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How does inAation isotropize the Universe?
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The lack of a preferred frame in the de Sitter metric leads one to argue that the end of inflation
should result in an inhomogeneous rather than a homogeneous universe. Statements to the contrary
have relied on scalar perturbation theory around an isotropic background. We show that to analyze
properly the problem requires the introduction of velocities, implying an inhomogeneous scalar field

P and minimally an anisotropic background. We find by both analytic and numerical calculations
that inflation does not isotropize the Universe in the short-wavelength limit A,R ((H . (R is a
typical scale equal to the radius of the Universe. ) However, if inflation persists A,R becomes larger
than the "horizon" H ' and the wave behavior freezes in. At this point all velocities go to zero
pointwise at a rate tanhP-1/R, where P is the relativistic tilt angle, a measure of velocity. For
periodic boundary conditions the periodicity forces the average tanhl3 to zero faster, —l/R . The
results are purely classical, showing that the invocation of quantum fluctuations is not the relevant
answer to the problem.

I. MOTIVATION

In a short paper Ellis and Rothman' (ER) pointed out
that because of the symmetries inherent in the de Sitter
metric, a de Sitter universe shows no preferred timelike
direction. One can, for example, write the de Sitter
metric in an exponentially expanding form (the
inflationary universe) or in a manifestly static form (the
original de Sitter model).

This being the case, the following question arises re-
garding the inflationary scenario: Suppose inflation takes
place and establishes a truly de Sitter spacetime. Then,
given the arbitrariness of the timelike direction, how does
a parcel of matter at point A know to have the same
four-velocity as a parcel of matter at point 8? It cannot
know, since the constant-time surfaces are arbitrary by
any action of any element of the de Sitter group of
isometrics. One can always perform a Lorentz boost to
an indistinguishable frame with a diFerent four-velocity.
In other words, since a de Sitter universe displays no pre-
ferred direction of time, the four-velocity of matter at any
given point is not uniquely defined. A de Sitter universe
has no memory (a point made clear when one considers
the manifestly static form of the metric).

Naively, then, one would expect that when inflation
ends, each primordial clump of matter would go its own
way and the universe would end up inhomogeneous, rath-
er than homogeneous and isotropic as inflation seeks to
establish.

An alternative way to view the problem is to recall that
the equation of state in a de Sitter universe is p +p =0;
that is, the inertial mass density vanishes. Therefore, ar-

bitrarily small perturbations of a given matter parcel
should result in arbitrarily large accelerations. Again,
the final product should be an inhomogeneous universe,
not an isotropic one.

The ER paper prompted a number of responses. The
first was that inflation does not establish a true de Sitter
spacetime. The inflationary equation of state is
p+p=P /2+p„~+p„~, which is not zero (as we shall
see below, this turns out to be the relevant response, at
least if quantum fluctuations are ignored). Alternatively,
there was the "wisp of a hair" hypothesis proposing that
p„z+p„„selects the new frame, despite the enormous
redshift during inflation. True, the energy density of the
radiation decreases as R, where R is the scale factor,
and the radiation density becomes overwhelmingly negli-
gible compared to the vacuum energy of the inflation
field. Nevertheless, when U (&1, the net drift velocity U

of a group of photons satisfies U -const when calculated
in an already homogeneous background (see Sec. IV
below), and given that the inertia of the inflation field
goes to zero in the de Sitter phase, it is conceivable that
p„z+p„z selects the new frame. However, we show in
this paper that the "wisp of a hair" hypothesis fails under
large enough inflationary expansion.

A third response invoked power-law inflation. Since a
de Sitter universe is not established, the problem is obvi-
ated. It was also pointed out that the perturbation
analysis has established that the de Sitter universe is
stable to perturbations, and so the question has already
been answered. Finally, there was the suggestion that
quantum fluctuations preserve the quasi de Sitter
memory. In the regime where quantum fluctuations are
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important, p+p =/&M, where /&M-H /(8m. P) for a
Coleman-Weinberg potential.

The variety of responses to the ER proposal suggests
that the true answer, if obvious, is at least not widely
disseminated. In regard to perturbation analysis, all such
investigations of which we are aware concern themselves
with scalar perturbations around an isotropic
Friedmann-Lemaitre-Robertson-Walker (FLRW) back-
ground. No velocities are involved. In terms of the last
two suggestions, we point out that quantum fluctuations
arise from the de Sitter spacetime and to a large extent
share its invariance properties (cf. Birrell and Davies ' ).
In the case of a system at the "top of the potential"
where the effective potential is exactly flat, the scalar field
is in fact massless. In this case, as Allen ' ' has shown,
the natural ground state obeys (P ) ~r —~o, where the
metric is —dH+e 'do . (P ) is thus not de Sitter in-
variant, but grows with time. This behavior does not
occur in the m )0 case where ( P ) is constant in time
and (P ) is de Sitter invariant in the Birrell-Davies vacu-
um. What is happening in the massless case is that ran-
dom fluctuations are walking away from the point /=0,
because there is no "restoring force" which in the m )0
case holds the field near /=0 via the presence of the
m P term in the Lagrangian. However, ( P ) is not ob-
servable when V(P) is independent of (P ), e.g. , when it
is Hat. It is the effective potential V(P) which describes
the self- and other interactions of the field P. To the ex-
tent that V(P) is completely fiat, the scalar field remains
physically and efFectively de Sitter invariant and cannot
specify a particular four-velocity by picking out a pre-
ferred timelike direction.

