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Nonequilibrium Auctuations in cosmic vacuum decay
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With the help of the Landau-Lifshitz theory for nonequilibriurn fluctuations four recent phenom-
enological models for the decay of the eA'ective cosmological constant are analyzed. The model of
Ozer and Taha as well as the one of Chen and Wu successfully pass our test.

I. INTRODUCTION (iv) The law of Chen and Wu:

t 1/2(1 —x) (3)

x being a phenomenological constant parameter.
(iii) The law of Gasperini:

12~ b —', (n(2,R2n (4)

where b is a constant to be determined and n a phenome-
nological constant parameter.

One of the main puzzles concerning our current under-
standing of the physical world is the small value of the
effective cosmological constant A(10 ' M~, or, what is
the same, the tiny value of the vacuum energy density

p, =A(8trG) ', as witnessed by cosmic observation. The
status of this problem has recently been reviewed by
Weinberg. '

Several authors have tried independently to account
for the current small value of A by assuming that the
cosmological term is not really constant but its value con-
tinually decreases as the Universe expands. The rationale
behind this is that the energy density of the vacuum
should spontaneously decay into massive and massless
particles, hence reducing A to a value compatible with as-
tronomical constraints. This view has gained some sup-
port from Gasperini who argues that according to an
earlier work by Gibbons and Hawking the cosmological
term can also be interpreted as a measure of the tempera-
ture of the cosmic vacuum. Hence, if at some time close
to the Planck era the vacuum were in thermal contact
with radiation, the Friedmann expansion of the Universe
would not only decrease the radiation temperature but
the vacuum temperature as well.

So, there exist at the moment different phenomenologi-
cal laws relating the energy density of the vacuum to
cosmic time, or, what is the same, to the scale factor R (t)
of the Universe. These are the following.

(i) The law of Ozer and Taha:

A= 3

yR

with y=—8~G and R given by R =R o+t .
(ii) The law of Freese et al. :

R

where y is a positive-semidefinite constant of order unity.
Note that the dependence of A on R is the same as in

the model of Ozer and Taha, Eq. (1), and in the model of
Chen and Wu, Eq. (5). However, both models are actual-
ly very different from each other as they differ on their
assumptions and lead to different conclusions.

All of them make use of the Friedmann-Robertson-
Walker scenario with the equations

2

+ =—'(yp+A) (k =1,0, —1),R k
R

(6)

p+3(p+P) R A

R

Here and throughout, p and P stand for the energy densi-
ty and pressure of matter plus radiation, respectively.
The overdot means derivation with respect to cosmic
time.

However, since these equations do not determine A but
only constrain its behavior we need to introduce addi-
tional assumptions which, although reasonable in princi-
ple, depend to some extent on the personal taste of their
authors.

Therefore, assuming the idea of a varying cosmic vacu-
um energy density happens to be correct, one is naturally
led to ask which, if any, of these laws is the correct one.
Of course, we do not have the answer to this. However,
the laws mentioned, (1)—(5), can be analyzed from the
thermodynamic point of view. This analysis tests the
likelihood of these laws. Effectively, the flux of energy
d p„ ldt from the vacuum to radiation and/or matter
must Auctuate around its mean value. As we will see
later the knowledge of these Auctuations will rule out
some of the above laws. Effectively, it turns out that the
fluctuations predicted by two of the models (those by
Freese et al. and by Csasperini) are at variance with
cosmic observation.

Our purpose in this paper is to study the Auctuations of
the Auxes mentioned around their average values and
draw some conclusions from the behavior of these Auc-
tuations. To this end we shall employ the well-known
Landau-Lifshitz (LL) Auctuation hydrodynamic theory
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y;= Q I;, Y, +5y;
J

and the entropy rate by

S= g(+Yy, ),
1

(8)

(9)

then the second moments in the fluctuations of the fluxes
obey

(5y, 5y, ) =k~(I,, +I, )5, 5(t, t, ) . — (10)

Here and throughout angular brackets denote a statistical
average with respect to the steady state, and the fluctua-
tions 6y, are considered spontaneous deviations from the
steady-state value (y, ), so (6y, ) vanishes. The quanti-
ties I, and Y; stand for the phenomenological transport
coefficients and the thermodynamic force conjugate to
the fiux y, , respectively. In (9) the minus sign must be
taken when the product Y,y, is negative, otherwise the
plus sign should be considered.

This theory, as mentioned earlier, is only valid for
linear steady-state fluxes. However, at first sight the
fluxes

which applies in equilibrium and nonequilibrium classical
statistical theory.

According to Landau and Lifshitz, if the flux y; of a
given thermodynamic quantity, which evolves in a gen-
eral dissipative process, is governed by

In what follows we study the fluctuations of the fluxes
following expressions (1)—(5) in turn. We consider only
the possibility of the vacuum decaying into radiation
inasmuch as the possibility of the vacuum decaying into
nonrelativistic particles has been dismissed by Freese
et al. on observational grounds.

