closed (dw =0) and hence according
to the Stokes theorem the integral of this form over any
closed path C„ in M = T X 8'~ passing through the
wormhole depends only on its winding number
n =

I n&, n2, . . . , n&]. Denote by I'[w] the i period of w,
i.e., the integrel of the form m over a generator C',

I'[m] = t(); to„dX", (2.10)

and by I„[w] the analogous integral of w over a closed
path with a winding number n; then one has

I„[w]=n,I'[w]+nzI [w]+ +n~I [to] . (2.11)

For our purpose it is convenient to fix the directions of
each of the generators C' in such a way that I'[w] ~ 0.

The physical meaning of a period I'[w] in a locally
static spacetime is quite simple. Choose a point X0 in M
and denote by Xg(r) a Killing trajectory passing through
this point [Xg =X((ro)]. Consider now a path O': Y"(A, ),
A, E(0, 1) which begins at Xg, passes once through the i
wormhole and ends at the same Killing trajectory and
which is everywhere orthogonal to u": u dX"/dA, =O.

P
The last condition means that this path is formed by the
events that are simultaneous with the initial event X0.
Denote by ~& the proper time of the endpoint of the path
at the Killing trajectory Xop'(r). In the general case in a
multiply connected spacetime, ~& does not coincide with
ro and the gap b, , ( 7p):ro 'r, o—beys—the equation

The paths with a given winding number n which are
homotopic by definition are also homologic one to anoth-
er. The homology class of a cycle (a closed path passing

LO —dg

where cp allows the representation

(2.13)
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y(X) = J w dX"+yo .
0

(2.14)

Here the integral is taken over any path connecting X)o

and X" and lying in U. The quantity cp may be con-
sidered as a gravitational potential. One can easily see
that

P =exp(y)ui' (2.15)

is a Killing vector field in U normalized by the condition

~ g (Xo )
~

'~ =exp(q&o) .

It is also easy to verify that the 1-form

il =il„dX"—:exp( p)—u„dX"

is closed,

(2.16)

(2.17)

dg=O,

and hence in the region U one has

g=dt .

(2.18)

(2.19)

ds = —a (x)dt (2.20)

where

dh =h; (x )dx 'dx i (2.21)

The surface t =const is the set of events in U that are
simultaneous to one another in the reference frame of
Killing observers. The spacetime metric in U can be
written in the standard form [X"=(t,x)]

M an initial point Xo and some final point X and consider
a path C(Xo;X) connecting these two points. The class
of all paths connecting Xo with X and homotopic to
C(Xo', X) may be considered as a point of M. The opera-
tor p projects this class of homotopic paths to their com-
mon end point. If M is a (pseudo-) Riemannian space
with a metric g„ then the universal covering space M
can be naturally supplied with a metric g„by assuming
that the interval ds between two nearby paths connect-
ing Xio with Y" and with Y"+d Y" coincides with the in-
terval ds between Y" and Y"+dY" in M.

Consider now a locally static spacetime M. It is evi-
dent that if M = T X 8' then M = T X 8' where 8' is a
universal coveriog space for 8'. For a given initial point
Xo, the value of y(X) determined by Eq. (2.14) depends
only on the homology class of the paths connecting Xo
and X and hence y (as well as P and a) is a well-defined
single-valued function on the universal covering space M.
The closed form g is exact in a simply connected space M
and hence there exist a global time t in it.

The standard theory says that the fundamental group
m. , (M) (which from now on we call I ) acts as a discrete
group of isometrics on M=TX W. The action of this
group on T is trivial (it leaves the points of T unchanged)
while it produces nontrivial transformations of 8'. An
arbitrary element y of the fundamental group m'&( W) can

l2 'kbe written in the form y =y 'y '. . . y where y'
(i =1,2, . . . , N) are the generators of this group. If
n = fn„nz, . . . , nz] is a winding number corresponding
to y, then one has

is a three-dimensional metric on 8 & and

a(x)=~/ (x)~'~ =e~ (2.22)

a(yX)=A, 'A2 '. . . A~ "a(X),

t(yX) = A, ' A 2' . A~"t(X),

(2.23a)

(2.23b)

is a redshift factor. In order to fix the norm of g in U one
may choose a(xo)=1. For this choice the time t in U
coincides with the proper times of the Killing observer at
a point xo.

The gravitational potential y cannot be defined global-
ly on M as a single-valued function if there is a generator
C' for which the period I'[w] does not vanish. Such a
gravitational field is called nonpotential. One of the irn-
portant properties of a locally static spacetime with a
nonpotential gravitational field is that the work done by
this field over a particle which passes through the
wormhole and returns to the initial point does not vanish.
For a generator C' this work is proportional to

A; =exp( —I'[w]) . (2.23)

It is evident that the standard form of the line element
(2.20) cannot be used globally in M unless one considers a
and t as multivalued functions. There exists another very
helpful possibility to use the so-called universal covering
space. We shall use the following results concerning mul-
tiply connected manifolds (see, e.g. , Ref. 21). For any
given connected manifold M there exists a unique (up to
isomorphism) universal covering manifold M. This mani-
fold is a principle bundle over M with a group ir, (M) and
a projection p:M —+M. The manifold M is simply con-
nected and it allows the following realization. Choose in

BX' BX~
h,' (yX)= h;, (X) .

BX" BX'J
(2.23c)

Here X' =yX is the result of the action of y on a point X
of M.

B. Quantum field theory in a multiply connected
locally static spacetime

L = —
—,
' V @V~+—

—,
' gR @ (2.24)

where R is a scalar curvature and a parameter g for a
conformal invariant case is equal to —'. There are two

The quantum field theory in spacetimes carrying non-
trivial topology has been investigated for many reasons.
A quite general approach to these theories was proposed
by Schulman, ' Dowker, ' and by Dowker and
Banach' ' in which the nontrivial fundamental group
of spacetime is used to pull back the field theory onto the
universal covering spacetime manifold. In this section we
combine some results of this approach and use them to
study quantum effects in locally static spacetimes with
wormholes.

For simplicity we restrict ourselves by considering the
simplest possible case of scalar massless field N described
by the Lagrangian
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equivalent ways to quantize the field 4 in M. The most
usual one is to work directly with the solutions of the
field equation

(2.25)

on M. The second possibility is to use the universal cov-
ering space M. The discrete group I acts on M from the
left and the quotient I &M coincides with the original
spacetime M. In our particular case of a locally static
spacetime there is no global Killing vector field in M,
while such a field exists in M. The existence of a global
Killing vector field in the universal covering space M
makes possible a natural definition of positive- and
negative-frequency solutions. That is why we prefer here
the covering space approach.

The basic idea of this approach is to identify M with a
fundamental domain I &M and regard a field theory on
M as a field theory on M obeying certain conditions. Be-
cause the changing of the fundamental domain is a sym-
metry transformation and the metric ds on M is invari-
ant under these transformations, the invariance of the
field action implies the following symmetry property of
the field Lagrangian:

u(X)—:u(t, x)= e ' 'u (x),dc@

0 CO

(2.31)

((u„u, )) =((yu, , yu, )) (2.33)

and hence y is a unitary operator in HM.
Let U be an orthonormal basis in HM then the quan-

tum field @ in the universal covering space can be written
in the form

@(X)=g[Uq(x)b + Uq(x)b' ] (2.34)

where t and x are the coordinates on M in which the
metric has the form (2.20) and u (x) is a solution of the
equation

[~—lg —1/2g ((yQ I/2g ijg )+~—2~2]u (x)—0 (2 32)

The set of positive-frequency solutions with the scalar
product (2.30) forms a Hilbert space which we denote
HM.