Regardless of the actual resolution to the ER proposal,
it behooves us to investigate velocity disturbances in the
inflationary scenario. Because the FLRW cosmology
does not admit velocities, an investigation beyond pertur-
bation theory requires going minimally to an anisotropic
background and an inhomogeneous scalar field P, as we
now demonstrate.

We take the usual stress-energy tensor for P,

and assume that the zero-momentum-density frame asso-
ciated with this stress tensor has four-velocity u . As we
show below [Eq. (3.10)], tanh/3—= u '/u o- To, where P is
the usual hyperbolic tilt angle from special relativity and
where we have assumed the velocity is along one axis
only (u =u =0).

One sees that to get a nonzero velocity for P, for g""
diagonal, requires To&0 or that P'%0. Hence
=P( tz) is inhomogeneous. (We take x'—=z.) For our in-
vestigation P is assumed to be initially sinusoidal, al-
though a sinusoidal P is not in any sense a stationary
solution to the spatially inhomogeneous wave equation
(3.3). The velocity u may be thought of as the group ve-
locity of the wave.

At first sight it appears from (1.1) that To&0 is possi-
ble for spatially homogeneous P, P=P(t), so long as
g '%0. However, if we considered a cosmology consist-

ing of a homogeneous space evolving in time but with
homogeneous nonzero g

' (nonzero shift), we would just
in fact be considering a time-dependent coordinate trans-
formation; we have not investigated this option further.

Some simplification of the problem can be achieved.
Certain Bianchi types do admit velocities or tilt angles.
The simplest of these is the locally rotationally symmetric
(LRS) type V, which is an anisotropic generalization of
the k = —1 FLRW model and which we describe more
fully below. In that case we can impress an inhomogene-
ous P field on an anisotropic, homogeneous background.
This will necessarily require averaging inhomogeneous
quantities, but saves us the difhculty of going to a fully in-
homogeneous model. Many of the results below are in
fact independent of the homogeneous background as-
sumed and can be imagined to take place in a FLRW
cosmology. Using type V allows us to include a kind of
averaged back reaction from the nonzero velocities. We
note again that in a type-V cosmology, a nonzero scalar
field momentum requires inhomogeneous P, and so only
by correct averaging is it consistent to take the homo-
geneous type-V background.

The general procedure is as follows: We consider a
one-dimensional inhomogeneous P on a LRS type-V
background. An initial velocity (tilt angle) is given to P,
and the system is evolved through the inflationary epoch.
We find that the velocities have a complicated behavior
as infIation proceeds, but do eventually go to zero if
inAation succeeds in carrying all the spatial variations
outside the "horizon size" H '. In terms of the above
discussion, inAation first carries all the spatial variations
in the scalar field outside the horizon. It then makes the
net photon drift irrelevant because, when the wavelength
exceeds the horizon size, the P and (P'/R ) terms in the
scalar stress tensor fall off slower than does the R be-
havior of the radiation field. When the quantity (P'/R )

gets small enough, then it and the P terms in the stress
tensor fall ofF no faster than -R, slowly enough that
they still dominate the radiation content. Hence the
"wisp of a hair" hypothesis cannot be said to hold. The
infIation eventually takes the net velocity to zero.

The suggestion is frequently made that one should
identify t =const with scalar field P =const. We have not
done so principally because this would make the
geometry very dificult to handle, even when it is possible
to impose such a gauge. (For strongly inhomogeneous
scalar fields, the defined surface may not be everywhere
spacelike). At any rate, the general coordinate invariance
of general relativity ensures we can work in the chosen
coordinate system.

Similarly, the results here do not in any way depend on
the surfaces of homogeneity of the background type-V
cosmology. Averaging across a region larger than the in-
itial horizon size allows the type-V model better to follow
the dynamics than would a homogeneous-isotropic
(FLRW) model which could not in any way be made con-
sistent with velocities.

Moreover, this is a completely classical result which
has nothing to do with quantum fIuctuations. We justify
these claims with both numerical and analytic calcula-
tions in the sections below.
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II. BACKGROUND METRIC

8~To

3a[(8m.T'/6a) —8mTv/3+a2/X ]' 2
(2.2)

which measures the importance of shear in the geodesic
normals. If A, '(0, we will get the correct behavior, i.e.,
asymptotic FRW evolution. For a radiation Quid
(p=3p), we have Ti =4pv u'X, where p is the fiuid
pressure and v ~1, and v' are the two nontrivial com-
ponents of the Quid four-velocity related through the nor-
malization v u = —1 as v'=+[(u ) —1]'~ /X. For nu-
merical work it is important to realize that v

' ~ 0 implies
that a & 0 is required to obtain A,

' &0. Hence only certain
parameter choices evolve to asymptotic FRW behavior.
(For our numerical work we set a =1.)

The independent Einstein equations for the metric (2.1)
are

For the background we choose the E.RS type V. In a
synchronous coordinate frame the metric may be written
in the diagonal form

d$2 = dr 2+X2dz2+ Y2&
—2az(dx 2+F2)

Since goo= —1 and go =0, the coordinate t measures
proper time along the geodesics normal to the spatially
homogeneous hypersurfaces of simultaneity. These coor-
dinates, ho~ever, are not necessarily comoving with the
Quid since in tilted cosmologies the perfect-Quid vector v
does not parallel the normal vector n—=B/Bt. The con-
stant a in Eq. (2.1) defines the scale of spatial curvature.

