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Quadrupole moments of the decuplet baryons

M. I. Krivoruchenko

and Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia

M. M. Giannini

(Received 26 December 1990)

An explicit analytical expression is derived and numerical estimates are given for the quadrupole
moments of the decuplet baryons in the framework of the constituent quark model up to first order
in the quark-gluon coupling constant. The possibility for measurements of the quadrupole moments
is also discussed.

Tensor forces between quarks are predicted by QCD
and displayed in the mass splitting of orbitally excited
mesons and baryons, in the E2 radiative decay 6-- =py,
and also in the occurrence of static quadrupole moments
of the decuplet baryons. The quadrupole moments of the
decuplet have been discussed in the constituent quark
model' and in other approaches. ' In this Brief Re-
port we show that, in addition to the numerical estimates
of Refs. 1 —4, the problem of calculating the quadrupole
moments of the decuplet admits of an explicit analytical
solution in the first order to the quark-gluon coupling
constant.

We use the method applied earlier to the calculation of
the neutron charge radius in the constituent quark mod-
el. Let us introduce an auxiliary potential

I' =C.pQ.p

where C p is a small traceless tensor, Q p is the operator
for the quadrupole moment of a baryon,

Q p= g e;[3(x;—R) (x; —R)p —(x; —R) 5 pj,

Q() = W;P,

and, to first order in o,„
Q(~=~, WP .

(6)

Q.p= „" (e(C.p)I V, lq(C.p))dC.p

where VT is tensor part of the Fermi-Breit potential:

In Eq. (5) the cross term -a, C p can be computed in
two difFerent ways, that is, according to the scheme
O(1)=.O(ct, )=.O(a, C p) or to the scheme
O(1) -O(C p)=0(ct, C p). This means that we may
compute first the corrections of order e, or C p to the
quark wave function and, at the final stage, the energy
shift -a, C p. The potential (1) represents some kind of
oscillator potential, and so the first-order correction
—C p to the quark wave function can be obtained by
simple redefinition of the model parameters.

Equation (4) implies

where e; are the quark charges in units of the proton
charge, x; the quark coordinates, and R defines the
center-of-mass frame. The energy shift to first order in
C p is given by the well-known expression

am=(qivie) . (3)

If W = W(a„C p) represents the energy of the system
exact to all orders in a, and includes also first-order
corrections to C p, then the equality

As n +pcs ai 0 pjVT= g
i &j 6 nl njl lj

m; are the constituent quark masses, n p=3n np —5 p,
and n=(x; —xj )/ x; —x, ~.

We consider three quarks with constituent masses, p,
p, and p', and charges e&, e2, e', for quarks 1, 2, and 3,
respectively, and interacting through the potential

U=k/2 g (x; —x, )' .

dR'
dc ap

(4) In standard variables

is to be correct to all orders in a, . We wish to find the
first-order one-gluon-exchange contribution to the quad-
rupole moments, and so it is sufBcient to restrict the ex-
pansion of the energy 8'up to the term -a, C p.

p=(x, —x2)/&2,

A, = (2x3 —x, —x~) /&6,

the operator of the quadrupole moment (2) takes the form

8'= 8 i+a, 8'2+C pW3p+o;, C p8'4p+ . .

In agreement with Eq. (4), we have, to zeroth-order in ct„

Q p=ep p+qk p+p(pA, ) p,
where

(10)
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e =(e, +ez)/2,

q =3e fp'/(2p+p')) +6e [p/(2p+p')]

p =v'3(e, —e, )p, '/(2p, +p'),

dius in the constituent model, '

(16)

where

eC &p
—&/(2co ) C&A. —&/(2coz)

Cp(pk—, ) p/(co +coq)], (12)

m =p, mz =3p'p/(2p+p'),

co =3k/p, , cog=k(2p+p')/p'p .
(13)

The values n p/r entering the tensor part of the Fermi-
Breit potential are to be averaged over the wave function
(12). For the decuplet baryons the calculations give

1/2

e/(4m co )+3q/(4mqcog)

[1/(4m co )+ I/(4m~co~) I' pp

(14)

and, particularly for the 6 isobar, we get

where ez is the b, charge, (r„) is the neutron charge ra-

2
Pap 3PaPp P ~ap ~

p 3A Ap Ar 5 p

2(pA, ) p= 3(p Ap+ A ~p) —2(pA, )5 p .