By using Eqs. (2.23) and the definition (2.31) of a
positive-frequency solution u (X), one can verify that
yu (X) is again a positive-frequency solution and hence y
is an operator in HM. Moreover, it is easy to show that

yL [e(x)]=L [e(yx) ]=L [e(x)] . (2.26)

N(yx) =a (y )4(x), (2.27)

The Lagrangian is quadratic in N so that the field trans-
formations are of the form

and the vacuum ~0)) in M is defined by the relation
b'~0)) =0. The Hadamard function G'(X,X') in the
universal covering space is given by

G '(x,x') = ((oie(x)e(x')+c (x')e(x) ~0))
where a (y) = 1. The group property of I gives

a(yiy2) =a(yi)a(y2) (2.28)

= g [UJ(X) UJ(X')+ UJ(x') U~(x) ] .
J

(2.35)

[For the sake of simplicity we assume that a (y) does not
depend on a point X.] The fields @ on M obeying Eq
(2.27) are known as automorphic fields. They can be nat-
urally obtained from a given field @(X)by the projection
operator p*:@—+@,where

N(x)
~

g a(y ')N(yx) .
rEI

(2.29)

((u„u, )) =i f B„[u„u,;X]do~,

B„[u„u„X]=—u, (X)a„u,(X)—u, (X)a,u, (X),

(2.30a)

(2.30b)

where do." is a surface element of a Cauchy surface X in
M. The value of this scalar product does not depend on
the particular choice of X. In particular one may choose
the surface X defined by the equation t =0. This choice
is especially convenient for the calculations because X0 is
invariant under the action of I . %'e define a positive-
frequency solution of Eq. (2.25) as a solution which al-
lows the representation

It should be stressed that the group I is infinite and
hence the procedure of averaging over I must be
specified in a more accurate way. (For necessary details,
see Refs. 15 and 16.)

It is convenient to introduce the following scalar prod-
uct (( u „u2 )) in the space of complex-valued solutions of
Eq. (2.25) in the universal covering space

4'(X) = g [u, (X)a'+u;(X)a*'] . (2.37)

One can choose a state ~0) defined by the relations
a'~0) =0 as a natural vacuum state in M. The corre-
sponding Hadamard function G'(X,X') is

G'(x, x') =(o~e(x)e(x')+e(x')e(x)~0)
= g [u, (x)u, (x')*u, (x')u, (x)] . (2.38)

The Hadamard function in the physical spacetime M is
connected with the Hadamard function in the universal
covering space M by the relation' '

G'(X,X')= g a(y ')G'(X, yX') .
yel-

(2.39)

For automorphic solutions (2.27) it is more convenient
to use another scalar product

(u„uz) =i I B„[ui—, u2;X]der" . (2.36)

Here u, and u2 are automorphic solutions and XM is the
intersection XA(l gM) of a Cauchy surface X invariant
under the action of I with the fundamental domain
I &M. We denote by HM the Hilbert space of auto-
morphic positive-frequency solutions with the scalar
product (2.36). If u; is an orthonormal basis in H~ then
the quantum field N in M allows the decomposition



43 VACUUM POLARIZATION AND TIME-MACHINE PROBLEM. . . 3883

The renormalized stress-energy tensor ( T„,)"" in a
physical spacetime can be obtained by applying the
operator

means that the time parameters of the points (t, O) of y
and (t', L) of y+, which are to be identified, are related as
follows:

D„,= ,'( ,'——g—)(V„V +V„V, )+(g ,' —)g—„VV~ t'= At, A —=a(0)la(L)=exp( —I[w]) ~ 1 . (3.6)

2$—(V„V +V„V, )+Sag„(V Vt'+V V~)

+
2 g[R „,——,

'
( 1 —3()g„,R ] (2.40)

to G'(X,X') and taking the coincidence limit after sub-
tracting the necessary divergences. In what follows
we consider a nontwisting scalar field and put a (y )= 1.

Our aim is studying quantum eFects and, in particular,
the vacuum polarization in a locally static spacetime. In
two-dimensional spacetime the local contribution to the
vacuum polarization can be separated from the part
which depends only on the global spacetime structure. In
order to show this we rewrite metric (3.4) in the form

III. QUANTUM EFFECTS IN A
TWO-DIMENSIONAL SPACETIME

WITH A TIME MACHINE

ds =b (q)ds

ds = a(q—)dt +dq

By comparing Eqs. (3.7) with Eq. (3.4) one gets

(3.7a)

(3.7b)

A. "Standard model" of a two-dimensional
locally static spacetime

In order to illustrate the main features of the above de-
scribed general approach to the quantum field theory in a
locally static multiply connected spacetime and to study
the vacuum polarization in a spacetime with a time
machine we consider here a two-dimensional model
which allows a complete and detailed investigation.
Namely, we consider a locally static two-dimensional
spacetime M= T X 8' which is formed by 8'-set of Kil-
ling trajectories. We assume that O'=S'. The proper
distance coordinate along W (which we denote by l )

changes from l =0 to l =L„ the boundary points 0 and J
being considered identical. The velocity vector of a Kil-
ling observer u" is tangent to T while its acceleration w"
is orthogonal to T and can be written in the form

w„= —w (l)5„',

w(0)=w(L) .

(3.1a)

(3.1b)

To make consideration more concrete we assume that
w(l) ~0.

For M one has

m, (M) =H, (M) =Z, (3.2)

ds = a(l)dt +dl— (3.4)

where

a(l)=exp —f w(l')dl'
0

(3.5)

The regularity of the spacetime M requires that the inter-
nal metrics and external curvatures at both lines y and

y are identical. The identity of the external curvatures
is guaranteed by Eq. (3.1b), while the other condition

the closed path C with the winding number n =1 being
the generator of both groups. The period I [w] for this
generator reads

I[w]= f cw„dX"= —t w(l)dl . (3.3)

The spacetime M can be obtained from the manifold
M'=TX[0,L] by identifying its boundaries: y, 1=0;
and y+, l =L. The spacetime metric ds on M' reads

b(q) a( q)= a(1), b(q)dq =dl .

Denote by Q the value of q which corresponds to I =L:

fLdl
(3.9)

We call Eq. (3.7) the canonical form of the spacetime
metric if the following conditions are satisfied:

b (0)=b (Q) = 1, (3.10a)

i dQa ' = —8'=const . (3.10b)

The first condition guarantees that the period l[w] for
the metric ds is the same as for the metric ds, while the
second condition means that the acceleration of Killing
observers is constant in a locally static spacetime M with
the metric ds . By using Eqs. (3.8)—(3.10) one gets

a (q) =exp( —Wq),
W-'=(A —1)-'f 'a-'(t)dt,

0

Q =W 'lnA,

b(q)=a(l) 1+Wf a '(l')dl'
0

(3.11a)

(3.11b)

(3.11c)

(3.11d)

u = —t+8'~dl
0 CX

v= +t+8&dl

0 a

(3.12a)

(3.12b)

The equations u =const and v =const determine null
geodesics in both conformally related spaces M and M.
The lines u =0 and v =0 are closed null geodesics, which
form Cauchy horizons H+ and H correspondingly. In
the region R+.uv & 0 lying between the Cauchy horizons

Equations (3.1b) and (3.10a) guarantee that the
identification of lines q =0 and q =Q does not create any
discontinuities in the metric ds on M. We refer to the
spacetime M with the metric (3.7b), (3.11a) and with the
identification rule (t, O)~( At, Q) of its boundaries as the
standard model. It should be noted that not only the to-
pologies but also the causal structures of M and of the
standard-model M are identical. Denote
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4=0 . (3.13)

H+ and 0 there are no closed causal curves. The
closed timelike lines are possible in the regions lying
beyond R+.