2a
—2P+ 2 2a 2J +Note that X is analogous to e e + and Y =e e +

in the Misner notation for the LRS case (P =0). The
qualitative R of the previous discussion is a typical X or
Y.

If the only source of matter has p & 0 (particularly if it
is radiation with y =—„then there are two qualitatively
distinct types of evolution: The first evolves from a cigar
matter singularity and expands forever without isotropiz-
ing (matter lines become null at infinity), and the second
evolves from a timelike conformal singularity and ap-
proaches isotropy (FLRW) at large times and possesses a
Cauchy horizon. Here we consider only the latter cases,
since they are the ones which lead to an observationally
consistent cosmology. The critical parameter responsible
for the two different behaviors is

one gets a quadratic equation involving only the variable
Y, which has the solution

Y
Y

SmTo, 0 2 0 1/2
Sm.T, Sm To +

6a X
(2.4a)

Also, from (2.3b},

SmT, Y+—
X Y

(2.4b)

v =(u, v', 0,0) . (2.5)

With (2.5) the nonvanishing components of the perfect-
Quid energy tensor

Tp =(p+p )u vp+pgp

become

(2.6)

Tv„= —4p(u ) +p,
T,'„=4pX (u')z+p,
To —4pv Ov 1X2

T2» —T3„=p

(2.7a)

(2.7b)

(2.7c)

(2.7d)

Here the subscript r denotes radiation. The tensor com-
ponents must satisfy the energy- and momentum-
conservation equations T ~;&=0. The energy equation
(a=0) is

(p+p)(v )' —p+(p+p) 2voo +(vv)' —+2—02 X Y
X Y

+(u') XX—2au u' =0,

(2.8a)

and the only nontrivial momentum equation (a =3 ) is
r

Equations (2.4) and the matter-conservation equations
are the only equations that need to be solved. We consid-
er only the cases in which the universe is expanding,
which requires the positive root in Eq. (2.4a).

Our model contains two forms of matter as sources to
the Einstein equations: a radiation fiuid (y= —, ) and a
scalar field P. First, we discuss the radiation. In the
frame of Eq. (2.1) the four-velocity is chosen to be

and

Y X Y a—2——+3 =Sm TooY' XY

2a +2a =87TT
Y X o
Y X

(2.3a)

(2.3b)

(p+P)u'u'+(p+p) v'u '+u'u '+3u'v'—01X
X

01Y+2v u' ——2a(u') =0 .
Y

(2.8b)
where we have used an overdot to mean time derivative.
Equations (2.3) are the mixed (Go) and (G i ) initial-value
equations, respectively, containing only first-order deriva-
tives. They are all we need to solve for the LRS type-V
geometry. We may simplify these equations further by
multiplying (2.3b) by Y/(aY) and adding the result to
(2.3a). This eliminates the cross terms (XY)/(XY}, and

C3vo
C4

(2.9a)

Substituting for the case of radiation (p=3p ) and rewrit-
ing (2.8a) by using (2.8b) to eliminate the explicit appear-
ance ofp and p in the equation for v gives
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where

4 (2u'v '+ c, ),
4(v ) —1

(2.9b) (3.4a)

(3.4b)

X Y v'
c =3—+2——2aX

X 4c

4(u ) —1

8v'
4(u )

—1

1

0

v'
(u ) —1

c, =(u ) —+2—+(u ') XX—2u v 'a, (2.10a)

(2.10b)

(2.10c)

(2.10(l)

T2 -T3
2$ 3s

=( T'„&

& V(~)&
2X

(3.4c)

(3.4(l)

In addition,
where the notation (f(z) ) is introduced for the spatial
average of f(z) defined as

I(uo)2 1 jl/2

X (2.11) f f(z)dz
(f(z)) =

dz
(3.5)

is derived from the normalization condition v U = —1

and (assuming a )0) has the correct sign for asymptotic
FRW behavior.

III. SCALAR FIELD AND VELOCITY

The scalar field is described by the tensor (1.1). The
inflationary potential is chosen as

V((j))=(r(P' —P';„)'/2 . (3.1)

Explicitly writing the nonvanishing components of the
stress-energy tensor for a one-dimensional space (we con-
sider inhomogeneities along the z axis only) gives

The complete solution of the tilted LRS type-V metric
(2.1) with uncoupled radiation and scalar fields is given
by Eqs. (2.4), (2.7), (2.9)—(2.11), (3.3), and (3.4) with the
total-energy tensor given by T"= T",+ T",. By "uncou-
pled" we mean there is no microphysical interaction be-
tween the two sources. They interact only gravitational-
ly, and their energy tensors are separately conserved.

As mentioned in Sec. I, we measure the velocity by the
tilt angle. The tilt angle is defined as the hyperbolic angle
of rotation needed to diagonalize the mixed energy tensor
in the orthonormal frame oriented along the x,y, z, t
directions. The energy tensor in the orthonormal frame
is written as

—V((t ),
2X

2 & 2

V(~)2X2

(3.2a)

(3.2b)

(3.2c)

T"=
V

T T 0

T0 T, 0

0 0 T2 0

0 0 0 T3

(3.6)

2 I—T3 —0 0 V(y)2s 3s 2 2X2 (3.2d)

where the subscript s is used to denote the scalar field and
we have used a prime to denote differentiation with
respect to z. Taking T" . =0 gives the partial differential
equation

where a tilde represents components in the orthonormal
frame. Since the metric (2.1) is diagonal and we are
transforming a mixed tensor, we have the simple result
T = T& for a=13. The only components affected are thep p -0 0off-diagonal terms which have the form T] =T~/X and
TO=XTO. The eigenvalues for the submatrix (0, 1) of
(3.6) are

2Y+ X 2a(t' ()V
Y X X' ()(t

(3.3)
Tp+ Ti +—[(T' —T ) +4TOT ]' (3.7)

for both the momentum and energy equations. Our de-
velopment of the Einstein equations for X and Y assume
we are dealing with a spatially homogeneous universe,
but we have explicitly considered an inhomogeneous P
field. To reconcile this difference we assume that the
average energy content of the spacetime is the source for
the Einstein equations. We define average energy-tensor
components for the scalar field as

with eigenvectors defined by the equations

(Tt —
A, +)u +T,u'=0,

Tou + ( T', —
A,+ )u ' =0 .

