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Quark-hadron phase transition of the early Universe in the nontopological soliton model
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Based on the nontopological soliton model, we discuss the quark-hadron phase transition of the
early Universe in the hot big-bang model. We extract the parameter spaces which are relevant for
small supercooling of the phase transition and the inhomogeneous nucleosynthesis. In particular,
we explore the possibility that the early Universe is a cold universe filled with very dense and degen-
erate baryons. This cold universe is then reheated by the latent heat released from the quark-
hadron phase transition. Without fine-tuning any parameter in the soliton model, we find that a
typical potential in the model would dilute the dense baryons to an acceptable baryon asymmetry of
the Universe. We also discuss the generation of density Auctuations during the phase transition in
the cold universe.

I. INTRODUCTION

In the hot big-bang cosmology, it is presumed that a
quark-hadron phase transition had occurred in the early
stage of the Universe when the temperature was about
100—200 MeV. It is also expected that a quark-gluon
phase may exist in the dense cores of compact objects
such as neutron stars. On the other hand, quark-gluon
plasma may be formed in the hot central region and in
the dense fragmentation region in heavy-ion-collision ex-
periments. The nature of the phase transition is still un-
known since we know little about QCD physics. Howev-
er, the transition is probably of first order, as suggested
by computer simulations of lattice @CD with dynamical
fermion. '

The quark-hadron phase transition of the early
Universe has been studied in the literature. These studies
can be classified into three different categories: (l) The
quark-gluon plasma condenses into a gas of hadrons in a
way which is in thermodynamic equilibrium as the
Universe expands; ' (2) the Universe is supercooled to a
temperature well below the critical temperature and then
undergoes an out-of-equilibrium nucleation of hadron
bubbles in the quark-gluon-plasma sea; ' (3) is in between
the first and the second categories, in which the Universe
undergoes a phase transition with small supercooling.
In this scenario coexistence between the quark-gluon and
hadron phases can be established after nucleation at a
coexistence temperature. This cosmic separation of
phases may generate isothermal baryon-density Auctua-
tions. As a consequence, there could occur an inhomo-
geneous nucleosynthesis ' ' with the baryonic mass den-
sity Qz = 1, thus closing the Universe with baryons. (In
the standard hot big-bang model, the abundance of light
elements produced in the homogeneous nucleosynthesis
restricts Q~ ~0.2." On the other hand, inflation pre-
dicts Q= 1, altogether with the observation that the lumi-
nous matter density Q&„~0.02; we need dark matter for
closing the Universe. '

) Unfortunately, it is agreed' that
one cannot have Q~ =1 and get the correct light-element

abundances. However, inhomogeneities can have an im-
portant eAect on element abundances. In addition, the
later cooling of the quark phases may make them con-
tract to form stable quark nuggets. If the nuggets sur-
vive the evaporation into hadrons from their surfaces in
the later epoch of the Universe after their formation, they
could be a promising candidate for dark matter. Further
studies' have shown that quark nuggets are very unlikely
to survive hot evaporation. In the cold-universe scenario,
which we shall discuss below, however, nuggets might
survive more easily.

In most of the discussions of the quark-hadron phase
transition in the early Universe, the thermodynamic
properties of both quark and hadron phases have been
considered separately and then matched at the critical
temperature. In the nucleation of hadronic bubbles, it
has been assumed that the nucleating action has a certain
general functional form. In this paper we shall discuss
the quark-hadron phase transition in the hot big-bang
universe in the language of the phenomenological nonto-
pological soliton model of quark-hadron physics. ' Al-
though the model is premature, it has been applied to fit
the hadronic properties, and the results are encourag-
ing. ' We think that the description in terms of an
e6'ective potential as in the nontopological soliton model
is a convenient way to investigate the evolution of the
early Universe in the quark-hadron phase transition,
especially when the phase transition is of first order.
Here we are confined to the nontopological soliton model
rather than others, just because the model is simple and
adequate enough for our purposes. Other discussions of
the quark-hadron phase transition in an effective-field
theory, for example, based on the topological soliton
model can be found elsewhere. '