Consider now a conformal massless scalar field 4 obey-
ing the equation

g= Wt, /=exp( Wq),

this metric can be rewritten in the form

ds =8' do.

der=(' ( —de +dg ) .

(3.18)

(3.19)

(3.20)

The renormalized vacuum expectation values & T„,)"'" in
two conformally related spaces M and M are related as
follows

The action of y„—= (y)", where y is a generator of the
fundamental group I, on M is described by the relations

(3.21)

1

P 24~

& T„.)""=
& T„„)""+T„. ,

b.pv b*pb;v
2 ' —4

b2

(3.14a)

&„..p = (g„.—g.ti g„kg
—..), (3.22)

the strip g E( I, 3 ), il E( —oo, oo ) being a fundamental
domain. The spacetime with the metric (3.20) is a homo-
geneous space of constant curvature

(3.14b)

The quantity on the left-hand side of Eq. (3.14a) is re-
ferred to the spacetime M while the quantities standing
on the right-hand side of this equation are to be calculat-
ed in the spacetime M of a standard model. If 6'(X,X')
is the corresponding Hadamard function in M, then (see,
e.g. , Refs. 22 and 23)

which is isometric to the surface of a two-dimensional hy-
perboloid described by the equation X + Y —Z —1=0
1n a space with a metr1c dS =dX +d Y —dZ . Equa-
tion (3.15a) shows that the renormalized vacuum expecta-
tion value of the stress-energy tensor remains unchanged
under the conformal rescaling (3.19) of a metric provided
that W =const, and we can calculate & T„)""directly in
the spacetime with the metric (3.20).

The field equation (3.13) in null coordinates

& T )~«= lim D G i «~(X X')x-x
where

(3.15a)

reads

—:Wu =g t, g+ ———Wv =g+t (3.23)

D„=—,'(V„V +V„V —g„g ~V V ) . (3.15b) (3.24)

The function b (X) is regular in M; that is why the tensor
t„, is also regular. Its nonvanishing components in (t, q)
coordinates are

Tt 1

24
2b" +3b

b bz
(3.16a)

b'z 1

+28'
b2 b

(3.16b)

B. Vacuum polarization in a standard model

For the calculations of the vacuum polarization in a
standard model we use the covering space approach. The
universal covering space M for the standard model is a
spacetime with the metric

where a prime denotes d/dq. The regular contribution
T„ is local and does not depend on the topological and
causal structure of the spacetime. That is why for study-
ing the quantum effects connected with a time-machine
formation it is sufficient to calculate & T„,)""in the stan-
dard model M. In particular it will be shown that these
quantities are divergent at the Cauchy horizons. This re-
sult means immediately that the analogous quantities are
divergent at the Cauchy horizons in any locally static
spacetime.

where i)+=8/Bg+. The general solution of this equation
1s

+=++ (g+ )++ (g ), (3.25)

F+ being two arbitrary functions. The scalar product
(2.30) in the space of complex solutions of Eq. (3.24) can
be written in the form

« u, , uz» = i j — (uiuz —u, u~)dg,
g)0

(3.26)

dQ
aiu +a& =0, Im(az/ai)=0 .

g'= 0
(3.27)

It is easy to show that regular solutions of massive scalar
field equations vanish at /=0 for arbitrarily small value
of mass. Having this in mind we chose az =0. A general
positive-frequency solution in M obeying this boundary
conditions can be written in the form

where an overdot denotes d/dg. This scalar product is
conserved provided the following boundary condition is
imposed at (=0:

ds2 e
—2&qdg2+dg 2 (3.17)

oo de
u(il, x)= J a(cv)[exp(icog ) —exp( icing+)] . —

0 CO

where t E ( —00, ao ), q H( —~, oo ). By using the dimen-
sionless coordinates (3.28)
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The positive-frequency solutions

U =(4+co) '
[exp(incog ) —exp( —icog+)] (3.29)

one can show that a positive-frequency automorphic solu-
tion allows the representation

obeying the normalization conditions

(( U, U„))=&(co—~')

u = gc„u„,

(3.30) where

(3.35)

1G'(X,X') = — ln
4~

(3.31)

form a basis in HM. The Hadamard function 6' in M
defined by Eq. (2.38) is

uo=bo[ln[(g+ i—p)/(g +ip)]+in],.

[en p (g ip) 2ni—pn

nPn(g— + .
p)

—2niPn]

(3.36a)

(3.36b)

a(co)=a(Ace) . (3.32)

The general solution of this functional equation is

Positive-frequency solutions (3.28) are automorphic pro-
vided

As the scalar product (2.36) in M does not depend on the
particular choice of the Cauchy surface in the fundamen-
tal domain, we may choose the section q=0 as such a
surface and write

a(co)= g c„co (3.33)
A(u', u ) = i —dg(u'u u'—u )„

1
(3.37)

where P=(luau ) ', c„are constants, and the summation
is taken over all integer numbers n. By using the rela-
tions (u„,u ) =5„ (3.38)

The solutions (3.36) form an orthonormal basis in HM.

f exp(+incog)= @+i~/2—ln(g+—ip),
0 CO

(3 34 )
provided

bo=(p/4')', b„=[8irnsinh(yn)] (3.39)

f 2+i nco 'p"ex p(+i cog)
0 CO

=+ie —' e P"I (2mi Pn )(g+ip) 'P" (3.34b)
where X—=2ir p. The Hadamard function G' defined in
M by Eq. (2.38) is

G'(X,X')=ho[in(g+/g )+in. ][in(g'+/g' ) im]—
+ g'b„[er"(g '+/g+ )'""+e r"(g '

/g )'""—(g '+/g )'""—(g
'

/g+ )'""]+(complex conjugate),
n (3.40)

where iM =2m.P, g+ =—g++i 0, g+ ——/++i 0, and the prime indicates that the summation is taken over all integer numbers
n excluding n =0. For points X and X' lying in R+ where g+ )0 and g+ )0, the distinction between g+, g+ and their
complex conjugate is not important. The Hadamard function for this case can be rewritten as

G'(X X') = [ln(g'+/g' )1n(g+/g )+m ]+ g coth(X—n ) [cos[iMn 1n(g'+/g+)]+cos[iMn ln(g' /g )]]2m 2' „]n

1 1
{cos[pn ln(g'+/g )]+cos[pn 1n(g' /g+)]] .