(3.8a)

(3.8b)

Equations (3.8) give the equivalent expressions for the tilt
angle:
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or

u'
uQ

TQ k+
TQ

1

(3.9a)
to the inertia of the scalar field. It will turn out that the
overall 1/X factor in (3.16) is crucial in determining the
behavior of the velocity.

IV. PERTURBATIVE EQUATIONS
1

00

TQ

T$ k+
(3.9b)

Here

2TQ

T —T +[(TI—To) +4T0T, ]'
(3.10)

T", =T"„+( T", ) (3.1 1)

includes both the radiation and scalar fields such that us-

ing (2.7) and (3.4) for the energy-tensor components gives

T', —To=(P )+ +8p(v )
—4p,((~ )')

(3.12)

In Eqs. (3.9) we have used the notation P to mean
P—:tanhP, where P is the usual angle of tilt. Note that
/3~0 when TO =0. In this limit A, + = T', and

=T, &0. We therefore choose the smallest eigenvalue
with eigenvector defined by (3.8) as the only combina-

tion producing the correct result for the case of vanishing
tilt.

Substitution of (3.7) into (3.9a) using A, gives the gen-
eral expression

The calculations presented in this paper were stimulat-
ed by a derivation which shows that the tilt angle in the
radiation Quid approaches a constant as the universe
inAates. This may be seen using perturbative methods
and denoting deviations in the four-velocity by
(v ) =1+e, where e «1. The zeroth-order solution is
obtained from (2.9) and (2.10) by ignoring terms propor-
tional to e and to 1/X since X~~. In addition, we have
the late-time approximate relations

X Y—=—=—H-const,
X Y

(4.1)

in the inAationary regime, which show that X, Y-e
With these simplifications and noting that from (2.11)
v'=e/X «1, Eqs. (2.10) reduce to c, =H[4(v )

—1],
c2=5H, c3=0, and c4 —+ ~, yielding u =0 and u =1,
corresponding to the isotropic case with zero tilt. Equa-
tion (2.9b) for the pressure then has the solution

p =pQe ', which shows that p —X
Corrections from terms due specifically to the type-V

geometry modify the evolution of the four-velocity and
pressure. In this case we keep terms proportional to e
and write, for (2.10),

T& Y'Y' 4 0[( 0)2 1]1/2(j~)
0 X Pu (3.13)

c, =4H(v )
—H —2v v'a,

2av
c2 =5H-

Q
7

(4.2a)

(4.2b)

T & TO — Y'Y'
4pv 0[ ( v 0

)
2

1 ]
1/2(j~)

0

Note that, for radiation only, we have the result

P [(v0)2 1]1/2/vO

(3.14)

(3.15)

and

2au

v [4(v ) —1]

8u'
C4=

4(v )
—1

1

0

0

(v ) —1

(4.2c)

(4.2d)

and for the inhomogeneous (not averaged) scalar field

alone we have
At this point the only approximation is Eq. (4.1). With
v'=e/X and using the further approximation that e « 1,
we have c3=2ae/(3X) and c4= —e, which together
give, for (2.9a),

which depends on both time and space. If P/(P'/X) & 1,
then Eq. (3.16) becomes

~ 0 . 2a E'

V E6
3X

Equation (4.3) has the solution (using X ~ e H')

(4.3)

~1,
P'/X

while if P/(P'/X) ) 1,

P'/X (

(3.17)

(3.18)

1

eo
' —2a /3HX

(4.4)

which quickly approaches a constant ( =eO) for large X.
Perturbative modifications to the pressure at this lowest
order are, from (2.9b),

so that the tilt is always bounded by the speed of light.
We do see, however, the possibility of tilt growing
momentarily to the speed of light. Equations (3.10) and
(3.16) have no appearance of the potential V(P); it is only
the deviation from the de Sitter behavior that contributes

p 8am

p 3X

with the solution
—4Ht —(8a e) //(3HX)

P PQe

(4.5)

(4.6)
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The radiation tilt (3.15) to lowest order is given by

(4.7)

which, according to (4.4), approaches a constant ex-
ponentially as the universe inflates (X—+ ~ ). Hence
inflation cannot remove the tilt in the photon field. The
density in the photons goes to zero as X -e ', how-
ever.

We now investigate the scalar wave equation (3.3) and
the behavior in the tilt when both radiation and scalar
fields are introduced as sources of matter. Perturbative
methods are used to obtain approximate solutions to (3.3)
for the scalar field P near $-0, where the potential is
very nearly flat. Linearization of (3.3) around /=0 re-
sults in

+P 2—+—+ —2aP=O,
~ P" . Y X 2ai}I'

X' » X'

where, because P«1, we have approximated av/ay
= —2o P to first order in P. In what follows we will con-
sider solutions to the zeroth- (BV/BQ=O) as well as the
first-order equations [the zeroth-order differential equa-
tion is just (4.8) without the term —2crg].