The development of a cold universe as a nonstandard
scenario for the evolution of the Universe has been ex-
plored previously. ' ' Recently, in the context of super-
symmetric model, it was proposed ' ' that the baryon
asymmetry of the Universe can be generated by the de-
cays of the scalar lepton and quark fields in a cold
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universe with temperature of about 1 TeV. [In the hot
big-bang model, it is presumed that the baryon asym-
metry is generated in the SU(5) grand-unified-theory
(GUT) model by the decays of the superheavy bosons at
temperature of 10' GeV (Ref. 22).] In this mechanism
the resulting baryon-photon number-density ratio nii lnr
could be as large as 10 just after the decays of the scalar
fields, thus leading to a cold universe filled with very
dense fermions. The possible dilution of this large
baryon asymmetry to an acceptable value of
niiln =10 ' in the later epoch of the Universe has
been discussed in Ref. 23. Here, based on the nontopo-
logical soliton model, we shall consider another possibili-
ty that a cold universe filled with very dense fermions un-
dergoes a first-order quark-hadron phase transition to a
reheated universe with baryon asymmetry
nii ln r = 10 ', which is needed for the ensuing nu-
cleosynthesis.

This paper is organized as follows. In Sec. III we shall
recapitulate the nontopological soliton model. In Sec. III
we shall discuss the quark-hadron phase transition in a
hot big-bang universe. In Sec. IV we shall discuss the
quark-hadron phase transition in a cold universe. Section
V is our conclusion.

II. NONTOPOLOGICAL SOLITON MODEL

The nontopological soliton model was invented a de-
cade ago by Lee and Feinberg. ' It is a phenomenologi-
cal model of QCD physics. The starting point of this
model is from the fact that quarks are confined in had-
rons or no color singlet has been found. Phenomenologi-
cally, this fact can be described by introducing a parame-
ter called color-diaelectric constant ~, which is near one
inside a hadron and equal to zero outside. It means that
a color field is absent except inside a hadron. Further-
more, we can introduce a scalar field o. with an effective
potential

FIG. 1. Typical potential U(o.) in the. nontopological soliton
model.

of Aavors. Note that we have introduced Yukawa cou-
pling of o. to P; with a common coupling constant f. Be-
cause of the nonlinearity of the potential U(o), the La-
grangian (2.3) carries nontopological soliton solutions
which could be identified with hadrons; inside each is a
perturbative vacuum decorated with localized quark
fields. The model based on Lagrangian (2.3) and its
modified complications has been extensively studied and
applied to fit the hadronic properties. ' In the following
our discussions will be based on Lagrangian (2.3). Here,
for our purposes, we reparametrize the potential U(cr) as

U(o. )=B cr (2a —o ) +
a~ 2a' 2a

3 +1
2

(2.4)

The parameters a,p are related to a, b, and c in the po-
tential (2.1) by

U(o )=—o ——o +—o. +B,a 2 b 3 C 4
21 3I 4f

(2.1)

3
16

where a, b, and c are positive parameters. B is called the
bag constant. The potential U(cr) has a local minimum
at o.=0 and an absolute minimum at o. =o.„, with
U(cr„„)=0 Then th. e field cr is related to the diaelectric
constant ~ by

24B 1

16

24BP =C
O.

4

(2.5)

~vac
(2.2)

Note that P must be greater than —,', and a must be posi-
tive. We have sketched a typical potential U(o) in Fig.
1.

nF—U(cr) —g fo@,g, ,
i=1

(2.3)

where hatt,
. represents the quark field and n~ is the number

Therefore, inside a hadron is a perturbative vacuum with
energy density B, and outside is a normal vacuum.

The simplest nontopological soliton model is given by
the Lagrangian

III. HOT UNIVERSE

With respect to QCD physics, we can imagine that the
present Universe is located at the absolute minimum of
the potential U(cr) in the nontopological soliton model
where o. =o„,. Of course, the Universe is filled with
stable and massive nontopological solitons (protons, neu-
trons, and so on); inside each is a perturbative vacuum
decorated with free quarks.