The perturbed wave function in the potential (1) can
easily be found to be

%(p, A, )=( mco /rr) (mzcoz/rr) ~

X exp[ —m co p /2 —mqcoqA, /2

with m„being the nonstrange-quark mass, and co=co is
defined according to Eq. (13) for p=m„. Equation (16)
can also be used to eliminate the quark-gluon coupling
constant a, and the oscillator potential strength k from
expression (14}. As a result, the quadrupole moments of
the decuplet are expressed in terms of the neutron charge
radius and the ratio between strange- and nonstrange-
quark masses only. In Table I we give predictions for the
quadrupole moments obtained in this way. The states
with zero charge acquire nonzero quadrupole moments
only in the presence of quarks with different masses. For
the charged particles variations of the ratio m, /m„ in the
range 1.3—1.5 result in changes of the predictions from
0.003 fm for the X*+ to 0.007 fm for the 0

The calculation illustrated above uses as an unper-
turbed state the lowest harmonic-oscillator configuration.
The spin-spin part of the Fermi-Breit potential, however
mixes Ohio and 2A~ states, and such a superposition
should in principle be taken into account in Eq. (8). The
resulting correction is of the second order in a„and nu-
merical evaluations lead actually to a contribution of the
order -30%.

Finally, we make a few comments on the possibility of
measuring the quadrupole moments of the decuplet
states. As for the 6, one can consider' the inelastic
scattering of electrons or of polarized photons off pro-
tons. Detecting the emission of a photon prior to the 6
decay, one can extract the (small) contribution by means
of a detailed analysis of the angular distribution. It
should be remembered that this mechanism is very simi-
lar to the radiative pion capture used for the determina-
tion of the 6 magnetic moment. ' The smaller widths of
the X* and:-* states do not allow one to apply this pro-
cedure. Since 0 is long lived, its quadrupole moment
can in principle be measured by studying energy-level
splittings in hydrogenlike atoms formed by a Q and a
heavy nucleus. The energy of the quadrupole in an elec-

TABLE I. Quadrupole moments (Q» X10 fm ) of the decuplet baryons with (r„)=( —11.6+0.5)X 10 fm (Ref. 9) and

strange-nonstrange constituent quark mass ratio m, /m„= 1.5 For comparison, the results of other calculations in the nonrelativistic

quark model (NRQM), Refs. 1 —4, the chiral bag model (CBM, Ref. 5), and the nonrelativistic quark model with the meson couplings
(Ref. 6), are shown. In Ref. 3 the ratios of the quadrupole moments of 6 and 6 charge radius are given. The absolute values in the
table are obtained using the expression for the 6 charge radius from Sec. 4.3 of Ref. 10, expansion coeKcients of the higher orbital
and radial modes from Sec. 2, Eq. (4) of Ref. 11, and the harmonic-oscillator parameter from Ref. 12.

Baryon

NRQM (Ref. 1)
NRQM (Ref. 2)
NRQM (Ref. 3)
NRQM (Ref. 4)
CBM (Ref. 5)
NRQM with
mesons (Ref. 6)
NRQM (present
calculation)

—6.6
—9.8

—17.8
—12.6

—6.0

—9.3

—3.3
—4.9
—8.9
—6.3

—2.1

—4.6

gO

0.0
0.0
0.0
0.0

1.8

0.0

3.3
4.9
8.9
6.3

5.7

4.6

—2.2

—5.4

—0.01

—0.7

2.0

4.0

—0.59

—1.3

1.0

3.4

1.8

3.1

0.57

2.8
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tric field of a nucleus with charge Z and spin zero can be
estimated to be of the order AE& —(aZ) Q33m n, where

0; is the fine-structure constant. As compared with the
spin-orbital splitting, bE&, -(aZ) lmn, the quadrupole
moment produces energy shifts of the same order of mag-
nitude as the spin-orbit interaction in states I —1, and its
relative contribution decreases with increasing of orbital
momentum as 1/l. Exotic atoms consisting of a X and

a heavy nucleus have been studied previously to deter-
mine the magnetic moment of X in an experiment per-
formed at the Alternate Gradient Synchrotron at BNL. '

The fine structure has been measured in x rays emitted in
transitions between states with I —10. In experiments of
such a type for 0, one can expect contributions —10%
coming from the quadrupole moment (for a more detailed
discussion, see Ref. 16).
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