Now, from (5.5),

ik k
HX X (5.6)

and

k
X X (5.7)

VI. LONG-WAVELENGTH TILT BEHAVIOR

A. Zero- and Srst-order so1utions

To derive approximate long-wavelength frozen-in Auc-
tuations, we assume that P in Eq. (4.8) has the periodic
form

Hence, in this WKB limit, the tilt is constant [cf. Eqs.
(3.17) and (3.18)], and inflation does not remove the ve-
locity. However, if inflation persists, the requirement for
validity of the &KB approximation fails, because X
grows and eventually k/X & H. In that case the wave be-
havior will become frozen in and the solution can no
longer be described as "high frequency. " We investigate
such behavior now.

V. A UNIVERSE WITH HIGH-FREQUENCY WAVES
DOES NOT ISOTROPIZE DURING INFLATION /=$0(t )+c(t)sin[co(t)+kz] . (6.1)

It is possible to solve Eq. (4.8) during inflation
(H =const) via the WKB approximation in the high-
frequency regime. We take short-wavelength ripples in
P, so that for these high-frequency waves the BV/BP
term in Eq. (4.8) can be neglected. (However, the homo-
geneous background is still potential dominated so that
inflation takes place. ) Then

Y XC+C 2 +
Y X

k+c 6) 2cT =0,
X

(6.2a)

Equation (4.8) is linear, and so $0(t) evolves independent-
ly of the c(t) terms. Inserting the ansatz (6.1) into (4.8)
and equating the sine and cosine terms independently to
zero leads to

3Ht/2
( t) ikz—

where u solves

+2jak 9H9+0 =0.

(5.1)

(5.2) and

Y X c 2ak
co+co 2—+—+2 + —0,

Y X c
(6.2b)

k 2+2iak
X

9H
(5.3)

of the undifferentiated term in (5.2), approximates

We see that u will be oscillatory in time so long as k/X
exceeds approximately 3H/2, that is, so long as the phys-
ical wavelength is much smaller than the "horizon" size
-H '. The coe%cient

~ ~ 0 Y X
(('i +P 2—+——2crg =0 .

Y X 0 (6.2c)

c+c 2—+——ca) =0,Y X
Y X (6.3a)

The zeroth-order equations for (() (obtained by simply
dropping terms involving o ) reduce in the inflationary re-
gime to

2 k
X2 2a

Oe
(5.4) 6+m 2—+—+2— =0,Y X c

Y X c
(6.3b)

(Xo=const), in such a situation, and the WKB approxi-
mate solution is then

e Hie ik liHX)eikz— (5.5)

Although the two directions of propagation are different
because of the aP in Eq. (4.8), in the high-frequency limit
the propagation is the same for both directions.

and

~ ~ Y X
po+iI)0 2—+—=0, (6.3c)

by ignoring terms ~1/X since X~00. This amounts to
ignoring spatial gradients and is appropriate after a long
period of inflation. Equations (6.3) are exactly solvable.
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They admit the first integrals

D
XY2c 2

(6.4a)

inflationary limit (4.1). In addition, since both X and Y
are very large, we can ignore terms proportional to 1/X,
thus reducing Eqs. (6.2) to

and

XY
(6.4b)

c+3Hc —c(cI~ +2o )=0,

co+N 3H+2 — =0,
c

(6.11a)

(6.11b)

. 2 1 D
c K—

X Y c
(6.4c)

and

$0+3HQO —2opo=0 . (6.11c)

1 2= 2

(Kc D)'~ — XY
d(c )= dt, (6.5)

where D, E, and IC are constants. The solution to (6.4c) is
found by multiplying both sides by c and taking the
square root to give

Equation (6.11b) is unchanged from the zeroth-order
solution and admits the first integral given by (6.4a). It is
evident that ~~0 as the universe expands, thereby
"freezing" any spatial inhomogeneities. This allows us to
derive simple approximations to Eqs. (6.11) as

which has the solution

c= +K IK XY
(6.6)

C =Cpe+

e&',

CO
—COp,

(6.12a)

(6.12b)

(6.12c)

and is solved once the behavior of X and Y are known.
To find X and Y; we note that, during inAation, the
matter source terms in the mixed energy tensor are po-
tential dominated, thus allowing us to simplify Eqs. (2.4)
to

X Y
X Y

1/2
8wT,'

1/2
8~V(/=0)

3

1/2
4~o P

(6.7)

which, as already noted, has for solutions X=Xpe ' and
Y= Yoe ', where H= ( v4r Po;„ 3/)' . Substituting (6.7)
into (6.6) gives

where co $00 aild cop are constants and where

+ —[(3H) +8o]'3H 1

2 2
(6.13)

i-p i 1 -2 1.2 1 2. 2 1 ck ~min
K Toq / fo C C ci)

4 4 4 X2

represents the dominant or growing mode solution only.
The lesson from Eqs. (6.1)—(6.12) is that, if the spatial
gradients can be ignored (e.g. , if the spatial scale is longer
than the horizon scale), then each point in space evolves
separately and independently as a homogeneous cosmolo-
gy

Now to ascertain the behavior in the tilt angle (3.10)
for these zeroth- and first-order solutions, we compute
the averaged energy tensor of the combined radiation and
scalar fields T& = T&, + ( T&, ). The appropriate aver-
aged energy-tensor components assuming ~P ~

&&P;„are

2F
K 9H'X'Y4 3HXY' (6.8)

where F is another constant of integration. Solutions for
$0 and co are now found to be

( To
1s

(6.14a)

(6.14b)

D
CO 6)p

3HXY c

3HXY

(6.9)

(6.10)

2X
2 2

(T )=—iI)+ —c +—c & +—1 2 1-2 1 2. 2 1 c k
1s 2 p 4

4o %min

2

(6.14c)

(6.14d)

with coo and goo as constants of integration and
cp =KF2+D /K, and where we have included only the
lowest-order terms in the solution (6.9). In this zeroth-
order solution, it is evident from (6.8)—(6.10) that c, co,
and $0 approach constant values in the inflationary re-
gime.