2m „,n sinh Xn

The summation in this expression can be done by using the relations (see Ref. 26)
00

cos(2yn—) = —ln(2 siny),
n

(3.41a)

K
cos(2yn) =

—,
' [lnQO —1n84(y/ir)],„=i n(1 —x ")

QO 2n

cos(2yn) =
—,
' [ln(2QO)+ —,'lnx+in sin(y) —ln8, (y/vr)],„=,n(1 —a. ")

where 8, (z) =8, (z, x ) =8,.(z ~
r ) are the Jacobi functions and

(3.41b)

(3.41c)

Qo = + (1—x "), z =exp(2m'i 7 ) .
n=1
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Finally, we get for the Hadamard function 6'(X,X') the explicit expression1, , ~1[p»(0'+C+)Ã1[p»(k' —c—)]

84[P ln(g'+ /g ) ]8~[Pln(g' /g+ ) ]
(3.42a)

(3.42b)

The proof of the identity of the expressions (3.42a) and (3.42b) is given in the Appendix.
In order to calculate the renormalized stress-energy tensor one can use the standard point-splitting method. But

in our case due to the high symmetry of the universal covering space it is possible to simplify the calculations. The
space M is locally isometric to M. Thus the terms which are to be subtracted in order to renormalize the vacuum ex-
pectation value of the stress-energy tensor are the same in the both spaces and we can write

where 9,.(z) —= 6, (z, i~) and ~=exp( —2' p). It is worthwhile noting that this expression for the Hadamard function can
be also obtained by using the representation (2.39), which in our case has the form

(g —A "g' ) (g+ —A "g'+)
6'(X,X') = — ln

4~ „= „(/++A "g' ) (g +A "g'+)

( T„.)M"= T„'„+( T„.)~",
where ( T„)~" and ( T„„)~" are the renormalized stress-energy tensors in M and M correspondingly and

T„' = lim D„„[G'(X,X') —6 '(X,X') ] .

(3.43)

(3.44)

The expression in the square brackets on the right-hand side of (3.44) is a regular function. It is easy to see that
T'+ = T' + =0 while the nonvanishing components T++ and T' are

T' = lim 8 r)' [6'(X,X') —6 '(X,X')] .
X ~X

The calculations give

(3.45)

r)+8+6 '(X,X')=-
2m' (g+ —g+)~

a a' 6'(XX )= P +
2vrg+g'+ 2vrg~g'+

7T2 Qo 2'
+8m g 2

cos(2~nz+ )
SH1 KZ+ 1 —x

(3.46a)

(3.46b)

where z+ =pin(g'+/g+). By using these relations we get
1

& T,-)'M"—,4 &.- (3.48)

T 1
+

where

F(P), (3.47a) where g„ is a metric in M. Combining these results we
Anally get

2

(p)
1 P + P 77

48~ 4~ 12

n exp( 4' pn )—
, 1 —exp( 4n Pn)—(3.47b)

( T )ren
pv M S+n++ n S. F(P-)—

g2 P ~
g2 P

1

24~ P (3.49)

The series in (3.47b) is slowly convergent for small values
of p. In the Appendix it is shown that F(p) allows
another representation that is especially useful for small

The first term of this expression describes null Auxes and
is traceless, while the second term has the trace which
correctly reproduces the conformal trace anomaly in M:

( Tp )ren 1

12m

1

24m
(3.50)

F(P)=
87r „=, sinh (n/2P)

(3.47c)

The quantity ( T„,)M" can be calculated by using Eq.
(3.14b) for the conformal transformation (3.20), relating
M with a Hat half-plane x )0 and by taking into account
that the renormalized stress-energy tensor in the latter
space vanishes. Simple calculations give

H+:g =0 is

F
0

(3.51)

The leading term of ( T„)M"near the Cauchy horizon
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( T )ren ( T )ren
uu M vv M

( T )ren ( T )ren ()
(3.52)

This relation shows that near H+ there exists an
infinitely growing Aux of negative energy density which is
propagating in the direction of the gravitational potential
decrease. This conclusion is evidently valid not only for a
standard model but also for any two-dimensional locally
static spacetime with a nonpotential gravitational field.
This result can be interpreted as an evidence of possible
quantum instability of the Cauchy horizon in such
spaces. In the next section we argue that this result is
also valid in a more general situation when the metric is
time dependent, provided a time machine is formed in
such a space.

Before considering this more general case we make
some remarks concerning the weak-field limit of
( T„)~". Assume that the nonpotential gravitational
field is weak (5:—A —1 « 1); then we have W =5/L and
p=(lnA ) =5 '. In this limit, the term of (3.47b) that
contains a series is of the order 5 exp( —4m /5), and it
can be neglected. Thus we have F(P)=m /125 . For
fixed values of l and t, one has u = U =I./5, and hence up
to the terms which vanish in the 5—+0 limit one has

time-rnachine formation.
Consider a two-dimensional manifold —~ & t & ~,

0 ~ x ~ B, with the metric

ds =a (t,x)dso=a (t,x)( d—t +dx ), (3.54)

a (t)dt =a+(t')dt',

8 [a '(t, O)]=8„[a '(t', B)],
(3.55a)

(3.55b)

where a (t) =a(t, O) and a+(t)—:a(t, B).
The first condition relates the time coordinate t at the

line y and time coordinate t at line y+ for the points
which are to be identified. This condition means simply
that the proper time parameters ~+ for these points must
coincide. We assume that in the remote past the space-
time was a static cylindrical one and that the gravitation-
al field was absent so that we have, in this region,

and consider the spacetime M which is obtained from this
manifold by gluing its boundaries: y, x =0; and y+,
x =B. In order that spacetime M be regular, the follow-
ing two conditions are to be satisfied: (i) the internal
geometries of the lines y and y+ must be isometric, and
(ii) the external curvature of these lines must have no
jumps. These conditions imply the relations

a(t, x)=1, t'=t . (3.56)
These expressions correctly reproduce the value of the re-
normalized stress-energy tensor for the conformal mass-
less scalar field in a two-dimensional cylindrical space-
time (see, e.g. , Ref. 24). This is true not only for ( T„)M"

but also for the Hadamard function O'. In order to show
this, it is suScient to note that, in the weak-field limit,

Pin(g'+/g+)=(u —u')/L, Pln(g' /g )=(U —U')/L,

(3.53)

and the 8 functions 8;(z,x) have the following asymptotic
behavior for small values of K'

8)(z, ~) =2~'~"sin(mz), 84(z, ~)= 1 .

By using these relations we obtain the following expres-
sion for the Hadamard function in the weak-field approx-
imation:

6'(X,X') = —(4m) 'lnI 16 sin [~(u —u')/L]

Xsin [n.(u —u')/L]] .

~+= lim I a+(t)dt+t,~—oo to0
(3.57)

The condition of the point identification ~ =~+ or
equivalently

r

lim a t dt+to
f ~ —a &o0 L

lim I a+(t)dt +to
0

(3.58)

allows one to relate the corresponding time parameters
t ' = T ( t). As earlier we assume that

2 (t)—:a (t) la+(t) & 1 .

