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Massive and massless Majorana particles of arbitrary spin:
Covariant gauge couplings and production properties
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It is shown that massive particles that are their own antiparticles can possess only one specific
type of multipolar moments —the so-called toroidal moments. Unlike the familiar charge and mag-
netic moments, these moments do not directly interact with the (external) static electromagnetic
fields but only with the external current, and hence lead to contact interactions. On the other hand,
massless Majorana particles, with the exception of those with spin —,, do not have any electromag-
netic form factor. It is also found that regardless of the spin of the Majorana particle the
differential cross section for the production of a Majorana pair by a spin-1 particle at a high-energy
e+e machine has a unique angular distribution.

INTRODUCTION

Majorana particles are very special in the sense that
they are identical to their antiparticles. Usually the term
Majorana has been used only for fermions but we will
generalize it to include real bosons too, which coincide
with their antiparticles. Majorana particles are predicted
by various versions of grand-unified theories and are una-
voidable in supersymmetric gauge theories. They usually
represent gauge fields. Moreover, since they can only live
in spaces with restricted dimensionality' some theories
cannot be formulated in or extended to arbitrary higher
dimensions. Many investigations have been devoted to
the study of the electromagnetic properties of the spin- —,

'

Majorana particle. These studies successively appealed
to C, CP, and CPT transformations of the Majorana field
with the result that regardless of whether or not the par-
ticle is massive it can only have one P-violating moment,
called the anapole, " in striking difference with a Dirac
particle, which can have charge, magnetic, as well as
electric dipole moments. The peculiarity of the anapole
moment is that it does not interact with the external elec-
tromagnetic field, but only with the external current.
This gives rise to a contact interaction. The study, by
one of the authors, of the electromagnetic properties of
the Z, which is a spin-1 Majorana particle, in the
context of the SU(2) XU(l) model, has shown that unlike
the 8'+ and 8' the Z has only one moment which is of
the anapole type. Radescu has demonstrated that Ma-
jorana fermions of higher spins can also have only an
anapole and higher multipoles of it. In a recent Letter
we generalize this result to a Majorana particle of any
spin. These derivations were derived by carrying a mul-
tipole expansion of the electromagnetic current and by
relying on the CPT properties of the Majorana particles.

In this paper we rederive these results for the case of a
Majorana (M) particle with arbitrary spin without the
use of the somewhat old-fashioned formalism of the mul-
tipole expansion of the current. But we will, instead,
present a manifestly covariant formulation. This seems
to us more suited for the modern formulation of field
theory and, as we will see, can greatly facilitate the calcu-
lation as well as the analysis of the electromagnetic cou-
plings. For instance many of these calculations in
specific models or theories involve lengthy loop diagrams.
Our results can then help in easily isolating the specific
contributing terms and at least check the Lorentz struc-
ture of the final answer.

Another reason for avoiding the formalism of the mul-
tipole expansion adapted to the Majorana particles is that
in this case the approach heavily relies on the CPT trans-
formation of the field and implicitly assumes the Hermiti-
city of the electromagnetic current, i.e., the reality of the
various form factors F, (k ) However, it i.s well known
that this is only true if there are no absorptive parts and
that we are below certain thresholds. Our approach does
not impose any condition on the reality of the various
F, (k ). A case in point is the ZZy coupling in the stan-
dard model which is generated via a fermion triangle.
The form factor does develop an imaginary part since
(apart from the top contribution) m&„; „(Mz /2. '

Our principal idea is based on the following. We con-
sider the channel y'~MM and require the corresponding
matrix element, under the interchange of the two identi-
cal Majorana particles, to be symmetric for integer-spin
Majorana particles (bosons) and antisymmetric for the
half-integer-spin case (fermions). ' In both cases, we im-
pose current conservation. It is essential to keep terms
proportional to the invariant mass of the photon ("k
terms"). These, in fact, are the ones which generate the
anapole contact term contribution:
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helicity formalism adapted to the case of a Majorana par-
ticle to study the symmetry properties of the amplitude
and the cross section for producing a Majorana particle.
In the most interesting case, that of a production through
a vector boson, at an e+e machine, say, we find for in-
stance that regardless of the spin of the Majorana parti-
cle, the differential cross section always has a 1+cos (8)
distribution, where 0 is the scattering angle. In Sec. VI
we give some applications of our theo rems and an
analysis to current models and theories in particle physics
(standard model, supersymmetry, supergravity, etc. ) and
show how the results of some previous calculations could
have easily been guessed or arrived at.

In the appendixes we have collected some nontrivial
manipulations, tricks, and identities which we have used
in the text and which, on their own right, can be a good
exercise of getting accustomed to the algebra of higher-
spin fields.