We now consider first-order solutions to Eqs. (6.2) with
o.%0. Equations (6.2) can be simplified using the

From these

(6.15)

kT'T = — — +4pu [(u ) —1]'
2X

(6.16)

~ 2 2 ~ 2 2k 2
T' —T =tII~+ + + +Bp(u ) 4p, —

1 P
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Tl 4 0(( 0)2 I ]
1/2 (6.17)

3 +3HA —3 +2o =0 .
X

(6.21)

The zeroth-order case exhibits the following behavior:
(T, —T0)—1/X, T0T, —1/X, and T0 —1/X . The
averaged tilt then vanishes as f3- I /X . Similarly, for the
first-order solutions: ( T I

—T0 ) —e ~', T0T I
—1/X, and

Tp —1/X . Since e +'(&X=e ', the tilt is seen to go to
zero very rapidly as P- I/X . Although the radiation
tilt (4.7) is constant during inflation, the tilt with radia-
tion and scalar fields together vanishes as the universe
inflates. This is due to the fact that the radiation contri-
bution to the energy tensor diminishes as p —1/X and
eventually becomes negligible compared to the ())t and
(P'/X ) scalar field terms.

For b /X « 2o we have the same solution derived
above, namely, A = A0er' with g defined by Eq. (6.13).
Alternatively, we can take the usual inflationary limit
and neglect the 3 term to give

(6.22)
1 b +203H, X'

which has the solution

2o. t/(3H) —b/(6H X )
pe (6.23)

A general solution for (tt in this regime may therefore be
written as

B. Effect of boundary conditions
2trt/(3H) —b/(6H X ) [a+(a +b) ]z—&pe e (6.24)

The rapid disappearance of the average of P across the
grid is not only a result of inflation, but of the choice of
boundary conditions (open versus closed universes). To
understand this, note that once infIation takes place and
X and Y are sufFiciently large, the spatial variations
"freeze" in time and so we can write a general solution to
the linear equation (4.8) for P in separable form
ttt=A(t)B(z). (This result is analogous to (ted

—+0, de-
scribed above; it merely freezes a phase shift into the spa-
tial profile. ) Substituting the separable form into the ex-
pression ( PP' ) gives

(j2) dy2+2e2+t

(y~ 2) =dy~22e2Xt

(6.25a)

(6.25b)

where (I)0=A0B0. The solution (6.23) for a sufficiently
inflated universe (X~ 0() ) approaches that given in (6.12)
for the applicable case o. (H . We thus use (6.12) for the
time part of P.

To analyze behavior in the tilt angle, it is once again
necessary to compute the averages

( jy & =( ABAB &
(00' & =d44pe"' (6.25c)

=AB(BB')=
(
— B') . (6.18)

where p=a+(a +b)'/ and d is the spatial average of
B /B0 in (6.20):

Sollltioiis to tile spatial palt of ttt ale

[a+(a + b ) ]z
0 (6.20)

Note that solutions may be exponential as well as
sinusoidal, depending on the sign and relative difference
of the constant b with the scale of spatial curvature a.
Since we just discussed sinusoidal solutions above, we
now concentrate on the exponential cases.

The time part of P satisfies

This last expression shows the spatial average of a total
space derivative of B . Implicit in the ansatz (6.1) is a
periodicity of the solution along the z axis. Because B,
and therefore B, is periodically identified over space, the
spatial average of its derivative necessarily vanishes. This
has nothing to do with inflation per se,' it assumes only
that (t) is periodic and can be written in separable form.

To examine the tilt behavior with an ansatz not period-
ically identified, we again assume ttt= A (t )B(z) and sub-
stitute into (4.8) to get

B'
B BX +3 HX —2o.X = —2a =b =const .

(6.19)

dZ 2pL
d=

J' dz 2pL
(6.26)

where L, is some coherence length along the z axis. Note
now that (ttttt))t') does not vanish as it did in the periodic
case. Substitution of (6.25) into Eqs. (3.12)—(3.14) gives
(T', —T0)—e +', T0TI —e ~'/X, and T0 —e +'/X. The
averaged tilt (3.10) for this case vanishes exponentially as
P-I/X, and this behavior is due entirely to inflation.
From Eq. (3.16) for the tilt in the inhomogeneous scalar
field, we see that the ratio of quadratic functions appear-
ing inside the large parentheses is essentially constant
during inflation and it is the factor 1/X outside the large
parentheses which forces the tilt to zero.