Under this assumption we have

(3.59)

dT/dt = A (t) & 1, (3.60)

The proper time parameters ~+ along the lines y+ can be
written in the form

C. Renormalized stress-energy tensor
in a two-dimensional spacetime

with a time machine

We showed that the time-machine formation in a local-
ly static two-dimensional spacetime is accompanied by
the divergence of the renormalized stress-energy tensor of
a quantum field near the Cauchy horizon. The following
two questions naturally arise: (i) does this result depend
on a particular model we have chosen, and (ii) does it de-
pend on a particular choice of the vacuum state we have
made~ In order to answer these questions we consider a
more general two-dimensional model describing the

T(t)=t+B, (3.61)

which we denote by t . This condition means that a null
ray, leaving y at a point p at the time moment t
enters y+ at a point p+ at time T(t ). These points p+
are to be identified so that the null ray forms a closed null

The second condition of the spacetime regularity
(3.55b) does not greatly restrict the class of models under
consideration. For example it can be satisfied if one
chooses a(t, x)=F(f (t)g(x)), where F, f, and g are arbi-
trary functions, provided that g'(0) =g'(B) =0.

We assume now that there exists a solution of the equa-
tion
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( —8 +8 )4=0
while the boundary conditions read

@(t,O) =4( T(t),B),
B.@(t,O) =8 4 (T(t),B ) .

(3.62)

(3.63a)

(3.63b)

Denote z, =t +Ex; then the general solution of Eq. (3.62)
can be written as

geodesic in M. This geodesic coincides with the future
Cauchy horizon H+. Under the assumptions we made,
there is no past Cauchy horizon H in M. In other
words, our model describes a time-machine formation in
an originally cylindrical spacetime due to a rising of a
nonpotential gravitational field.

Consider a conformal massless scalar field 4 in the
spacetime M. The field equation @=0 in the (t, x)
coordinates takes the form

u,„(X)=p,„(F', "'(z, )) . (3.69b)

Let X:—(t,x) be an arbitrary point lying below the

Cauchy horizon H+ and R++ and R: be the strips
where this point is located. We shall refer to the numbers
n, as to the strip index of X. The Hadamard function

both initial strips R+, and, instead of giving the initial
functions g, (z, ) in these strips, one can single out a solu-
tion of Eqs. (3.62) and (3.63) by specifying its initial Cau-
chy data f,(t;„,x) and d,f,(t;„,x).

The spacetime M is static in the remote past and it al-
lows a natural in-vacuum state definition. The corre-
sponding positive-frequency in-basis u,„can be defined as
follows. In the initial strips R „
u,„(X)=p,„(z,) = (4vrn )

'~ exp( 2vr—B 'z, i ), (3.69a)

while in the strips R,",

@(X)=f,(z )+f (z ), (3.64) G,'„(X,x') = y [u,„(X)u,„(X')+u,„(X')u,„(X)]

where functions f~(z+ ) obey the conditions

f,(z, )=f,[T(z,)+eB], @=+1 .

(3.70)

G „(X,X')= (4~) 'ln—QQ, (z„z,') (3.71a)In order to find a solution of this functional equation
we consider mapping

Q, (z„z', )=4sin ImB '[Z, (z, ) —Z, (z', )][, (3.71b)
F,:z,~T(z, )+eB . (3.66) I

Z, (z, )=F, '(z, ), Z, (z', )=F, '(z,'), (3.71c)Denote by I", ' the operator which is inverse to I', and
denote F,"= [F,]" and F, "=[F, ' ]". Let us choose two
arbitrary constants z, and consider the two sets of points
z,"=F",[z, ] numerated by an integer number n. The se-
quence z+ is monotonically increasing and
lim„+ z+ =+~, while the sequence z" is monotoni-
cally decreasing (provided z & t ) and
lim, + z' = —ao, lim, z' =t . We denote as R,"
the regions (strips) where z," & z, & z,"+'.

Consider a function g, (z, ) determined in the strip R,
and obeying the conditions

where n, and n,' are the strip indices of X and X' corre-
spondingly, while z, and z,' are null coordinates of these
points.

Now we are ready to obtain the desired expression for
the renormalized stress-energy tensor ( T„)""in M. For
this purpose we choose a point X lying below the Cauchy
horizon H+ and two regions U) and U~, X H U) C U2,
which are small enough so that they lie in the same strips

tl+R+—as X and do not intersect the curve y —=y+. Con-
sider a new smooth metric on M,

for such a vacuum state can be written in the form3.65

dg dF dg ~

E'

(3.67)

and define the value of the functions f,(z, ) in a strip R,"
by the relation

ds =0 (X)ds (3.72)

1, XEMX U2,

which coincides with the original metric ds everywhere
beyond U2 and is Aat inside U, :

f,(z, )=g,(F, "(z,)) . (3.68) x~vo,', XEUi . (3.73)

The functions f,(z, ) are smooth solutions of the func-
tional equation (3.65) and they describe wave propagation
in the left ( @=+1)and in the right (e= —1) directions.
For such waves it is sufFicient to specify their values only
in the initial strips R,. The values of the waves in other
strips are determined due to the identification of the
boundaries y and y+.

It is convenient to put z =z+ =—zo and choose such a
value of this parameter zo for which the initial strips R+
are located in the remote past where a(t, x) =1 and t =t'
One can use the freedom in the choice of zo in order to
guarantee that H+ CR++ for some finite number n+.
The section Xo defined by the equation t =t;„=zo lies in

By using Eq. (3.14) one can get

(3.74a)

A 1

24~
—2 '" +r]„

A 0!
(3.74b)

All the operations on the right-hand side of Eq. (3.74b)
are assumed to be done in the Oat metric
il„„=diag( —1, 1 ).

The quantity ( T„)""can be easily calculated because
the null geodesics in both spaces ds and ds are the same
and hence Eq. . (3.71) gives also the Hadamard function in
a spacetime with a new metric. On the other hand the
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metric g„ is Hat in the vicinity of X and in order to re-
normalize G „ it is sufficient to subtract a Aat space Ha-
damard function from it. Thus we have

( T )ren hm D G), ren(X Xi)pv, pv in
I

G „'""(X,X')= —(4m. ) 'ln Q Q, (z„z', )

(3.75a)

(3.75b)

where

4sin I vrB '[Z, (z, ) —Z, (z', )]]
Q, (z„z', ) =

(ze ze)
(3.75c)

The coincidence limits z,' —+z, of the derivatives of
Q,(z„z,') which are needed for the calculations of the re-
normalized vacuum expectation value ( T„)""can be
easily obtained, and one gets

Z',"(z, )
( g (X) )ren

4~ 6Z,'(z, )

[Z,"(z,)]
[Z,'(z, ) ]

( T (X))ren 0 .

2

z [Z,'(z, )]
3L

(3.76)

We use these expressions to analyze the properties of
the vacuum polarization near the Cauchy horizon H+.
It is easy to see that the function Z+ (z+ ) is regular near

H+. It means the regularity of (T++ )""and hence of
( T++ )""near the Cauchy horizon H+. We show now

that the quantity (T )"" (and hence (T )"") is

divergent near H+. For this purpose we consider in
more detail the behavior of mapping (3.66) for e= —1

near the limiting point t . This mapping in the vicinity
of this point (for large negative n) can be linearized and
we have

—z" +' =D(t —z" ), (3.77)

F ~ "(z )=t +D "[F ~(z ) t ] . —(3.78)

where

D= „(t ).dT
dt

For points lying in the initial strip z ER one can a-
ways choose such a big positive number X that for k )0
the following relation is valid:

Combining these results it is easy to show that
( T )""is divergent near H+ and the leading part of
the divergence is of the form

(X))""=(t —z ) '. (3.80)

We proved the divergence of ( T„(X))""for a special
choice of the initial state. It is easy to see from the proof
that this result is valid for any other state provided the
corresponding Hadamard function is regular in the initial
strip R+. That is, the divergence of the renormalized
stress-energy tensor near the Cauchy horizon H+ is a
generic property of two-dimensional time-machine mod-
els.

