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The theoretical foundations of metric theories of gravitation rest largely on the Einstein
equivalence principle (EEP). Schiff has conjectured that no consistent Lorentz-invariant theory can
obey the weak equivalence principle and not obey the EEP. However, a counterexample has been

proposed by Ni in a theoretical framework for studying electromagnetism coupled to gravity. Un-

der the assumption that gravitational fields vary smoothly over a Hubble time, we show that Ni's

counterexample would lead to a rotation in the plane of polarization of radiation from distant radio
sources. As such rotation is not observed, we may put stringent limits on the magnitude of the pa-
rameter which violates the EEP, of less than about 10 GeV.

I. INTRODUCTION

Modern gravitation theory is founded on the principle
of equivalence. This principle comes in three forms: the
weak, Einstein, and strong equivalence principles (WEP,
EEP, and SEP). The WEP states that the laws of motion
of freely falling bodies are the same in a gravitational
field as in a uniformly accelerating frame; this implies
that the inertial mass of a body is equal to its gravitation-
al mass, regardless of composition. The EEP extends the
WEP to say that the outcome of all experiments involv-
ing exclusively nongravitational forces is the same in a
gravitational field as in a uniformly accelerated frame.
The SEP further extends the EEP to include all experi-
ments, gravitational and otherwise. Each principle is
taken to apply in small enough regions of spacetime.

The physical consequence of the EEP is that gravita-
tion may be described by a "metric theory, " i.e., a for-
malism in which gravitation manifests itself as the curva-
ture of the spacetime manifold and test particles move
along geodesics of a symmetric metric g„defined on this
manifold. ' The dynamics of the metric are not
specified; indeed, the EEP permits the existence of any
number of "gravitational fields" which enter the field
equations for g„, such as the Brans-Dicke scalar, vector
fields, background metric tensors, and so on. These fields
are distinguished as "gravitational" since they interact
with the metric directly, rather than through their
energy-momentum tensor exclusively; however, since the
EEP demands that the metric alone determines the
motion of test bodies, they cannot couple directly to
matter fields. In the process of generalizing a nongravita-
tional physical theory from flat to curved spacetime, the
EEP implies the minimal coupling prescription, in which
the Minkowski metric g is replaced by g„and partial

derivatives B„are replaced by covariant derivatives 7„.
In contrast with the EEP, the more restrictive SEP

disallows any gravitational field other than the metric.
Theories consistent with the SEP are either general rela-
tivity (GR), or extensions of GR with more complex La-
grangians, such as those which contain derivatives of the
metric of order higher than two. The less restrictive
WEP makes no statements about what fields or interac-
tions are allowed, but requires that the dynamics of the
theory conspire to move test bodies of arbitrary composi-
tion on identical trajectories through spacetime.

The WEP is experimentally tested by Eotvos-Dicke-
Braginsky experiments. ' It is possible to put extremely
precise limits on violations of the WEP by comparing the
relative accelerations of objects with different composi-
tions. The EEP, on the other hand, is tested by gravita-
tional redshift experiments; any metric theory of gravity
will predict the same redshift. The best precision obtain-
able in these experiments is typically of order —10
while the WEP limits are as good as —10

Schiff has conjectured ' that any consistent Lorentz-
invariant theory of gravity which obeys the WEP would
necessarily obey the EEP. If true, this conjecture would
allow the high-precision tests of the WEP also to con-
strain violations of the EEP, which would dramatically
increase our experimental confidence in all metric
theories of gravity. While Schiff's conjecture has not
been proven in full generality, it has been demonstrated
to hold under certain conditions. Lightman and Lee, for
example, were able to show that Schiff's conjecture would
hold for electromagnetically interacting systems in a stat-
ic, spherically symmetric gravitational field.

In a more general framework, however, Ni was able to
find a unique counterexample to Schiff's conjecture. Ni
found the most general interaction Lagrangian for elec-

43 3789 1991 The American Physical Society



3790 SEAN M. CARROLL AND GEORGE B.FIELD 43

tromagnetic systems in a gravitational field, subject to the
following restrictions: (i) uncharged particles follow geo-
desics of a Riemannian metric; (ii) electromagnetic gauge
invariance holds; (iii) interactions with derivatives of the
gravitational fields are excluded; and (iv) the Lagrangian
is quadratic in derivatives of the electromagnetic poten-
tial A„, yielding linear equations of motion. Ni found
that an interaction defined by the Lagrange density

&g Pe"'i' F„F
led to violation of the EEP while obeying the WEP. Here
g is minus the determinant of the metric g = —det(g„),
P is a dimensionless scalar function of the gravitational
fields (that is, g„and any other scalar, vector, and other
fields in the theory of gravity under consideration), F„ is
the Maxwell tensor F„=V„A —V A„=B„A —8 A„,
and e is the Levi-Civita tensor e" p =g ' e" p . In this
expression e" p is the alternating symbol normalized to
e ' = + 1. Our conventions are those of Misner,
Thorne, and Wheeler, and we set c =6=1.