II. THE APPROACH OF OZER AND TAHA

One of the main ingredients in the model of Ozer and
Taha is the assumption that the energy density always
coincides with the critical value 3II g. This, together
with Eqs. (6) and (7) and the principle of entropy in-
crease, yields k=1 for the spatial curvature and leads to
Eq. (1). The latter gives the dependence of the cosmolog-
ical term on the scale factor. Furthermore, if the cosmic
fluid consists of pure radiation,

p=3I' = g r4
30 eff

the dependence of the energy density on R takes the form

p=A[1 —(Ro/R) ], (13)

where g, ff denotes the eftective number of relativistic de-
grees of freedom.

This model has the advantage of being free of the main
cosmological problems that beset many other scenarios.

The fiux associated with Eq. (1),
RA- —A-
R

6

yR
(14)

following from expressions (1)—(5) are neither linear nor
steady. So it may seem inconsistent to apply the LL
theory to the problem we wish to study. Nevertheless,
for cosmic times much greater than unity, or what is the
same, for large-scale factors, both the right-hand sides of
Eqs. (1)—(3) and the Hubble term H—=R /R are quite
small and nearly constant. Hence, we can say that at
sufficiently large cosmic time, t &&tr, , A becomes steady
for all practical purposes. By this we mean that the
change of A in the interval of time in which a measure of
it is performed produces a negligible result. After these
remarks, it becomes clear that it is valid to apply the LL
theory to our problem provided that we restrict ourselves
to cosmic times larger than, say, 10 tI, .

It should be noted that due to the absence of a reliable
theory accounting for the decay of the vacuum these fluc-
tuations cannot be analyzed from first principles. So, if
such an analysis is desired one has to rely on some phe-
nomenological method and, to our knowledge, the LL
one is more suitable for the problem under consideration.

Before going any further it is worth noting that if the
cosmological term were constant the entropy would
remain fixed, as long as we deal with a perfect cosmic
fluid. But, if A is allowed to vary the Universe expansion
will give rise to an entropy production

~ V.TS= ——A,
x

where T denotes the temperature of the fluid.

', H+6A
yR

(15)

So, we have an expression for the flux A that parallels Eq.
(8). Obviously its average value (A) is given by the first
term on the right-hand side of (15).

The production of entropy reads

(16)

where T stands for the radiation temperature

T=(90/y~ g, fr)' (t/R)'

If we compare (15) and (16), respectively, with (8) and (9)
we get a sort of phenomenological transport coefficient
I =(3T/~ R )H. Thus the second moments in the fiuc-
tuations of A simply read

(5A(t, )5A(t ) ) = H6(t, t ), —
R

or, in terms of t,

t3/2
(5A(t, )5A(t, ))=B, , „,5(t, t,)—1 (R2+t2)15/4 (18)

becomes quasisteady and almost linear in H for
sufTiciently large R whence it is permissible to apply the
LL theory sketched above. To this end we add to the
right-hand side of the last equation a stochastic term 6A:
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with 8—:(6/w )(90/w gg, fr)' . This shows that, as ex-
pected, the second moments decrease with time as the ex-
pansion proceeds.

III. THE APPROACH OF FREESE et al.

This model is built on the assumption that the energy
densities of the vacuum and radiation redshift at the
same rate. As a consequence, for large t,

which is contrived to satisfy the requirement of Freese
et al. that the vacuum energy density redshifts at the
same rate as the radiation does —see expression (19)
above.

Equation (4) automatically follows from the combina-
tion of (24) and (25). Inserting the former into the energy
balance equation (7) and assuming that the adiabatic rela-
tion for the energy density of matter d(p „R )/dt=O
remains valid one has, for large R,

Pv —+X
Prad+Pv

(19)
nA

p y(n —2)
(26)

where x is a nonvanishing phenomenological constant pa-
rameter whose value lies somewhere between zero and
unity. Using this condition, in addition to Eqs. (6) and
(7), with p and P being those of pure radiation [Eq. (12)]
and k=O, one obtains expressions (2) and (3) for the
radiation-dominated era. The radiation temperature
reads

T= [—"~'g,tr(1 —x)] ' t

Here p refers to the radiation energy density. Since this
quantity has to be positive the restriction n (2 immedi-
ately follows. The restriction n (—', comes from observa-
tional limits on nucleosynthesis and entropy generation.

The flux associated with Eq. (4) is

24~ b

R 211

with H =[8m/(2 —n)]bR ", and the entropy production

The Aux associated with Eq. (2) is

p, = —4(1 x)p, H,—

whereas the production of entropy adopts the form

~ RS= 4(1 x)p, H, —

(21)

(22)

~ 2nR A
T

where

30 nA

ge~ 2 n

(28)

(29)

(23)

where we have taken V=R . For large cosmic time p,
becomes quasisteady and linear in H. Hence, the LL
theory can be applied. It yields, for the second moments,