IV. VACUUM POLARIZATION IN
FOUR-DIMENSIONAL SPACETIME

WITH A TIME MACHINE

A Polarized hypersurfaces in a locally
static multiply connected spacetime

The main result of the previous sections is that in two-
dimensional spacetimes the formation of the time
machine is always accompanied by infinite increase of the
renormalized stress-energy tensor. The calculations in
four dimensions are much more complicated, but never-
theless it is possible to argue that the arising of the diver-
gences of the renormalized stress-energy tensor is also a
quite general feature of a locally static spacetime with a
nonpotential gravitational field.

Denote as earlier M=TX 8' the universal covering
space of the spacetime M = T X O'. The space 8'may be
identified with a fundamental domain in 8'. To make
consideration more concrete we assume that there exist
only one wormhole. In this case the universal covering
space 8' consists of an infinite number of sheets
8'"=y„8' numerated by an integer winding number n.
The Hadamard function G'(X,X') in a locally static
spacetime can be written in the form

Z' (z )=(dF [p ]/dp )D",
Z" (z )=(d F [p ]/dp )D

Z'"(z )=(d F [p ]/dp ]D ",
and so on. For fixed N the function F [p ] and its
derivatives are regular and bounded in R . Near the
limiting point z —+t this function remains bounded
while D infinitely increases:

Dk (t z )
—I

We fix this value X. The following approximate expres-
sion takes place for z ER

G'(X,X')= g G'(X, y„X'), (4.1)

Z (z ) =F [p(z )], (3.79a)

where

p =p(z ) =D "(z —t )+t ER (3.79b)

The relations (3.79) allow one to show that, for
z ~R + one has

( T„.& M" = ( T„.& I"+T„. ,

where

(4.2a)

where the summation is taken over the winding number
n. The divergent terms which are needed to be subtract-
ed for the renormalization are the same in M and in its
universal covering space M, and hence we have
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T (X)= g' T„" (X),

T„"„(X)=lim D„G'(X,y„X') .
X' —+X

(4.2b)

(4.2c)

than Lz.. d ~L&. The transformation property of a,
ya(x) =a(yx) = A 'a(x), implies that

d„=—d(y„,y„+, ) ~ A "I.c .

The prime in this formula indicates that the term with
n =0 is omitted from the summation. The difFerential
operator D„, defined by Eq. (2.40) for a conformal invari-
ant massless scalar field (g= —,

'
) is of the form

D„=~(V„V +V„V', ,'g„—V—' V~ )

—
—,', [V„V +V„V, —~g„(VpV~+V .V~ )

—(R„——'g„R)] . (4.3)

We have seen that in two-dimensional case ( T„)M" is
regular and finite while T, being dependent on the glo-
bal causal structure of M, is divergent at the future Cau-
chy horizon H+. It is evident that in the four-
dimensional case the analogous divergency will also arise
for those points X for which a pair X and y„X can be
connected by a null geodesic line in M. In the latter case
the point X is located at the characteristic conoid with
the vertex at y„X and thus G'(X, y„X') is divergent.
Such a geodesic connecting X and y„X in the universal
covering space M is projected into a closed null geodesic
in M which begins and ends at a point X and possesses a
winding number n.

We prove now that for any chosen spatial point xH 8
there exists such a time moment t = T„(x) that the points
X =(t,x) and y„X in M are connected by a null geodesic.
For this purpose we note that null geodesics remain in-
variant under conformal transformations and for their
study we can use the ultrastatic spacetime 1&= T X k
with a metric

ds = —dt +dk

dX =H; dx'dx~, H; =a h;
(4.4)

which is conformally related with the metric ds of M
given by Eq. (2.20):

ds =a ds (4.5)

Null geodesics in M a11ow a simple description. Let
x'=x'(I, ) be a geodesic line in a three-dimensional space
with the metric dA, and A, be a proper length parameter
along this line. Then the curve X"=X"(A,) =(A, ,x'(A, )) is
a null geodesic in 4 (and hence in M ).

The next step in our proofs is to show that any two
points of IY can be connected by a geodesic lying in k.
There is a well-known theorem (see, e.g. , Ref. 21) which
declares that in a complete connected Riemannian mani-
fold any two points can be connected by a geodesic of a
minimal length. This result cannot be directly applied to
our case because the space 8 is not complete. The in-
completeness of 8 can be easily demonstrated. Choose a
point y and consider a sequence y„=y „y. Let C be an
arbitrary curve connecting yp=y and y& and let LC be a
length of C. Then the distance d =d(yo, y, ) between
these points which is defined as an exact low boundary of
lengths of curves connecting the points is evidently less

t =T„(x)—:A,„(x)I( A "—1) . (4.6)

This result shows that, for a given winding number n and
for an arbitrary spatial point xE 8' of a locally static
spacetime M with a nonpotential gravitational field, there
exists a closed null geodesic which begins at this point,
passes through the wormhole exactly n times, and returns
into the same spacetime point. In the general case there
is only one such closed geodesic but in principle there
may exist points for which there are more than one or

It means that [y„j is a Cauchy sequence, but there is no
limiting point of this sequence in k and hence W is in-
cornplete.

Neverthe1ess, it is possible to show that there always
exists a geodesic of a minimal length connecting two
points yp and y„ in 8'provided that a distance L between
the mouths in 8'is much larger than the size of a mouth.
In order to prove this we show at first that such a curve C
of a minimal length which begins at yp and ends at

~ —( +2)y„E 8' " cannot intersect a sheet 8' '"+ '. Consider a
path C' which begins at yp and ends at y„but which
possesses a part lying in 8 '"+ '. This path contains a
fragment bb'b". . . c"c'y„ for which b, y„E k
b', c'H 4 '" ' and b",c"E k " . It is evident that
the length of a part b'1" . c"c' of this curve is larger
than 2LA '"+", where L is a distance between the

pmouths in the fundamental domain O' . lt is possible to
transform the curve C' into a new shorter curve C" by
omitting its part b'b" - . c"c' and connecting the points
b' and c' by a curve lying in k " and paing near the
mouth. If b is a characteristic size of a mouth in k,
then the length of b'c' is of the order of b A ", and hence
the length of C" is less than the lenght of C', provided
2L & Ab. In other words, in order to find a curve of a
minimal length connecting yp and y„, it is sufficient to
consider only curves which do not intersect the sheet
8' '"+ '. That is why one can change the geometry in
the part of k which consists of the sheets k " for
k ~n+2 without any inQuence on the existence of a
curve of a minimal length connecting yp and y„. In par-
ticular, we can make a conforrnal transformation with a
conformal factor equal to 1 in k for k ~n+1 [and
hence preserving the metric (4.3) there] and which is
equal to a A '"+ ' for k ~n+3. The space with this
conformally transformed metric is a complete one so that
the theorem mentioned above guarantees the existence of
a geodesic of a minimal length in this space. But we have
seen that this geodesic cannot enter the sheet k
and thus it is a required geodesic in @".