Ni's Lagrangian is intriguing as a counterexample to
Schiff's conjecture. If the WEP, but not the EEP, were a
symmetry of nature, we would have every reason to ex-
pect that a coupling such as Eq. (1) would contribute to
the interaction between electromagnetism and gravita-
tion. In this paper we show that, should a term such as
(1) be significant in a cosmological context, the plane of
polarization of radiation emitted by astrophysical sources
would be rotated as the radiation propagates to Earth.
As such a rotation is not observed, we can put limits on
the parameter P and, hence, conclude that nature chooses
not to violate the EEP in this unique fashion.

II. POLARIZATION EFFECTS

It is helpful to write Xz in a different form. Defining
the dual Maxwell tensor as

&g PF" V A„
4vr P V

&g [A V„(PF" ) V„(PF" A, )j, —
4~ (3)

where V„denotes the covariant derivative relative to g„.
An exact differential does not afFect the classical action
and, hence, not the field equations; so we can ignore the
divergence in Eq. (3). Recalling that the homogeneous
Maxwell equations are

we see that, to within a divergence,

&g (V„P)A„F" (5)

Fpv —) ~pvp—
2 po.

and noting that both F and F are antisymmetric, we can
integrate by parts to write Eq. (1) in the form

&g yF .F~1

8m pv

It is clear from Eq. (5) that only the gradient of P, not P
itself, enters the field equations. This is consistent with
the well-known fact that a Lagrangian of the form
const X(&gFF) has no effect on the classical field equa-
tions. Note that, while (5) is not manifestly invariant un-
der gauge transformations for electromagnetism, a gauge
transformation A„—+ A„+B„A, changes L& by an ir-
relevant divergence.

Equation (5) is similar to the Chem-Simons Lagrangian
discussed by Carroll, Field, and Jackiw (CFJ):

&gp„A F"'.
8~

(6)

gauge and Lorentz invariance are preserved. Comparing
with Eq. (5), we see that Xz =Mes if

is a function of the gravitational fields. Proceeding as
CFJ did, but taking into account the effects of curvature,
we find that the field equations corresponding to
X =EM,„+X~are

V„F"'= 2(V„P)F"—

with the Bianchi identities

(9)

(10)

unaltered.
We use these equations to describe propagation of elec-

tromagnetic waves in the Universe. To accomplish this
we take spacetime to possess the geometry of a Rieman-
nian manifold with symmetric metric and the usual Levi-
Civita connection. That we can do this is not immediate-
ly obvious, since the physical principle which allows us to
make these assumptions is the EEP, and Ni has shown
that a theory of gravity which includes the term (1) does
not obey the EEP. However, we are in the special situa-
tion of considering a theory which does obey the EEP ex-
cept for the unique addition of Ni s Lagrangian. There-
fore, absent this term, the gravitational fields and space-
time geometry are that of a metric theory, with the usual
covariant derivative structure. The addition of the term
(1) does not add any new geometrical objects to the
theory or alter any of the existing ones; rather, it merely
introduces a new interaction between the existing gravita-
tional fields and the electromagnetic field. Therefore,
treating the theory as "almost a metric theory" is
justified. However, it is important to note that we can (if
we wish) rewrite the formalism in terms of torsion, in
which case the geometry itself is altered. This formula-
tion has been carried out by Ni in Ref. 8.

CFJ studied Xcs in fiat spacetime as an interaction term
added to the free Maxwell Lagrangian

&gF—„,F" /16'. The external vector p„was taken
to be a constant vector field which violates Lorentz in-

variance by defining a preferred reference frame. CFJ
noted that ifp„=V„e, where 0 is a dynamical scalar field,

so that

&g (V„B)A„F"1
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Since spacetirne is Riemannian, the metric for a spa-
tially Hat, homogeneous, and isotropic universe can be
written in the Roberson-Walker form

P'=0 as 2rrlk. Then we can use a WKB solution to Eq.
(21):

1/2

ds =R (g)( —di} +dx ), F+(g)=exp ik J 1+2
k

dn (22)

where dn=dt/R is conformal time, R is the scale factor,
and x represents Cartesian coordinates in three-space.
We see that, for this metric,

where we have chosen the positive root for definiteness.
Since the change in P over one period,

g=R'. (12)
I

b,P =P'hi} =P'hx = (23)

and

8
(R E)—V X(R 8)= —2$'R 8

an
(14)

V E=O, (15)

To solve Eqs. (9) and (10) we write them in terms of E
and B as defined by Turner and Widrow:

0 E E E,
—E 0 B —8X ZF'=R 'E-B 0 B (13)

y z X

—E B —B 0Z y X

The dual tensor F" is obtained from F" by letting
E—+B and B—+ —E.

