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Numerical relativistic hydrodynamics: Local characteristic approach
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We extend some recent shock capturing rnethod8 designed to solve nonlinear hyperbolic sys-
tems of conservation laws and which avoid the use of artificial viscosity for treating strong
discontinuities to a relativistic hydrodynamics system of equations. Some standard shock-tube
problems and radial accretion onto a Schwarzschild black hole are used to calibrate our code.

INTRODUCTION

The term relativistic hydrodynamics refers both to
those ffows in which the bulk Lorentz factor W:—(1—
u~) il2 exceeds one in more than a few percent (v is the
ffow velocity in units of the speed of light) or to those
where the eA'ects of the background gravitational field,
or the one generated by the matter itself, are so irnpor-
tant that a description in terms of the Einstein theory of
gravity must be taken into account.

Relativistic hydrodynamics plays a major role in the
realm of astrophysics. High-velocity outflows can be
found in galactic jets, binary neutron stars or binary
white dwarfs as well as being associated with star-
forming regions. In the first case the material Quid
reaches the ultrarrelativistic regime (W 10). On one
hand velocities higher than 15' of light speed are reached
in the stellar collapse of iron cores of massive stars which
precludes supernovae II explosions; and, on the other
hand, the general-relativistic eA'ects have been pointed
out by several authors many times.

As is well known by astrophysicists interested in the-
oretical models for type-II supernovae, the early mecha-
nism of hydrodynamical bounce (the so-called "prompt
mechanism" ) implies a strong shock wave. To discover
the precise conditions under which the shock forms and
the precise value of its strength is one of the numerical
problems involved in this field.

Relativistic shocks are, from the mathematical point
of view, one possible solution —a so-called "weak
solution" —of the hydrodynamical equations given its hy-
perbolic character. But from the physical point of view
they are a very important feature in several problems
arising in several areas. (i) Astrophysics. We have al-
ready discussed it concerning the theoretical models of
type-II supernovae: (ii) Cosmology. In theories of pre-
galactic ffuctuations. s (iii) Plasma physics. Magnetoa-
coustic shock waves where speeds of up to 4 x 10s cm/sec
have been achieved in laboratory. 7 (iv) Nuclear physics.
In collisions among heavy ions.

From the numerical point of view the correct mod-

cling of shocks has been considered, basically, by two
approaches: the so-called shock tracIcing and the shock
capturing methods.

The shock tracking methods make use of an artificial
viscosity Q put forward by von Neumann in the 1950's.
These methods have two advantages: (i) low cost, since
they are easy to implement and do not require much CPU
time, and (ii) efFiciency, since, by experimenting with a
few parameters, the user can spread out the shock into a
small number of zones and damp down spurious oscilla-
tions behind the shock. Recently, Noh has pointed out
several errors induced by the artificial viscosity which are
intrinsic to the method.

Although refined versions of Q methods, combined
with adaptive mesh techniques, have been widely used
in the last years, a new generation of techniques, the
so-called shocf- capturing methods, have gained the at-
tention of people working on hydrodynamical problems.
These methods have been specifically designed for solv-

ing, numerically, nonlinear hyperbolic systems of conser-
vation laws.

A one-dimensional hyperbolic system of conservation
laws 1s

Ou Of(u)
Ot O(

where u is the N-dimensional vector of unknowns and
f(u) are N vector-valued functions. Strictly speaking a
conservation law implies that the source term s(u) be
zero. The above system is hyperbolic if the Jacobian
matrix

Of(u)
Ou

has real and distinct eigenvalues.
Originally, the shock capturing methods were based

on Godunov's idea of involving the jump conditions of
Newtonian hydrodynamics for an ideal gas (the Rankine-
Hugoniot relations) in order to solve, in each interface
separating each numerical cell, the breakup of an initial
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discontinuity (niemann problem ). This approach, which
avoids the use of artificial viscosity, has the advantage
of incorporating the presence of a physical shock consis-
tently and without numerical oscillations. Later modifi-
cations or extensions of this idea have led to the creation
of a vast body of scientific literature that has coined the
term Godunov type-methods

We have used a Godunov-type method in Newtonian
spherically symmetric stellar-collapse calculations. In
Ref. 13 we have compared the results with those ob-
tained by using a standard Q method, by fixing the ini-
tial model and the equation of state, and we have found
differences in the behavior of the velocity field and the
global energetics involved.