I. MASSIVE MAJORANA PARTICLE
WITH INTEGER SPIN

A boson of spin s, mass m, and momentum k is defined

by a tensor of ranks s, A . . . . . , (k ) with the proper-
1 i s

ties that it is' completely symmetric,
a.a.pv1e

1

with vanishing traces,

a,.a.
~a a. a. . . a

1 i j s
(1.2)

(1.3)(k)=0,k 'A

and satisfying the wave equation

(k —m )A (1.4)(k)=0 .

The last two conditions are on-shell conditions.
Consider the transition

y(k, p) ~M(k „a)M(kz, /3) .

In the following, a and /3 will stand for the sequences
of the indices ai . a, and/3i . /3, .

The matrix element can be written as

where k is the photon four-momentum (p characterizing
its polarization) and where S is some functional in the
Majorana fields and momenta.

One needs to write down the general covariant forms
for the current, which might seem a rather laborious task
for higher-spin fields; however, the identical-particle sym-
metry argument together with the properties of the wave
function of a spin-s field make it possible to generate the
form of the current of any Majorana particle from a
knowledge of the much-studied spin- —,

' and spin-1 cases.
The use of fields for spin-s particles does not necessari-

ly mean that our approach only deals with elementary
relativistic particles. For the case of composite objects
these fields should be regarded as extrapolating fields.

The covariant derivation of the form factors of massive
bosonic Majorana particle is carried in Sec. I, where we
indeed find that only anapole structures are possible. For
a particle of spin s there are 2s C-violating terms, half of
which are P violating and the rest are CP violating. The
parity-violating terms exhibit also a P-wave behavior;
that is, if produced through a photon or a spin-1 particle,
the cross section is proportional to P (/3 being the ve-
locity of the Majorana particle). Massive fermionic Ma-
jorana particles are treated in Sec. II with the same con-
clusions as in the bosonic case: (2s+ I)/2 P-violating,
with the P wave beha-vior form factors and (2s —1)12 T
violating ones.

Massless Majorana particles are treated separately due
to the difficulties inherent to massless higher-spin (s ) 1)
fields. " It also has been known for some time' that the
massless limit is generally ambiguous if not ill defined. ' divergence-free,

Part of the problem is that fields describing massless par-
ticles are subject to quite constraining conditions. To cir-
cumvent these problems, which arise in a manifestly co-
variant formulation, we propose in Sec. IV an approach
based on the helicity formalism. We find that the only
massless Majorana which has a single photon coupling is
the spin- —,

' Majorana particle. As a byproduct of the ap-
proach we point out that the number of invariants (form
factors) describing the coupling of a vector boson to a
massive particle-antiparticle pair (not a Majorana parti-
cle) of spin s is 6s+ 1 and then also confirming that only
2s terms remain if the particle is a Majorana particle.

In Sec. V we still exploit the approach based on the
I

M =(M, M~X„(0)i0)=T„, p . . . p (k, ., k2)A ' '(k, )A ' '(k~)

where J„ is the electromagnetic current. Current conser-
vation imposes the transervality condition

ables k, and k2 for

k =k, +k2, P=k, —k~ . (1.9)
k„M"=0,

whereas Bose symmetry requires that under the inter-
change 1 and 2 the tensor T„.. . & . . . & (ki, k2. ) bep, al a, pl p

symmetric in any

Since the tensor 2 is symmetric, with vanishing traces
and divergenceless the most general form of
T„. . . . p . . . p we may write, as suggested by condi-

tions (1.8) and (1.9), is

a;c-+/3 and k, +-+k~ . (1.8) Tp a a, ,pl p, p al- a, ,pl. . . p,

It is more important to trade the two independent vari- +T pS . . . p . . . p, . (1.10)
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where the tensors S and T are both symmetric under the
transformation in (1.8). Decomposition (1.10) refiects the
fact that the index p can be carried either by (a) a four-
vector T„, (b) the metric tensor g„.. . , or (c) by the Levi-
Civita tensor e„.. . . These two last possibilities are col-
lected in T„;a&/3&. One then imposes current conserva-
tion on the tensors T. T„ is the spin-zero case. This
four-vector can only be a combination of k„and P„.
Transversality of the current imposes the combination

k„I k —P„k'.

But this is not allowed under Bose symmetry since it con-
tains an odd number of P. To obtain an even number of
P one can multiply the previous equation by P k; howev-
er P.k=0. Therefore we recover the well-known result
that a scalar particle does not have any electromagnetic
form factor.

T„p is the spin-1 case whose most general form isP(x1

(1.12)

This has been derived by starting with the most general V+ V V where the Vs are vector bosons as can be found in
Hagiwara et aI. ' for 8'+8' V. This contains seven independent invariants. Requiring Bose symmetry and the
transversality of the current only the two previous invariants survive.