When we discuss the quark-hadron phase transition in
the hot early Universe, we have to include the tempera-
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ture corrections to the potential U(cr). Since U(cr) is a
phenomenological potential, we will not include any loop
corrections to U(o) at temperature T =0. At finite tem-
perature T, we again will not consider any o. loop correc-
tions because o is a phenomenological field. (For more
about the nontopological soliton model and o. loop
corrections at finite temperature, the reader should refer
to Ref. 24. However, it is found that our results will not
change qualitatively when the o. loop corrections at finite
temperature are taken into account. ) In the one-
fermion-loop expansion at finite temperature T, it has
been found that the potential is corrected to

e=Lg,
where

(3.7)

reheating temperature of the Universe just after the com-
pletion of the phase transition, then the baryon asym-
metry would be diminished by a factor (T„/TI) . We
expect that T„should be of order T, . Therefore, Tf
should be close to T, if we assume that nz/n =10
before the quark-hadron phase transition.

From U(o, T ) in Eq. (3.1), it is easily found that the
energy difference between the metastable vacuum and the
normal vacuum when T ~ T, is given by

F 2 2 2U(o, T)=U(o)+ f T cr
12

(3.1) I.=2B 1— 1

16

2
1

16P
where nF is the light-quark degrees of freedom. Here we
could define a critical temperature T, at which both the
minima of the potential become degenerate. T, is found
to be given by

2 3 B 1

n f' a' 16P
(3.2)

When T )T„ the perturbative vacuum (o =0) becomes
the lowest-energy state. The soliton solutions then disap-
pear and the quarks are no longer confined. This signifies
a phase transition from the hadron phase to the quark
phase.

In the early Universe with T )T„ the Universe is in
the perturbative vacuum, and quarks are free to move
around. The total energy density of the Universe is given
by

Tc

T

(3.8)

Since rj&=(T, —T&)/T, « I, 5, in Eq. (3.4) is well ap-
proximated by the thin-wall approximation and is given
b 26

16~S1
S3=

3F
(3.9)

4=—a(2PB ) 1— 1

3 16P
(3.10)

In Eq. (3.8), 5& is the surface energy of the bubble wall
given by

S, = '2U~, T; —B
3

7 7T 4
2

P —gB+ gF T +B
8 30

(3.3)
where o O=2a(1 —1/16p) is such that U(o o, T, ) B=O. —

From Einstein's equation, the age of the Universe t and
the temperature T are related by

1,( T)=CT, exp( —S3 /T), (3.4)

where C is a coefficient of order unity and S3 is the
three-dimensional action corresponding to the O(3)-
symmetric bubble. The fraction of the Universe which is
unaffected by the nucleation during this period is

f (t) =exp —I Ct'A(t') V,'(t —t')'
3

(3.5)

where t, is the time when T = T, and V, = I/v'3 is the
speed of the shock wave which expands into the quark
phase. The total number density of nucleation sites is

X„=f dt f(t)A, (T) . (3.6)

If T& is the temperature at which f (t&) =0, and T„ is the

where g~ (gF) is the total number of bosonic (fermionic)
degrees of freedom at temperature T, B is the energy den-
sity of the perturbative vacuum, and the energy density
due to the quarks and gluons is included.