In the present paper, we are mainly interested in show-
ing that an extension of Godunov-type methods for solv-
ing the equations of hydrodynamics in the special- and
general-relativity theories is feasible. Our procedure rests
on two points. (i) To identify, in each case, what are the
particular forms for u, f(u), and s(u). This is not a
trivial step. The presence of pressure in these variables
(see below) introduces algebraic difhculties in the anal-
ysis of the Jacobian matrix. (ii) To define a set of local
characteristic variables, at each grid point, , in terms of
which the original system can be rewritten as a new one
of uncoupled scalar equations (local characteristic
approach ).

f(uL utr) =
21 fL+fR —).I

A
I
&~ e I, (4)

where I and R stand for the left and right states of a
given interface. A and e (n = 1, 2, 3) are the eigen-
values (characteristic speeds) and the eigenvectors of the
Jacobian A, respectively, and the quantities A~, the
jumps of the local variables across each characteristic,
are obtained from

3
Au~ —uL, —— ww~e

A~, e~, and Au as functions of u are evaluated at each
interface and, therefore, they depend on the particular
values ul, and u~. The tilde stands for the arithmetic
average of the data of the problem in the present appli-
cation.

Crucial to this local analysis is, then, the knowledge of
the spectral decomposition of the Jacobian matrix of the
system.

The one-dimensional equations of special-relativistic
hydrodynamics (SRH), in planar symmetry, can be cov-
ered by taking

u= (pW, phW v, phW —p)

LOCAL CHARACTERISTIC APPROACH
FOR THE SPECIAL-RELATIVISTIC

HYDRODYNAMICS

and the flux vector f,
f = (pWv, phW v + p, phW v)

The basic ingredients of our algorithm are the follow-
ing.

(1) Advancing in time. Let u" be the cell average of
u over the cell j, having interfaces (z ig2 and (~+i~2. At
the next time level is

u,". +' = u,
" —A[f(u, , u, +, ) —f(u, i, u, )j+ &ts, (u),

(3)

where A = 4t/A(~ and A(~. = (i+it2 —(i it2. Quantities

f are the numerical fiuxes (see below). The source terms
s& are calculated, to linear accuracy, from the values of
the variables at the zone centers and at the previous time
step.

(2) Cet! reconstruction To obtai. n interface values
from the cell-averaged quantities u& diA'erent interpola-
t, ion techniques have been used. The order of the inter-
polation depends on the degree of spatial accuracy one
wants to achieve.

(3) Xumencal /tu2:es. The numerical fiuxes are eval-
uated by extending the numerical fluxes of Roe's first-
order upwind method for nonlinear scalar hyperbolic
conservation laws to systems, via a local characteristic
approach. Roe's prescription can be applied to each
one of the scalar uncoupled equations. In this way, the
numerical fluxes can be written in terms of the original
variables as

where p is the density, p is the pressure, h is the specie. c
enthalpy, h = 1+ e + p/p, and, e is the specific internal
energy.

Each component of the above system expresses, respec-
tively, the conservation of the fluid rest mass, momen-
tum, and total energy.

As is well known the 3acobian matrix has three real
and distinct eigenvalues: v, and (v + c,)/(1 + vc, ) (see,
for example, Ref. 17), where c, is the sound velocity.

The equation of state (EQS), as usual, closes the sys-
tem.

From a computational point of view, the third equa-
tion of the above system is not very useful since, in the
Newtonian limit (p pe « p, v « 1) and for all prac-
tical purposes, this equation is identical to the first one.
In practice, the third equation has been substituted by
the equation that results when we subtract the first one
from it.

Let us define the quantities

m=phW v,

e = phd' —p,2

and rewrite system (1),
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Ou Of(u)
Ot Ox

=0,
where now

u= r, m, e —r

and the Qux vector f is

(rm m
T

f=!— —, +p me+p'e+p ', ),
'

(12)

The special role played by pressure into the set of new
variables 8 = (r, m, e} should be noted Pe.ople working
with these SRH equations (see, for example, Ref. 19)
and with Q methods have chosen other sets of variables
and have treated those terms containing the pressure as
sourcelike terms. Our approach leads to some, merely
algebraic, diKculties. Nevertheless, these diKculties are
largely compensated by the great advantage arising from
the fact that this set H of variables allows us to show up
the conservative character of the system and to apply to
it a particular Godunov-type method.