Denote by C„(x) the geodesic of a minimal length con-
necting x and x„=y„xin S"and denote its proper length
by A,„(x). Consider now a null geodesic in 19' generated
by C„(x). Suppose that it begins at a point x at a time
moment t then it reaches x„at a time moment
t'=t+A, „(x). The end point (t', x„)of this geodesic coin-
cides with y„X=(A "t,x„)provided
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+w (X,X') (4.8)

where o(X,X')= —,'s (X,X') is a geodetic interval, and
b, =4(X,X') is a Van Vleck —Morette determinant. The
functions v and m are regular in the coincidence limit.
The function v is uniquely defined and depends only on
the local geometry of M, while m depends on a quantum
state.

Consider points X"=X( 5tg"(Xo ) and X„"=y„X"—
=X(„5tA "P(Xo„) locat—ed on the Killing trajectories
passing through Xo and Xo„and choose a parameter 6t to

even an infinite number of closed null geodesics. It hap-
pens for example when the initial and the end points of a
closed geodesic are conjugated along it. A point which
allows more than one geodesic we shall call a singular
one. We assume that singular points are isolated.

The above proved results can be summarized as fol-
lows. In a multiply connected locally static spacetime M
with a nonpotential gravitational field, there exists a sys-
tem of hypersurfaces H„ formed by points through which
closed null geodesics with a winding number n pass.
Each Killing observer intersects each of these hypersur-
faces. At the nonsingular points the projection of H„on
8'along the Killing trajectories is a regular one. Follow-
ing Ref. 11 we refer to H„as to the "nth polarized hyper-
surfaces. "

Consider a nonsingular point of a polarized hypersur-
face. At this point it is possible to define two vectors k,~
and kf. a vector k,~ being a null vector tangent to a
closed null geodesic at its initial point X, and a vector kf
being the corresponding tangent vector at the end of the
geodesic, normalized by conditions

u„kI"=u„kf = —1, (4.7)

where u" is a four-velocity of a Killing observer at this
point. In a general case the geometrical properties of po-
larized hypersurfaces and of fields of pairs (kt', kg) de-
pend on the details of the spacetime metric.

According to the above arguments one may expect that
the renormalized stress-energy tensor (T„)""is diver-
gent near the nth polarized hypersurface H„~ In the next
section we argue that it does really happen and describe
the structure of the divergencies.

B. Asymptotic behavior of the renormalized stress-energy
tensor ( T„„)"'near the polarized hypersnrface

Now we show that the contribution T„" to the renor-
malized stress-energy tensor ( T„,)""defined by Eq. (4.2)
is divergent near the nth polarized hypersurface H„. For
this purpose we choose a nonsingular point Xo of H„and
consider a null geodesic C„ in M connecting Xo and
Xo„=—y„Xo. We assume that C„ lies in some causal
domain Q[C„], i.e., in a connected open set where any
pair of points can be connected by a geodesic and where
for any points p and q J+(p) A J (q) is a compact subset
of Q[C„], or void. The Hadamard function G' allows
the following expansion in Q[C„]:

g1/2G'(,X')=, , +U(X,X')inl~(X, X')
I4~~ o X,X'

a~(x„xo„) a~(x„x,„)
0 0

ax~ ' "' aX~0 On

(4.10)

Let X"=X"(X)be a null geodesic connecting Xo and
Xo„, k"=k "(X)=dx"/dX, and 7, be an affine parameter
along the geodesic [Xo"=X"(0),Xo„"=X"(A„)]; then

cr „=—A„k,„, 0- „.=A„kf„, (4.11)

where k ", =k "(0) and k ~f =k ~(A„). The value g k" is
constant along a geodesic. Thus we have

o(X,X„)=—A„(A"—1)g„(xo)k "5t . (4.12)

It should be stressed that an affine parameter k is
defined up to a linear transformation A, ~ck while the
value of A„k "does not depend on this ambiguity. We fix
the choice of the affine parameter by the condition

g„(xo )k"= —1, (4.13)

and fix the normalization of the Killing vector P by the
relation

g„(xo)P'(Xo)= —1 . (4.14)

For this choice 6t =5~, i.e., it is a proper time distance
from X to the Cauchy horizon along a Killing trajectory.
The spacetime metric ds in M is conformal to the metric
ds in M and the aSne parameter k in M is connected
with the aKne parameter k in M along the same null geo-
desic by the relation

d A, =cx dA, (4.15)

Thus we have

' 1/2
n dx dx (4.16)

where the integration is taken over a three-dimensional
geodesic in 8. By using these relations we can rewrite
Eq. (4.12) in the form

o (X,X„)=A„( A "—1)5t, (4.17)

where A„ is a "redshifted spatial distance" between x and
x„along a geodesic.

The leading (divergent at 5t —+0) part of T„" is of the
form

g1/2
T»(X) —

2 3 [Ct»CT ~+ o'&0'~
2 g»o'&o'~

12~ o (X,X„)
—

—,'(o„o +o„o )]

where

Q„(5t) 'K„.—, (4.18)

be so small that both points belong to Q[C„]. For a geo-
detic interval o (X,X„)between these points we have

o (X,X„)= —[g"(Xo )o. + A "P (Xo„)o.„]5t, (4.9)

where
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g1/2
n

12m. A„(A"—1)
(4.19a)

+k k" 'g—"—k k t'+ '(k—I'k'+k "k ')f l f T ip f 2 i i f f
= A "(kt'k +k k" 'g—l' -k kt')f i f p ip f

+ '(kI"—k + A "k"k')
l l f f

(4.19b)

In the latter relation we use null vectors k,~ and kf which
are connected with k"; and kf by k,I"=k,". , kf = A "kf
and which are normalized as follows:

e(X):—T„" (X)u~u

= —
—,'Q„(5t) [1+A "+A "(4+k; kIt')] . (4.20)

By using the inequality —2 ~ k; kfP +0 we can see that
the local energy density at the points lying just below a
polarized hypersurface H„(n )0) is always negative and
is divergent as a third power of a proper time distance to
the polarized hypersurface. For large n the leading term
of T„" is of the form

T"~ = 'Q„(5t) 'A'"kl"k- "-f f ' (4.21)

and it describes a Aux of null Quid with a negative energy
density.

V. SUMMARY AND CONCLUDING REMARKS

Now we summarize the main points of the present pa-
per. The general feature of locally static multiply con-
nected spacetimes is that the corresponding gravitational
field is nonpotential. In a spacetirne with X worrnholes
there are X independent topological invariants (2.10)
which give the measure of the nonpotentiality of the
gravitational field. If any of these invariants does not
vanish the spacetime allows closed null geodesics and it
may be considered as a model of a time machine. Closed
paths that begin and end at the same point form homo-
topically nonequivalent classes. In a spacetime with a
single wormhole these classes are characterized by a
winding number n. For a given winding number and a
spatial point x there always exist a closed null geodesic

k,I"u„=kf u„=—1,
where u" is a four-velocity of a Killing observer. If
( A —1) is small, then A„-nL, where L is a distance be-
tween the mouths. The Van Vleck —Morette determinant
b, „which enter Eq. (4.19a) can be found by considering
the behavior of a infinitely small beam of null rays emit-
ted at the initial point X. The estimations in the
geometric optics approximation give" b, „'~~—(b/L)J'"',
where b is a size of a mouth, and j (n) —n or (n + 1).