As the Universe cools down to T ~ T„the perturbative
vacuum becomes metastable and nucleation of hadronic
bubbles through thermal fluctuations begins. The nu-
cleation rate per unit time per unit volume is given by

1/2
9 1

164~ G T
(3.11)

where G is Newton's constant.
By using Eqs. (3.4), (3.5), and (3.11), when gj ((I, it

has been found that

16+S
f P 3TL

C If

CL'V,'
217412~' S"G'

1

(3.12)

9 1
' 3V T L gf

164& G T & 8S1
(3.13)

when gf «1. Significant effects on nucleosynthesis re-

[Note that we have found a factor of 2' in the denomina-
tor of Eq. (3.12). In Ref. 9, instead, they obtained a fac-
tor of 2' .] As mentioned above, the cosmic separation of
phases during the phase transition with small supercool-
ing could generate isothermal baryon-density fluctua-
tions. The length scale of the fluctuations is character-
ized by the mean separation I per nucleation site. It has
been found9 from Eqs. (3.4)—(3.6) and (3.11) that

1/3
n
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TABLE I. Critical temperature T„degree of supercooling qI, and length scale of density Auctua-
tions I from diff'erent sets of values of the model parameters a (fm ), b (fm '), c, and f. The values are
taken from fits to the hadronic mass spectrum. We have assumed nF =2.

51.6
1.6
0

44.6
11.6
0

28.25
7.51
0

799.9
69
58

1194
834
700
672
474
399

4000
500
500

10000
10000
10000

5000
5000
5000

14,8
9.57
9.16

1 1.7
10.96
10.98
11.28
10.09
10.01

T, (Mev)

30.3
44.8
55.9
49.7

106.1
125.8
41.3
92.6

111.2

0.264
2.05 X 10
8.46 X 10-'
6.84 X 10-'
5.01 X 10
2.14X 10
9.32 X 10-'
6.77 X 10
2.87 X 10

l (m)

321.28
12.33
3.38

32.48
0.57
0.18

63.36
1.01
0.30

quires I ) 10 m.
In Eq. (3.12) the degree of supercooling is governed by

S„L,T„and 6, and depends only weakly on C and V, .
Hence we simply take C= 1 and V, =1/&3. Note that
T„L,and S, are related to the model parameters a, P, B,
and f by Eqs. (3.2), (3.8), and (3.10), respectively. There-
fore, Eq. (3.12) allows us to find r)& in terms of a, 13, B,
and f. The result has been plotted in Fig. 2, where we
have defined a new variable 5=—T, /B ' replacing nz and
f. Also, we have found that the curve is highly insensi-
tive to the changes of B. In particular, we use values of
these model parameters from fits to the hadronic mass
spectrum' and nF=2 in Eqs. (3.2) and (3.8)—(3.13) to
evaluate T„q&, and l. These results are tabulated in
Table I.

However, it is useful to find an approximate solution
for t)~ in Eq. (3.12). Since /3) —,'„L=2B from Eq. (3.8).
Also, we adjust the parameter f in Eq. (3.2) such that
T, =B', which is a reasonable approximation. (In Ref.
9 they found L =4B and T, =0.72B' by studying the
thermodynamics of both quark and hadron phases, where
L is the latent heat of the phase transition. Here L is ex-
pected to be different from the latent heat and is just the
energy diff'erence between two diff'erent vacua. ) Hence a
good approximation solution of Eq. (3.12) is

S3/2
1

gI —.0.3 « 1

provided that

'I 0

'I 0

10

10
(2n) /B

10

(a)

(3.14)

10 'I

(2o(') /E)

I

10 10
I

10

FlG. 2. Curve shows the relations between the degree of su-
percooling g/ and the model parameters a, P, B, and
8= T, /B '~". We have defined y:—8' rlI/[(2a) /B]

FIG. 3. (a) Upper curve is drawn from Eq. (3.17). Below the
curve is the parameter space which is for not diminishing the
baryon asymmetry of the Universe and for small supercooling of
the quark-hadron phase transition. The lower curve is drawn
from Eq. (3.18) with 8 =56 MeV fm . Above the curve is the
parameter space which is relevant for inhomogeneous nu-
cleosynthesis. (b) Curve is the equality of Eq. (4.19), which gives
the required parameters in a cold universe.
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~ln(B/MeV ) ((186.6,
gin(S, /B') —22. 8 «186.6.