Finally, the knowledge of the set of physical variables

p = (p, v, e} at each time step requires merely to solve
an implicit equation in p to which powerful methods can
be applied.

LOCAL CHARACTERISTIC APPROACH
FOR THE GENERAL-RELATIVISTIC

HYDRODYNAMICS

Ou 1 O~yf (u)
Ot ~p Or

where

u = (D, S, r)

and the Qux vector f is

(14)

The general-relativistic hydrodynamics equations in
the one-dimensional case (for example, spherical symrne-

try) can be written after some algebraic manipulation
in a form well suited to our numerical applications:

( DS S „„.+pf= n ) Cl
!+

pp"", nSr+D+ p' r+D+ p
' r+D+ p

and the source terms s(u) are

( 1 O in~ 1 S' O in~„„O 1 (~~/~„,.)
2 Ot

'
2 r+ D+ p Or p,.„Or

2r+D+p Ot Or Ot )

r+ D Oo. O ln(y„„~y)—S
Or Ot

The above equations are the expression of the lo-
cal laws of conservation of baryon-number density and
energy-momentum in a space-time M where the four-
dimensional metric g„, has been split into the objects
(~ ~&)

The quantity p is the determinant of the matrix p;z. v

is defined by v = gy„„u"/nu (indices 0 and r stand
for the temporal and radial components, respectively)
and represents the fluid velocity relative to an inertial
observer at rest in the coordinate frame. The I orentz-
like factor is R':—0/n and satisfies the relation

ds: —0! cB + p~~ dz dx W = 1/gl —v2 (23)

+pv = P~&puv + Pgpv

(greek indices run from 0 to 3).
We have introduced the variables

(2o)

S:—nT" = phW v/gp„„,

7. = n T —D = phd' —p —pW .2 00 2 (22)

(latin indices run from 1 to 3), and the energy-momentum
tensor T„„corresponds to a perfect Quid

In the Newtonian limit, the set of new variables 8 =
(D, S, r} tends to the set (p, pv, pe + 2 pv }.

As in thp special-relativistic case, from the primary
variables 8 = (D, S, r}we must obtain the set of physical
variables p = (p, v, e} at each time step.

In the present paper we consider the so-called test rela-
tivistic fiuid approximation, where the motion of the fluid
is assumed to occur in a given space-time ~. Within this
approach the gravitational field produced by the Quid
itself is neglected in relation to the background. This
procedure is strictly correct in, for example, models of
accretion onto compact; objects.

From the numerical point of view a local charac/eristic
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approach to the above system needs, as we have said be-
fore, to know the spectral decomposition of the Jacobian
matrix.

We have obtained the characteristic speeds associated
with the system by applying the theory of characteris-
tic hypersurfaces for the quasilinear hyperbolic system of
equations describing a test relativistic fluid and found

1.0

0. 8

0. 6

SHOCK REFLECTION TEST
I I I I i I I I I I I I I I I I I I I

(24) V

E
L

0.4

(v + c, )j(1+vc, )
7r f.

(25)

(see Appendix for details).
0. 0

SOME TESTS

We are going to comment on several of the tests that
our code has overcome: (1) the reflection shock; (2)
the relativistic Sod s tube problem; (3) the relativis-
tic blast wave; and, finally, (4) radial accretion onto a
Schwarzschild black hole.

As a first test we have computed the shock reff ection
problem, that is, the shock thermalization of cold, rel-
ativistically moving gas hitting a wall. The initial
conditions are p = pI, n = e~, and r = 0. An ideal-gas
law of I' = 3 has been assumed.

We have made a sample of runs varying the value of v~

in such a way that all regimes are covered: Newtonian,
relativistic, and ultrarelativistic (we have arrived at W
23). The qualitative behavior is the same as in Figs.
1 and 2. These figures show the state of the variables
velocity and pressure, respectively, in a given instant of
their evolution, when the shock is well formed, and for the
values of initial velocity and density vi ——0.8(W = 5/3)
and p~ ——1. For the sake of comparison we have dis-
played the analytical solution (continous line). An Eu-
lerian mesh of 100 grid points was used and no cell re-
construction has been made, so the algorithm applied in
this test is only of first-order accuracy.