Inflation does remove velocities when quantum fluctua-
tions are ignored. The behavior of the tilt requires that
spatial gradients be significant, if tilt is to remain substan-
tial. In our assumption of homogeneous background, we
guarantee that a wave decomposition in z is valid. The
physical wavelength is not the constant A.„however, but
is proportional to X-e '. Eventually, XA,, ) 1/H, where
H is the Hubble parameter during inflation. Hence, even
if P'/X exceeds (t initially during evolution, we are cer-
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tain that once Xk, )H ', the wave freezes in and P'/X
thereafter decreases; the tilt angle or velocity then goes to
zero. During the time that the inflation fluctuations are
short wavelength enough to act like photons, the tilt an-
gle stays large. Once they move outside the horizon,
however, fiuctuations in P act like any other inhomo-
geneity: Their wavelength continues to increase exponen-
tially until their tilt goes to zero. We now proceed nu-
merically to justify the above claims.

VII. NUMERICAL RESULTS

J
dt ydX

XX
' (7.1)

where X is defined by Eqs. (2.4) with X/X= Y/Y and
TO TO

0 Or

2
X

(7.2)
a
X 3

I p 4p(v')']—

Assuming that v =1 and v =0, Eq. (2.9b) gives for the
pressure p=poX, with po a constant. Substitution of
this result into (7.2) yields

1 /2
8~POX= a+
X

(7.3)

In setting up a numerical grid for the discretization of
differential equations, it is necessary to define spatial
scales in reference to some characteristic length such as
the horizon size. The horizon is approximated as the dis-
tance a photon propagating along the z axis travels since
the initial singularity in the isotropic version of the
metric (2.1) in a radiation-dominated universe. The sca-
lar field is neglected in this calculation because in order
to evolve data from the start of inAation to its natural
end, radiation-dominated initial data must be supplied so
as to let the expansion dynamics evolve on its own into
an inflationary model. We therefore assume that the
cosmological history prior to the start of any of our simu-
lations was approximately radiation dominated. The hor-
izon size is written as

We present numerical solutions to a number of
different cases using both periodic and nonperiodic
boundary conditions. Periodic boundary conditions are
applied simply by introducing two dummy zones on ei-
ther side of the grid and identifying them with the ap-
propriate zones within the grid. For the nonperiodic case
we linearly extrapolate P beyond the grid edges by setting
the value of P' on the edges equal to a constant which is
determined internally after solving (3.3). This effectively
projects the solution for P linearly along the tangent
direction defined by P' at the zone boundaries. One
might object to the use of nonperiodic boundary condi-
tions in solving the scalar wave equation. In particular,
any solution we obtain must satisfy ( T" „)=0 .for con-
sistency. As we have defined our averages by (3.5), this
condition is satisfied so long as the field P solves Eq. (3.3)
across the entire grid, including the dummy zones used
for the boundary conditions. The one such example
presented in Fig. 6 satisfies this condition trivially since
one has homogeneous inflation at the zone edges, thus al-
lowing Eq. (3.3) to be solved on the dummy zones by set-
ting P' =P"=0.

For all figures presented in this paper, the z axis runs
from left to right and time increases as one looks from
the back to the front. The viewing angles chosen for
Figs. 1 —6 were found to provide the clearest representa-
tion of the tilt behavior despite the foreshortened distor-
tion of the z axis which is resolved with 150 zones in all
cases. We have taken as initial data four-velocity
U =1.001, pressure p =0.001, and spatial curvature scale
a = 1, and we set o =0.01 and the constant P;„=1in the
scalar potential. Also, two additional variables a and /3+

a —2P+ o.+P+
are introduced such that X=e + and F=e + in
keeping with the Misner notation. All our simulations
begin with tz = 1 and P+ =0.

P = 0.14

X dx
o (a X' +8irpo)'~

(a X + 8irpo )' +aX1
ln

a V'8~po
(7.4)

which in turn is used in (7.1) to provide an estimate of the
horizon size:

t =25

1

K)III, ~~r

z =0.7

The grid length I in our simulations is chosen to be
some fraction of the horizon, I. =rL&.

We discretize the scalar wave equation (3.3) using a
fourth-order center difference scheme. For a grid of n

nodes, this results in n coupled second-order ordinary
differential equations (ODE s) in time (one for each node).
The resulting ODE's are then rewritten as 2n+4 (four
additional equations are needed to solve for X, Y, u, and
p) coupled first-order equations and are integrated with a
fourth-order Runge-Kutta method.

FICr. 1. Plot of /3 across the grid using high-frequency pulse-
wave initial data [Eq. (7.5)] with periodic boundary conditions.
The pulse splits into two oppositely traveling pulses. Several
traversals of the grid by the pulses are seen. The tilt in the
pulses does not decay until inflation succeeds in carrying the
wavelength "outside the horizon. "
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XP = 4.1

z= 1

z= 1

& = 50

FIG. 2. Plot of XP across the grid using sine-wave initial
data [Eq. (7.6)] with periodic boundary conditions and solving
the linear scalar wave equation with V =o. /2 and
BV/BP= —2o.g. Here the universe has inflated to a=12 at
t =50 and P(z =0)=0.08.

FIG. 4. As in Fig. 3 except here we follow the evolution for a
longer time as P(z=0) rolls down the potential wall and oscil-
lates a few times inside the well. Hence the universe has inAated

to a=27 at t =200.