(3.15a)

(3.15b)

Substituting Eq. (3.14) in Eq. (3.13), we thus obtain

I =(1.4X10 m)(S, /MeV ) (T /MeV) (3.16)

Then, from Eq. (3.14), we obtain a constraint on the pa-
rameters a, P, and B as

3/8
(2a )

B (2P) 1—
16

' 9/2

((12.2, (3.17)

3/8
(2a )

B
(2p)3/4 1—

16

9/2

for not diminishing the baryon asymmetry of the
Universe during the quark-hadron phase transition.
Meanwhile, the condition (3.17) is required for a phase
transition with small supercooling. We have plotted the
curve with the left-hand side of the inequality (3.17) equal
to 12.2 in Fig. 3(a). Also, from Eq. (3.10) and T, =B'/,
the condition I ) 10 m is translated into

—(3 2)1/3 1/3

Thus the critical number density n, is given by

(4.2)

3
ll~ = —T

9 3
(4.3)

At this stage the total energy of the universe is given by

we find that the finite-density eftects are similar to the
finite-temperature e6'ects. At finite fermion density
p) p, =(vr/3/3)T„where T, is given by Eq. (3.2), the
ground state is the perturbative vacuum with o. =0.
When p (p„ the perturbative vacuum becomes metasta-
ble, and then a phase transition to the normal vacuum
follows.

In a cold universe with nz/nz )&1, the universe con-
sists of degenerate massless quarks with chemical poten-
tial p &)p„which are moving freely in the perturbative
vacuum with vacuum energy density B. For each light
fermionic species, p; =(3m. )' n /, where n; is its num-
ber density. We expect that all n,- are equal. Hence the
chemical potential p is related to the baryon density n~

[nii = ,'nFn—, where n =(I/nF)g, ",n;] by

) 1 3X10 (B' /MeV ) (3 18)
p= —'(37r )' nFn +B .4 (4.4)

(2P) 1—
16P

We have plotted this condition in Fig. 3(a).
As we have shown above, the inequalities (3.17) and

(3.18) are valid only when (3.15a) and (3.15b) are satisfied.
The condition (3.15a) is generally satisfied and (3.15b) can
be rewritten in terms of ct and P as

3/8
4

9/2

42xlo- (( (2 )

B

Therefore, as the universe expands, it will become dom-
inated by the perturbative vacuum energy density when n
has decreased to

no= 64
81~

—3/4 ~ 3/4nF B (4.5)

which is comparable to n, when B= T, . As a result, the
universe expands exponentially with

((4.2 X 10' (3.19) R (t)=e (4.6)

We see that the results (3.17) and (3.18) are within very
good approximation.

IV. COLD UNIVERSE

Let us suppose, contrary to the usual belief, that initial-
ly the Universe was cold with the baryon asymmetry
n~/n )&1. This condition, indeed, can be obtained in
an AfBeck-Dine mechanism for baryogenesis as men-
tioned above. In the Aleck-Dine mechanism, decays of
scalar fermion fields could result in a universe with
baryon asymmetry nz /n = 10 at a temperature of order
1 TeV.

In the context of the nontopological soliton model,
when we consider the quark-hadron phase transition at
finite fermion density, we have to include the finite-
density effects to the potential U(o ). It has been found
that, at one-fermion-loop quantum corrections, the
corrected potential is given by

A, (p)=CB exp( —S4), (4.7)

where C is a coefficient of order unity and S4 is the four-
dimensional action corresponding to the O(4)-symmetric
bubble. It has been found that S4 is given by

S4 =2~2I r'dr — + U(o. ,p) —B, (4 8)
0 2 dP

where cr =cr(r) is the solution of the differential equation

where H is the Hubble parameter given by H =SwGB /3.
Note that we have set n =no and R =1 when t =to.
Meanwhile, the perturbative vacuum becomes metastable
and the universe starts to nucleate hadronic bubbles.