In Ni's Lagrangian, P depends only on the gravitation-
al fields, which in a Robertson-Walker cosmology depend
only on il. If we drop terms in Vp, Eq. (9) becomes

is very small by assumption (where we have used b, ii=6,x
along the light ray), we can expand the radical in EtI. (22},
and then, upon restoring the common factor e ' ", we
find that

B+(x,rl) =e '""R F+(rI) =R e

where the phase 0.+ is

(24)

o+=k(il —x)+p(ri) — J (p') dg+O(k ) .
2k

(25)

From this we see that both positive and negative modes
are waves propagating in the x direction, but with
difterent phase shifts that depend on $(il). The energy
density, proportional to ~B~, goes as R, as expected.
From Eq. (20) we see that F+ (F ) represents a wave of
positive (negative) helicity.

The frequency measured by a co moving observer
(x=const) is

where P'=dgldg, and V X and V represent the usual
differential operators in Cartesian three-space. Equation
(10) becomes

a~
Bt R

Bo

. an .-

(R 8)+VX(R E)=0
an

(16)
k+P' — (P') +O(k )

R 2k
2

and

V B=O. (17)

=k+ &' — '
R 2k R

+O(k ), (26)

If we diff'erentiate Eq. (16) by rI and use Eqs. (14) and (17),
we obtain the wave equation

a2
2 (R 8)—V (R B)=2/'VX(R 8) . (18)

where

kk=—
R

is the wave number modified by the redshift effect.

(27)

Equation (18}has solutions of the form

R B(x,il)=e '"'"R B(r}), (19)

d F+
, +(k'+2k/')F =0 .

dn'
(21)

The next step depends on the behavior of P(i) }. In this
section we assume that P changes very little over the
period of the wave, given by the solution to Eq. (21) with

so that V~—ik. If we take the x axis to point along k,
so that k x=kx, Eq. (18) implies two coupled equations
for B~(ri) and B,(q), which are simplified by defining

F+(YI)=R B ( }+)=7R (B +iB,), (20)

in terms of which Eq. (18) can be written

III. LIMITS ON KEP VIOLATION

On the basis of Eq. (26) we can verify that the theory
satisfies the weak equivalence principle (WEP), but not
the Einstein equivalence principle (EEP). The latter is
easier to see: By measuring the relative phase of waves of
opposite helicity, experiments in a freely falling frame
will depend on P'(rj) and, hence, on the gravitational
fields on which it depends, contrary to the EEF. We ex-
ploit this fact later in this paper.

According to the WEP, test bodies follow trajectories
that are independent of their internal structure and com-
position. For radiation we interpret this to mean that the
group velocity v associated with wave packets should be
independent of their helicity. The group velocity for the
two helicities is given by
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t

rA'
v += =1+

Bk 2k
+O(k )

1 B„WB"4
g (I~A coBD (34)

1=1+—
2 k

2

+O(k ) . (28)
is the Brans-Dicke Lagrangian. Here A is the Ricci sca-
lar, ~ is a dimensionless constant, and N is a scalar field
whose value today is related to Newton's constant by

As usual, a "test body" is defined to be small enough in
size that couplings to inhomogeneities in the gravitation-
al fields may be neglected. ' For radiation this definition
implies that couplings of order ((t, '/k) and higher may
be neglected, since the size of a wave packet is k-1/k.
Since Eq. (28) tells us that, to this order, the group veloci-
ty of a wave packet is U = 1 independent of helicity, the
WEP is satisfied.

The degree to which the EEP is violated (hence the
efFective degree of violation of SchN"s conjecture within
this framework) can be determined by observing the
change Ag in position angle g of the plane of polarized
radiation from distant synchrotron sources at redshift z
due to the phase shift between the modes of opposite heli-
city. According to CFJ,

~X= —,'(ai —a-) = —&0

1
0 g (35)

0 )
—) /(co+ 1)

where t0 is the present age of the Universe,
t0-H0 ' —10' sec. Since radar-echo delay experiments
in the solar system' have set the limit on the Brans-
Dicke parameter cu) 500, we may expand this for large co

to find the change in @between a source at redshift z and
today:

it is this field which we take to couple to EF through Ni's
Lagrangian (1) with P= a@. Weinberg" has solved the
Brans-Dicke field equations for a spatially flat
Robertson-Walker universe to obtain

' 2/( 3'+ 4)

5P = (t)(0) —P(z) (30)

ln(1+z)
cr3+ 1

Our limit 16(()1=1ab@1& 0.1 for (z ) =0.9 then yields

(37)

is the change in P since the epoch of redshift z. CFJ
showed that for sources with (z ) =0.9, observations lim-
it IhgI to &0.1, whence 15/1 & 0. 1 with 95% confidence.