Our results difFer from the theoretical ones by less than
0.02% for pressure; the density is more sensitive to the
boundary conditions and the relative error is less than
0.2%, with the exception of a few cells nearest the wall
where the relative error is less than 3.5%. These relative
errors are better than the ones published by Centrella
and Wilson for their run No. 7. As can be seen in Figs.
1 and 2, the shock is sharply solved in typically two or
three numerical points and, unlike the mono scheme of
Hawley et a/. , is free of spurious oscillations. It should
be noted that the resolution of the shock is poorer, and
needs eight or nine points, when R' && 1, that is, when
the difFerence between the light velocity and the initial
velocity verifies 1 —vi —O(Ez&), where p stands for
the global accuracy of the algorithm. Later refinements
(linear or parabolic cell reconstruction, etc.) can improve
these results even more.

As a second test of our code, we computed the breakup

—0. 2
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FIG. 1. Velocity (in units of the speed of light) in the
relativistic shock mall test.
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FIG. 2. Pressure in the relativistic shock mall test.

of an initial pressure discontinuity in a shock-tube into
its three constituent nonlinear waves (8'od's shock-tube
problem ). Initial conditions are (pl. = 1, pL, = 1, vg =
0) for 0 ( z ( 0.5 and (pR ——0.1, p~ = 0.125, vR = 0)
for 0.5 ( z ( 1. An ideal-gas law of I = 1.4 at each
side of the discontinuity is assumed. Let us point out
the fact that the maximum velocity reached is 0.42,
which is roughly less than one-half the Newtonian value;
therefore, even though the initial conditions are the cor-
responding ones of the standard Sod problem we prefer to
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FIG. 3. Velocity (in units of the speed of light) in the
relativistic Sod's tube test.

FIG. 5. Density in the relativistic Sod s tube test.

emphasize the above property by calling this test the rel-
ativistic Sod shock tube proble-m . As before, results dis-
played in Figs. 3 —5 have been obtained taking a Eulerian
mesh of 100 grid points and without cell reconstruction.
Numerical points are made explicit in these figures over
the analytical solution (continuous line). From these fig-
ures we think that we can be confident of our code: there
are no spurious oscillations, there is no overshooting in
the region of the contact discontinuity, it covers the an-
alytical solution quite well, and a finer griding or linear
reconstruction would give even better results. Those in-

terested in this can compare it with the large sample of
schemes studied by E-Eawley et aI.

As a third test of our numerical code, we computed
the formation of a relativistic blast nave . The initial
data are {pg = 10,pl, = 1, vL, ——0) for 0 & z & 0.5
and (prr = 10,p~ = 1, v~ = 0) for 0.5 & z & 1. An
ideal gas law of I = 3 at each side of the discontinuity
is assumed. These initial conditions are similar to those
used in the previous problem, but now we are allowing
an initial pressure jump of several orders of magnitude.
Figures 6—8 show the numerical points compared with
the analytical solution (continuous line). We have suc-
ceeded in solving this problem free of spurious oscillatlons
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FIG. 4. Pressure in the relativistic Sod's tube test. FIG. 6. Pressure in the relativistic blast wave test.
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FIG. 7. Velocity (in units of the speed of the light) in the
relativistic blast ~vave test.

FIG. 8. Density in the relativistic blast wave test.

with a mesh of 400 points and linear cell reconstruction.
Our results are similar to those obtained by Norman and
Winkler although they have obtained both a very good
resolution and the correct value of the density in the thin
dense shell bounded by the leading shock front and trail-
ing contact discontinuity due, mainly, to their adaptive-
mesh technique. The refinements introduced by using a
denser mesh or a cell reconstruction are very encourag-
ing. Concerning this test, it might be worthwhile to note
the following peculiarity: Because of the relativistic com-
position of velocities, the characteristic field to the left of
the shock converges into it in a nearly parallel way smear-
ing this side of the shock (see Fig. 7). This fact together
with the proximity of a contact discontinuity, the source
of diA'usion, turns this experiment into a challenging test
for numerical schemes.