The bubble nucleation in the cold universe is mainly
through quantum tunneling. The nucleation rate per unit
volume per unit time is given by

nF
U(o, p, )= U(o )+ 2 f p cr

4m
(4.1)

der 3 do =U'(, ),
dI' l" dr

for p/T))1, where p—:(I/nF)g;, p, and p,. is the
chemical potential for the ith fermionic species. When
comparing the potential in Eq. (4.1) with that in Eq. (3.1),

with the boundary conditions

do =0 when r =0,
dI"

(4.10a)



K.-W. NG AND W. K. SZE 43

o =0 when r~~ . (4.10b) p (p, ) & e '. This gives

The prime in Eq. (4.9) represents partial differentiation
with respect to o..

The probability that an arbitrary point remains in the
quark phase at time t is given by

p (t) =exp —f dt'A(t')R '(t') V(t, t')
(4.11)

4m ~ dt"
V(t, t')=

3 f g ( )

3

where we have assumed that the bubbles are expanding at
near the speed of light. Since baryon number is con-
served at this epoch, we have nR =const. Then, Eqs.
(4.2) and (4.6) lead to

p= —Hp, (4.12)

772
T =B.

15
(4.14)

In order to have the right baryon asymmetry for ensuing
nucleosynthesis and present observational limit, we re-
quire n, /n =10 ', where n =0.244T, =0.334B
This gives

p, =(3~ )' n „' =0.996X 10 B' (4.15)

With this chemical potential p„ the coefticient a~ /2 of
the cr term in the potential U(cr, p) is given by

a~ a + fp».
4~

(4.16)

If we assume that a =51.6 fm, b =799.9 fm ', and
c =4000 in the potential U ( o ) in Eq. (2.1) (where
B =0.142 fm ), and f =14.8, which is satisfactory for
fitting a part of the static properties of the hadrons, ' '

then a» =a( 1+10 ). Therefore, unless there exists
fine-tuning in the present model, we will assume that
a ~ =a in general for naturalness.

Since p„«po, where po —-2. 51B ' from Eqs. (4.2) and
(4.5), p (p») in Eq. (4.13) can be approximated by

Po
p (p, ) =exp —b exp( —So)ln

pg
(4.17)

where So—:S4(p =0). Therefore. at t = t, , when the
universe is already filled with hadronic bubbles and the
baryon asymmetry is n~ /n =10 ', we should have

when t ) t0, where the dot represents time differentiation.
Substituting Eqs. (4.7) and (4.12) in Eq. (4.11), we obtain

vo exp[ —S4(p') ]
p (p) = exp b f —dp', (p' —p)3

P p

(4.13)

where b = 34mB/H . —
Let t be the time at which p (p) decreases rapidly to

zero. At this time the universe is reheated by the radia-
tion released from the perturbative vacuum (see below) to
a temperature T„which is estimated as

lnb ~S0 . (4.18)

For B =56 MeVfm, we find b =3.07X10 . Hence
Eq. (4.18) approximately gives

180.7~Sp . (4.19)

If P in Eq. (2.4) is much greater than 1, the action So can
be approximated by the thin-wall approximation

(2a) 27m —
4

0 B 2 1 (4.20)

2
e2

2

where e is the electron charge and I =I(m~ /m ). When
m /m ~ —+ao, I=—,'. On the other hand, the expansion
rate of the universe at this epoch is characterized by the
Hubble parameter H =(8~B/3M& )' (Mp =—1/&6).
Since H is suppressed by the Planck mass, we have in
general I ))H. For example, if we input a =51.6 fm
b =799.9 fm ', c =4000, and f =14.8, we will get
I =6.8X10 fm ' (for nF=2) from Eq. (4.22) and
H =1.8 X 10 fm '. This means that the classical field
o. would undergo out-of-equilibrium decay into radia-

where S& is given by

S, = f ( 2 Vo )
' 'd cr = -', V'2P, (4.21)

with Vo = 16Po (1—cr ) . Otherwise, we numerically
solve Eqs. (4.9) and (4.10) with p=0 to obtain So from
Eq. (4.8). For example, with a =51.6 fm, b =799.9
fm ', and c =4000 in the potential U(cr), we find numer-
ically that S0-—96. If a =52 fm with others remaining
the same, we find that S0-—200. We thus see that the
condition (4.19) can be easily satisfied without fine-tuning
any parameter in the model. We have plotted the condi-
tion (4.19) in Fig. 3(b), which constraints the parameter
space spanned by a, P, and B.