Equation (4.18) shows that T„" (X) (and hence
(T„„(X))"")is divergent at the polarized hypersurface
H„ in a locally static spacetime M with a nonpotential
gravitational field. The local energy density e(X) at a
point X corresponding to the renormalized stress-energy
tensor (4.18) is

with this winding number which begins and ends at the
same spacetime point (t,x). These points form the nth
polarized hypersurface H„. All the polarized hypersur-

faces are located above the Cauchy horizon H+ and
cross it along a common null geodesic. The renormalized
stress-energy tensor of free quantum fields in a locally
static multiply connected spacetime background is diver-
gent at the polarized hypersurfaces. For a massless field
in a four-dimensional spacetime this divergency is of the
form (4.18). This stress-energy tensor describes the flux
of energy density which is negative below the polarized
hypersurface and positive above it. The absolute value of
the corresponding vacuum energy density is of the order
-B„Pic /(L5r ),where 5r is a proper time distance to the
polarized hypersurface H„, L, is a distance between the
mouths, and 8„—(b/L)" ""+', b being a size of a
mouth. In the vicinity of the Cauchy horizon H+ (i.e.,
for large n) the renormalized stress-energy tensor de-
scribes null fIuid propagation. These results are in a com-
plete agreement with the results of Kim and Thorne. " In
a two-dimensional case all the polarized hypersurfaces
coincide with the Cauchy horizon H+ and

( T„)""= Pic/5r k„k—
where k" is a null vector tangent to H+. This result al-
lows the following interpretation. In two-dimensional cy-
lindrical spacetirne in the absence of the gravitational
field there is no vacuum energy fIux, while the Casimir
energy density is negative. Under the action of a nonpo-
tential gravitational field, this energy density begins to
fIow. As a result of blueshift effect the energy density of
this Aux grows and leads to the divergency of ( T~, )""
near the Cauchy horizon H+.

In the general case, the negative energy Aux due to the
vacuum polarization is directed to those wormhole's
mouth where the gravitational potential is less and it de-
creases the mass of this mouth. As a result, one may ex-
pect that the gravitational field becomes "more poten-
tial. " The negative mass which is falling into the mouth
infinitely grows as 6&~0. That is why its back reaction
might prevent the formation of the Cauchy horizon.

It should be stressed that the sign of the vacuum ener-
gy density may depend on the spin of a field. In particu-
lar one may expect that the contribution of fermions to
the energy density has an opposite sign than the contribu-
tion of bosons, so that in the general case the sign of the
total energy density depends on the number of fields of
different spins. If the resulting energy density is positive,
then the mass of one of the mouths grows and its gravita-
tional potential becomes less and less. This process may
be stopped by producing a black hole. In principle we do
not exclude the situation when there is an exact cancella-
tion of the leading contributions of all fields (as it hap-
pens for the vacuum energy density in Bat spacetime in a
supersymmetric theory). In the latter case one may ex-
pect that the divergency of the renormalized stress-
energy tensor becomes slightly more mild so that
( T„)""-B„Pic/(L5r ) but the mass transfer from one
mouth to the other again remains unbounded as 5v.~0.

The described result in some respect resembles the re-
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suit obtained by DeWitt, ' who has shown that a change
of spatial topology is always accompanied by infinite par-
ticle, and energy production, and if the back reaction of
the created matter is taken into account one may expect
the dynamical suppression of topological changes.

Until now we consider linearized quantum fields on a
given classical gravitational field background. Kim and
Thorne in their recent paper" argue that the quantum
fluctuations of a metric at Planck scales may remove the
singularities of (T„,)"". It may happen that the diver-
gencies would be cut off at c5r=lp, =(hG/c )'r . As a
result of this cutoff the absolute maximum value of(T„)""will be of order -(hc/lp, )(lp&/L), i.e., L/l

&p

times less than the Planckian density. The corresponding
total mass transfer does not exceed AM-b /GJ. A
more invariant cutoff at 6o =cL6~=lp~ is also possible
for which AM-M. Both these estimations look quite
reasonable, nevertheless for their proof one needs to
know the physics at Planckian scales.

We conclude the paper by the following remark. From
the very beginning it was expected that inside traversable
wormholes and time machines there must be energy con-
dition violations due to the quantum effects. But it ap-
peared that due to the vacuum polarization effect these
objects are internally unstable until the quantum gravity
cures this instability.
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APPENDIX

In this appendix we demonstrate how the expression
(3.42) for the Hadamard function in the spacetime of a
two-dimensional standard model can be obtained by us-
ing the representation (2.39), which in the case under
consideration takes the form

J (V )J (V++)
G'(X,X') =G '(X,X') — ln

(A3)

where

V„.= ln(g,' /g, )
1

27K

and

(A4)

J,( V)= + [I+2ecosh(2vrV)q "+q "],q= Z
n=i

82(~ Vl~)
J+(V)=

2qoq
' cosh(n. V)

where

1 i ilnq= lnA =
i~ 2~ 2mP

'

(A6)

(A7)

qo=Q (1—
q ").

n=1
(A8)

Using the properties of the 0 functions under the unimo-
dular transformations z —&z/r, r~ —1/r (Ref. 30) we
can write

8, (iV~r) =i(2mP)' exp( 2' PV )8, (—2nPV~2miP),
(A9)

8z(iV~&) =(2')' exp( 2' PV )84—(2mPV ~2vriP) .

It is easy to verify that

cosh(m-V+ )cosh(m. V + )

sinh(n. V++ )sinh(m V )

(0'++0-)(0'-+0+)
(0'+ —0+ )(0'- —0—)

(A10a)

V' + V' —V' —V' =,ln(g' /g' )»(g /g ).1

2772

(A lob)

By combining the relations (A6), (A9), and (A10), we can
rewrite Eq. (A3) in the form

(A5)

The quantities J,( V) can be rewritten in the terms of
the Jacobi 8 functions 8;(z):—8;(z, q) =8;(z~r):

8, (i V~ r)J (V)=
2iqoq

' sinh(~ V)

G'(X,X')= g G '(X,y„X'), (Al) G'(X,X')= Pin(g'+/g' )In(g+/g )
1

2'
where —ln

8, [Pin(g'+/g+)]8, [Pin(g' /g )]
84[Pin(g'+/g )]8~[Pin(g' /g+)]

G '(X,y„X')=— (k——~ "0'—)'(0+ —~ V+ )'
ln

4rr (g++ A "g' ) (g + 2 "g'+)

Equation (Al) can be identically rewritten in the form

(A2)

(A 1 1)

where 8,.(z):—8, (z, ~) and ~= exp( —2' P). This formula
does coincide with the expression (3.42a)

The representation (Al) for the Hadamard function
can be used for the calculation of ( T„)~". In particular
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] oo

8+8+6 '(X,X')=-
2m „(g+—g "g+)

(A12)

and for T+ given by Eq. (3.45) we obtain the expression
(3.47a) with

oo
1F(P)=

&
sinh (n/2P)

(A13)

The above proven identity of Eqs. (Al) and A11) guaran-
tees that the function F(13) given by Eq. (A13) coincides
with Eq. (3.47b).
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