In the above three tests gravitation is absent. This
allows us to be confident of the performance of the code
in treating problems involving very strong shocks, even

in the ultrarelativistic regime f4 )& 1.
In order to experiment with general-relativistic hydro-

dynamics we have considered the problem of spherical
accretion onto a black hole Equations .(14) to (17) have
quite simple forms if steady-state conditions are assumed
(see Ref. 22). We have tested our code to reproduce one
of the stationary solutions. We have chosen the solution
corresponding to a Schwarzschild black hole of 2Mo and
having a critical point located at r„;t ——295 km. We have
taken a mesh of 90 grid points equally spaced in variable
r2 and spanning the interval (r;„=25 km, r „=75
km). The analytical solution has been covered; we have
displayed in Table I the relative errors as a function of
time in units of a hundred times the Courant time, which
is a very conservative unit. As can be seen in Table I the
relative errors are of the order of 10 . A diferent grid,
a logarithmic one, for example, and a more careful treat-
ment of the boundary conditions near the singular point
will lead to lower errors.

TABLE I. Relative errors (accretion test).

t/100t, Maximum relative error (10 )
p P V

Mean relative error (10 )
P P

3.8
5.5
6.9
8.2
9.4

2.2
3.2
4.1
4.9
5.6

2.8
3.0
2.8
3.3
3.8

4.5
4.7

—5.4
—6.4
—7.3

0.8
1.7
2.6
3.7
5.0

0.4
0.9
1.5
2.1
2.9

0.4
0.7
1.1
1.6
2.1

0.4
1.1
1.9
2.8
3.8
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SUMMARY AND FURTHER ISSUES

AVe have extended son~e recent shock capturing metlr, ods
designed to solve nonlinear hyperbolic systems of conser-
vation laws and which avoid the use of artificial viscosity
for treating strong discontinuities to a relativistic hydro-
dynamics system of equations. VVe have presented some
standard tests which lead us to be confident of our code.
As far as we know our present work is the first to explore
the use of those numerical methods in the field of rela-
tivistic hydrodynamics. The value of such an exploration
has already been pointed out by Hawley et al.

At the present time we are considering astrophysical
applications (e.g. , stellar collapse) in which hydrodynam-
ics is evolving coupled with the gravitational field gen-
erated by the matter itself through Einstein equations.
Extension of our code to the two-dimensional case is in

P(z") = 0 . (A2)

Then Z is said to be a characteristic hypersurface for the
above quasilinear system if C satisfies (Anile, Sec. 2.3)
either

or

(u"P„) —c,h"'P„P„=0, (A4)

where P&
—B&P and h" is the projection tensor onto

the three-space orthogonal to u"

g. In what follows we will consider the above system to be
hyperbolic according to the conditions given by Anile.

Let Z be a hypersurface in space-time ~, with the
local equation in local coordinates

progress. = g"" + u" u (A5)
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the above equations for P lead to the well-known values
for A

Ap —v, (A7)

In Minkowski space and the one dimensional case is

P = P(t, z) . If we take

(A6)

APPENDIX Ap = (v + c,)/(1 + vc, ), (A8)

For clarity in exposition let us summarize the main
steps concerning the theory of characteristic hypersur-
faces for the quasilinear hyperbolic system of equations
describing a test relativistic fluid such as can be found in
Anile.

Let M be a space-time, that is, a dift'erentiable man-
ifold of dimension-4, endowed with a Lorentz metric g
of signature +2. In W we consider a quasilinear system
of N first-order partial diAerential equations for the un-
known field u, which in local coordinates (z") is written

which represent the slopes of the three families of charac-
teristic lines corresponding, respectively, to the so-called
"material waves" (Ao) and the "acoustic waves" (Ay) in
the special-relativistic fluid dynamics.

Let us consider a more general space-time whose line
element is the one given by (25) and restrict ourselves to
the spherical symmetric case. It is easy to calculate the
values of A that result from the above equations for P.
These are

Qcl'A (uC)+ uH fA (u( ) (Al) )
gVrr

(A9)

(o. = 0, 1, 2, 3), where the field u, representing physical
quantities, has components u (za), A = 1, 2, ..., N. The
components of the n N x N matrixes A& (u+) and the
N vectors f (u ) are diA'erentiable functions of (u ).
Finally, 9'~u is the covariant derivative associated with

(v + c,)/(1 + vc, ),
7

(A10)

where, now, v is the velocity defined in the text (v =
Qprr v /cxu ) .
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