We show the tilt behavior of a universe with initially
high-frequency waves in the form of localized pulses in
Fig. 1 where we plot the spacetime evolution of P includ-

ing both radiation and scalar fields: T& =T&„+T&, . The
initial data used for the scalar field are in the form of a
Cxaussian wave packet:

(7.5)

where go=0. 01, /=0, c =0.001, b =20/L, and L =0.7 is
the grid length. This pulse splits subsequently into a
rightward and leftward traveling pulse. The horizon, as
we have defined it (7.4), is initially LH =1.6 and is much
greater than the pulse half-width. In this WKB limit, for
which the physical wavelength is much smaller than the
"horizon" size, the tilt is nonvanishing within the pulse
and settles to a constant. Note that the pulse propaga-

XP =42

z=1
z =0.1

t=5 t=5

FIG. 3. As in Fig. 2 except here we solve the scalar wave

equation with V=o(P —1)2/2 and BV/B$=2crg(P' 1). The-
results are essentially identical to those of Fig. 2.

FIG. 5. As in Fig. 3 except here we use high-frequency per-
turbations (Lg =0. 1 &Lq ). Tilt is essentially constant until the
wavelength exceeds H
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p=6.2

z =10

lllulfljllP '. I II
' 'tl J~ I ltHXI I

~ WLI

FIG. 6. Plot of XP using ramped initial data defined in (7.7)
with nonperiodic boundary conditions.

tion in the two directions is different, because the wave-
length is not short enough to make the aBQ/Bz term
completely negligible. However, if inflation persists as it
does in Fig. 1, the WKB approximation fails and the
wave behavior freezes in as the tilt is driven to zero. This
is our clearest example that field velocities associated
with short wavelengths do not decay away (in fact, they
may increase), but as the wavelength exceeds H ', the
tilt does decay away.

In Figs. 2 —6 we display the spacetime evolution of the
quantity X/3 including both radiation and scalar fields.
The factor X removes the dominant late-time decrease
and allows plotting p. We have taken as initial data
four-velocity U =1.01, pressure p =0.01, and spatial cur-
vature scale a = 1.0, and we set o. =0.01 and the constant
P;„=1 in the scalar potential. The horizon as we have
defined it [Eq. (7.4)] is initially the same (L& =0.68) for
all following cases.

Figures 2 —5 are solutions Xp for initial data of the
form

2'
P =$0+c arctan z n— (7.7)

with go=0. 01, c= —0.001, $0=0.01, the number of
zones n =150, and the grid length L =10. This form was
chosen as the simplest which is not periodically identified
and which is Aat at the grid edges so that one has homo-
geneous inAation at the zone edges, thus preventing any
ambiguous boundary effects from entering the problem.
In Fig. 6 we have a —12, P„=0.12, and P, =P-10
and its average vanishes as —1/X because there is no
periodicity to force the average to zero.

down to i/i(z=0) 0.08. The radiation tilt at the final
time is equal to p„=0.12 and is constant during infiation
as predicted. The averaged scalar tilt has the same value
as the combination (radiation plus scalar field) tilt—10 ' and both vanish as —1/X as predicted by our
analytic work. Note that, although the spatial profile of
/3 vanishes as X ', the averaged tilt goes to zero much
faster as a consequence of averaging over a periodically
identified grid. Our results clearly indicate that the be-
havior is dominantly linear, and we do not anticipate that
the nonlinearities wi11 alter our basic analytic results. In
Fig. 4 we follow the evolution into the bottom of the po-
tential well for a few oscillations. Now a=27 at t =200
and P„remains at 0.12. The averaged tilt angle oscillates
about zero with amplitude —10

Figure 5 shows results for the same initial data [Eq.
(7.6)] as Figs. 2 —4 except that here we consider distur-
bances of higher frequencies. The grid length is
L =0. 1 &L&. The results are essentially the same. Ini-
tially, the tilt does not decrease, but eventually the wave-
length exceeds H ' and the tilt decreases (pointwise) like
X '. The universe at the latest time plotted has inAated
to a-12. The radiation tilt p„ is constant and equal to
0.12. The averaged scalar and combination tilt angles are
—10 ' and vanish as —1/X . The difference in the
high- and low-frequency cases is that the high-frequency
perturbations propagate across the grid a number of
times with essentially constant tilt amplitude before their
spatial profiles freeze during inflation.

One final case is presented in Fig. 6. The initial data
are of the form

P =$0+ c sin( co+ kz ) (7.6a)
VIII. CONCLUSIONS

$=$0+c sin(ro+kz)+coi cos(ro+kz), (7.6b)

where go=0. 01, c=0.001, go=0. 01, and ro=ro=c =0
with periodic boundary conditions and with k=2~/Lg.
Figures 2 and 3 both have a grid length Lg =1 &Lh. The
only difference in the two graphs is that Fig. 2 shows
solutions to the linearized equations with V(i/i) =a /2 and
t}V( P ) /t) P = —2o P, while Fig. 3 solves the fully nonlinear
scalar wave equation. The results are virtually identical.
In both cases the universe has inAated to n —12 at t =50
(the final run time) and the potential at z =0 has rolled

We have investigated behavior in the tilt angle for a
one-dimensional inhomogeneous P field on a LRS type-V
background. Qur results show that the velocities eventu-
ally go to zero as inflation proceeds to carry all spatial
variations outside the horizon. This is a classical result,
and we have not pursued the interesting question of
whether the presence of quantum fluctuations leads to
wave fields with net tilt, i.e., net velocity.

One might object to our approach on the basis that the
inhomogeneous P field superimposed on a homogeneous
background represents a bastard model. A fully inhomo-
geneous model should be explored, but because our
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averaging was done component by component, we do not
anticipate different results.

Finally, the investigation shows, once again, the neces-
sity of carrying out computations in nonstandard cosmo-
logical models to verify the utility of inflation.
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