(6p, (r, )6p„(r, ))= „, H6(t, r, ) . —8(1—x) PU

(3~)' R
(6A(r, )6A(r, )) = 6(r, r, ), —

J Rm

5 1/4

(30)

denotes the radiation temperature.
As in the previous cases the Aux (27) is quasisteady for

large R; hence, it makes sense to apply the LL theory.
We obtain

IV. GASPERINI APPROACH C —= 384m
360

2—n
m =3(n +1)+—

2

This model rests on two key assumptions. The first one
refers to the thermal interpretation of the cosmological
term. According to it this quantity can be thought as a
parameter measuring the intrinsic temperature of the
cosmic vacuum:

(24)

T.= b

R '(r)
(25)

So, it might be said that A represents the contribution of
the vacuum temperature to the geometry. Accordingly it
seems natural to think that at some early time, close to
the Planck era, the vacuum and radiation were in thermal
contact: T, —= T„d. As the Universe expands both tem-
peratures should decrease. This simple picture is intend-,
ed to ofF'er an explanation of the current very small value
of A. Recently, we have shown that if such an equilibri-
um ever occurred the maximum value of A at that time
should be lower than 2.8M~.

The second assumption refers to the dependence of the
vacuum temperature on the scale factor

V. THE APPROACH OF CHEN AND WU

A ~Mp(Lp/R)" (fi=c =1) . (31)

If one tries to recover the Planck constant A one is led to
the conclusion that the choice n=2 is the only one com-
patible with the nonappearance of A in the right-hand
side of the Einstein classical equation once (31) is substi-
tuted into. Obviously, it would be quite disturbing that
such an appearance would occur for times larger than the
Planck time. From observational considerations related
to the fatness of the Universe it follows that y cannot be
negative.

This model, apart from being compatible with the
present observational limit on A and not conflicting with
the predictions of the radiation-dominated epoch of the

The main argument of Chen and Wu leading to Eq. (5)
runs as follows. Assuming from the start that A must
vary as a power of the scale factor, the most natural ex-
pression for A should be of the form
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standard model, has some interesting consequences for
the matter-dominated epoch which make it easier to
reconcile observation with the inflationary scenario.

The (lux associated with Eq. (5) and the production of
entropy read

A = —2AH,
RH

(32)

(33)

respectively, where

1/4

T y30
2~ gee

1/4

(34)

denotes the radiation temperature and 3 is a positive
constant. The Hubble parameter can be obtained from
the combination of equations (7) and (9) in Ref. 5:

1/2
2y k

1

3R4
(35)

It is clear that A becomes quasisteady for large R whence
it is admissible to apply the LL theory. It yields, for the
second moments of the fluctuations of the Aux,

(5A(t, )5A(t ))=, H5(r, r) . — (36)

VI. CONCI. UDING REMARKS

r
—t /2 R (2 —5x)

5F

R (5 —6)/2 P R
—1/2

bG HACH

(37)

where the g's refer to models of the Ozer and Taha,
Freese et al. , Gasperini and Chen and Wu, respectively.

As expected, the strength of the fluctuations decreases
in all the cases [Eqs. (17), (18), (23), (30), and (36)] as the
Universe expands. However, there is an important aspect
in which the fluctuations corresponding to the models of
Ozer and Taha and of Chen and Wu differ from those of
the two other models. If we calculate the ratio

(5A(r, )5A(r, ) )

(A(r, ))(A(t, ))

for the different models we find

Relations (37) show that whereas for and gcH decrease
with cosmic expansion gF and go increase. (Bear in mind
that the lower phenomenological bounds on x and n are —,

'

and —', , respectively. ) This means that sooner or later the
fluctuations of the cruxes in the two latter models will be-
come greater than the average value of the corresponding
flux. That is to say, these models predict for a large-scale
factor an erratic behavior of the cruxes. In contrast, the
models of Refs. 2 and 5 are free of such anomalous be-
havior since the LL theory applies only for times greater
than unity.

In this light we can say that expressions (1) and (5) ap-
pear to be much more reliable than (2) and (4). This
point of view is reinforced when one realizes that an er-
ratic behavior for cosmic times greater than, say, 10 t~,
would distort the microwave background away from the
Planck spectrum well beyond the limits allowed by cosm-
ic observation —see Sec. 3.2 in Ref. 3. Effectively, even if
the vacuum decays with a Planckian distribution there is
no grounds for which the corresponding

fluctuations

((5p, ) )' should keep such a spectrum.
This outcome shows that those models based on Eqs.

(2)—(4), respectively, should be dismissed as incompatible
with observation. Furthermore, it suggests that if the
effective cosmological constant indeed diminishes with
cosmic expansion its dependence on the scale factor
should take the form A ~ R

In view of this result one could think that the root of
the failure of the models given by Eqs. (2)—(4) lies in their
common hypothesis, which seems rather reasonable, that
the vacuum energy density and the radiation energy den-
sity should redshift at the same rate. It is to say that the
ratio p, /(p, +p„) approaches, for large R, a nonvanish-
ing constant value between zero and unity. Nevertheless,
it is not so since in the model of Ozer and Taha this ratio
approaches (2g) ' whereas in the one of Chen and Wu it
approaches —,'. In both cases this feature does not consti-
tute a hypothesis of these models; on the contrary it fol-
lows from them as a by-product.
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