In the thin-wall approximation, all the energy released
by converting the perturbative vacuum to the normal
vacuum is transferred initially to the walls of the bub-
bles. This energy can be thermalized when the bubble
walls collide with one another many times. Outside the
thin-wall approximation, the bubble nucleation leaves
behind a homogeneous classical field 0' with mass
m ~

= U"( o „„) (here o' is the shifted field with
cr=cr'+cr„„) The e.nergy stored in the classical field is
given by E ~ =—,'m .o.0, which should be of order B,
where o.0 is the initial amplitude of o'. This energy can
be interpreted as particles of mass m ~ at rest with num-
ber density —,

' m o.0 . In the normal vacuum with
o =cr„„,the quarks obtain an effective mass m~ =fo.„„.
Because of the absence of free quarks, we expect that
2m )m .. Indeed, this condition is satisfied with the
above set of values for a, b, c, and f. Therefore, the
thermalization of the energy E ~ must at least go through
a one-fermion-loop process 0'~2y, as shown in Fig. 4.
The decay rate I (cr'~2y) has been calculated as '
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Hot
Universe

Quark

FIG. 4. Feynman diagram for the one-fermion-loop decay
process o'~2y.

Cotd
Universe

V=R3(t, ) f
0

4'tr I H(t„—to)
e

H
(4.23)

where we have used Eq. (4.6) for R (t). From the conser-
vation of baryon number, we have

tion, with a decay rate very fast compared to the expan-
sion time of the universe.

After we have discussed the phase transition to the ha-
dronic phase from a cold universe of free quarks, we are
now to estimate the density Auctuations generated during
the phase transition. The magnitude of the density Auc-
tuations is characterized by the mass scale contained in
one hadronic bubble. From above, we know that the size
of a typical bubble at time t =t, is given by

FIG. 5. T-p phase diagram of the quark-hadron phase transi-
tion at finite temperature and density.

mostly below the Jeans mass in the later evolution of the
universe and is probably damped out during the acoustic
phase.

On the contrary, if the density fluctuations associated
with bubbles are isothermal with the entropy density
nrlntt remaining small even after the phase transition,
they will grow during the unstable phase. As a conse-
quence, they could form massive stars, which could con-
ceivably play a role as seeds for explosive galaxy-
formation models, and their remnants may form the dark
matter in galactic halos and clusters. '

3a(t~ fo (4.24) V. CONCLUSION

Hence, inserting Eq. (4.24) into (4.23) and knowing that
n0 »n, , we find that

4 1 n

3 H3 n,
(4.25)

Then the total mass contained in a bubble after the phase
transition is calculated as

M = —,'nFn~ m~ V, (4.26)

4a nFnoM= m~
3H

where m& —-940 MeV is the mass of a nucleon. Using
Eqs. (4.5), (4.25), (4.26), and H =(SvrB/3M&)'~, we find

that

Based on the nontopological soliton model, we have
discussed the quark-hadron phase transition of the early
Universe by using the phenomenological potential U(o. )

for hadron physics. We have discussed the phase transi-
tion in a hot universe and a cold universe, respectively.
The quantum corrections at finite temperature and finite
density to the potential U(tr) are reflected in the Tp-
phase diagram shown in Fig. 5. We have probed the
cosmological implications to the phase transition at two
extreme conditions (high T and large p). It has been
shown that a cold universe, filled with very dense fer-
mions and then reheated by the latent heat of the quark-
hadron phase transition, could be an interesting non-
standard scenario for the evolution of the Universe.
Some of our results are summarized in Figs. 3(a) and 3(b),
where we have given the parameter spaces which are
relevant for cosmology.

=31M~(56 MeV fm 3/8)3~", (4.27)
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