In Ni's formulation, P is a function of the fundamental
gravitational fields (but not their derivatives), but is oth-
erwise arbitrary. It is therefore difficult to limit rigorous-
ly (t), as the dependence of P on cosmic time is unknown.
Nevertheless, in the cosmological context under con-
sideration, it is reasonable to assume that any function of
the gravitational fields is currently varying smoothly on a
time scale comparable to the Hubble time H0 ' —10'
sec. That is,

lal &0.2(co+1)&bo ' . (38)

We argued in Eq. (5) that only the gradient of P affects
electromagnetism through Ni's term; therefore, Po is the
quantity which enters present-day experiments. From
Eqs. (36) and (38) this is limited by

I

gaol

=
I a@o I

-0.4 3'+ 4
(39)

Since co)) 1, Ia&bo & 10 ' sec ', in agreement with Eq.
(32).

For comparison, consider the solution for the Brans-
Dicke scalar in the solar system:"

4o —Ho&4

which implies the limit

(31)
o +const,

r(co+2)

IgoI &10 ' sec '=10 ' GeV . (32)

Evidently, the fact that no rotation in polarization is ob-
served over cosmological scales places a stringent bound
on

I joI.
We may compare the strength of this upper bound

with what might be obtained from hypothetical solar sys-
tem tests. To make this comparison, consider a theory
with a Brans-Dicke scalar coupled to electromagnetism
through Ni's Lagrangian. ' That is, we imagine a theory
of gravitation and electromagnetism defined by a La-
grangian

where Mo is the mass of the Sun. The greatest change in
N we may hope to measure is the difI'erence in N between
the surface of the Sun and a point at infinity. Using
Mo/ro=2X10 6 ', this is

b+(rc) —r )=2X10 (co+2) (41)

I
a

I

& 5 X 10'(o~+2)4'o '5y . (42)

Therefore, if we are sensitive to a rotation in polarization
angle of 6g, and the rotation due to the Ni eftect is ap-
proximately equal to the change in P, then we can poten-
tially place the limit

X =XHD+XM, „— i/g 4F F"
8a p~

where a is some coupling constant and

(33) Comparing this result to Eq. (38), we see that experi-
ments sensitive to rotations of polarization angle of 10
rad are necessary to duplicate the precision of the cosmo-
logical test. While this comparison was performed for
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the specific case of "Brans-Dicke-Ni" theory, it helps to
confirm our suspicion that the cosmological test is likely
to be more constraining than all but the most precise so-
lar system experiments.

IV. DISCUSSION

+g 4F .F" .
8a ){IV (43)

The scalar P is taken to be a function of the gravitational
fields present in a theory of gravity (which otherwise
obeys the EEP). The addition of this Lagrangian leads to
a rotation in the plane of polarization of radiation. Not-
ing that a {t that varies smoothly with time in an homo-
geneous and isotropic universe would affect the correla-
tion between polarization angle and position angle of ra-
dio galaxies, we used the nonexistence of such an effect to
place the limit given by Eq. (32) on the magnitude of this
parameter. Our limit applies only to functions which
vary monotonically, rather than oscillating or behaving
in a more complex fashion; nevertheless, we believe this
to be a reasonable assumption in the cosmological con-
text under consideration.

Ni s Lagrangian is unique in that, under a certain gen-
eral set of assumptions, it is the only possible way to
violate the EEP without violating the WEP. It is remark-
able that Schiff's conjecture possesses only one counterex-
ample within this framework: As noted above, such an

We have considered the observational consequences of
coupling gravitation to electromagnetism through the Ni
Lagrangian

interaction might be expected if the WEP, but not the
EEP, were a symmetry of nature. In this paper we have
argued that Ni's Lagrangian has negligible effects in the
contemporary Universe, if it exists at all. (Our test does
not address the possibility that tI) may be unimportant to-
day but significant in the early Universe. ) Within the as-
sumptions of Ni's framework, this result implies that
tests of the WEP (such as Eotvos experiments) provide
strong support for the EEP and, hence, for all metric
theories of gravity. ' Possible future work would loosen
the assumptions of Ni's framework to include couplings
to derivatives of the gravitational fields and extension of
the formalism to spontaneously broken gauge theories.

Recent progress in theories such as supergravity and
superstrings has renewed interest in alternatives to gen-
eral relativity, including scalar gravitational fields. ' It is
conceivable that a term such as Ni's could arise in the
low-energy effective theory from a unified scheme. We
believe that cosmological tests such as the one presented
in this paper may prove useful in constraining models un-
ifying gravitation with particle physics.

Tote added: After this paper was submitted, we be-
came aware of related work by Wolf. ' Wolf explored ob-
servational consequences of the Lagrangian (1), but did
not consider the test proposed in this paper.
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