I', is parity violating but CP conserving, while I'2 is CP violating. The most general symmetric S p. p, taking into
1 1

account the fact that the tensor representing the wave function has vanishing traces (hence no g ) symmetric (no
e . . . ) and that P is equivalent to k in view of (1.3), is

I

g(x2p2 go; p

p, &a,p,
'

ga, p, ~

Sap;a, p (1.13)

k kp k kp
S

Equations (1.10), (1.12), and (1.13) are not manifestly symmetric under the permutation among the indices a s and
among the indices P's. The symmetrization will be taken care of by contracting T and S with the polarization tensors

(k, ) and 3 . . . (k2). There ares terms in Eq. (9), the last one defining the highest multipole. Note that sub-
1 s 1 s

stituting the "pair" k k& or g p by the only remaining symmetric "pair" e p & P k does not introduce any new
/ t I

form factor. To wit, we can show that (see Appendix A)

and

k
k„k kp — (g„kp +g„p k ) e p)„P k~=(k e~ p q P k~ ke p ~qP

—
) k kp—k

2 g,P,
J

(1.14)

(k„e pqP k~ ke pq„P )e—pqP k~=2 k„k kp—k (g„kp +gp k ) [g p (k —4m ) —2k kp ] . (115)

This relation is readily derived by contracting the an-
tisymmetric tensors. m is the mass of the Majorana par-
ticle.

Equations (1.14) and (1.15) are contained in (1.10) as a
combination of (1.12). Therefore for integral spin-s there
are 2s form factors, half of which are P violating and the
rest are T violating. If C is conserved all form factors
vanish. Note that, in fact, we have generated the elec-
tromagnetic form factors of a general Majorana boson
from those of the basic spin-1 case. They are all of the
anapole type; i.e., they give rise to a contact interaction.
This is best seen by considering, for instance,
e+e ~MM (via a photon exchange). One sees from
(1.12) that the k part vanishes because of current con-
servation whereas the k part drops against the k from
the photon propagator, hence leading effectively to a con-

tact interaction e e MM.
Another important property concerns the parity-

violating but CP-conserving terms. One should note that
they involve the "odd" momentum P with P =k —4m .
This is a P wave (although rather -amusing, its unfor-
tunate that all these properties, P violating, P momen-
tum, and P wave, bear the same initial P) factor which
means that if the Majorana pair is produced via a single
photon the cross section is suppressed at threshold being
proportional to P ~

(/3 being the velocity of any one of
the Majorana in their center of mass).

II. MASSIVE MAJORANA FERMIONS

A fermion of spin s+ —,', mass I, and momentum k
may be described by a generalized Rarita-Schwinger spi-
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nor, ' u which has zero traces, symmetric in the in-1''' s

dices a, and which satisfies Eqs. (1.1)—(1.3) and

M„'= —u (k~)CT'p (k, —p)C 'vp(k, ) .

Since Fermi statistics requires

(2.6)

y 'u . . . (k)=0,

(k' —m )u (k) =0

(2.1)

(2.2)
we must have

(2.7)

with k =k„y". The analog of (1.6) is

M„=u (kz)T„p(k, p)vp(k, ) .

But now interchanging particles 1 and 2, we get

M„'=up(k, )T„p (k, —p)v (k2)

=v'(k2)T„'p (k, —p)up(k, ),

(2.3)

(2.4)

where t denotes the transpose matrix. (T„p may contain

y matrices. ) Introducing the charge-conjugation opera-
tor C(C =C ', C'= —C) so that

CT„'p (k, —P)C '=T„p (k,P) . (2.8)

T„=F (0k )(k„k —k y„)y5, (2.9)

Again we may write T„p in exactly the same form as
(1.10), where due to (2.1) the S terms are C numbers and
have the form (1.13). As compared to the bosonic case
the only complication is the (possible) presence of the
Dirac y matrices in the T tensors. This time, in decom-
position (1.10), T„ is nonzero and is, in fact, derived as in
the spin- —,

' case,

v' (k)= —u (k)C,

we may write

(2.5) whereas T„p is an adaptation of the previous spin-1po!
&

case (here it represents the spin- —,
' case):

k (g„kp +g„p k ) [F,(k )y5+F2(k )] . (2.10)

Note that Fo is parity violating but CP conserving. Hence the possible form factors are

M„=u (k, ) [Fo(k') (k„k k'y„)y5]S—p

k
k k kp — (g kp +g p k ) [F,(k )ys+F~(k )]S p. p v (k, ) .

Among all the different S p of the form (1.13) which multiply Fo(k ) only

(2.11)

~ap ga)p) a2p2 a, p,

gives an independent form factor. Indeed, we can show (Appendix B) that

(2.12)

k
u (kz)(k„k y„k )ysvp(k, )k kp =2mu„(kz)ysvp(k, ) k„k kp — (k g„p +kp g„)

g p u (k~)(k„k' —y„k )ysvp(k, ), (2.13)

which is a combination of Fo, with S p given by (2.12), and Fz(k ). Therefore for Majorana fermions of spin s there are
(2s+1)/2 P-violating moments and (2s —1)/2 T-violating moments, which are all of the anapole type (see the previous
section).

It is even possible to rewrite the F„P-violating terms so that they have a structure very similar to the integer-spin
case. From Appendix D [(see Eq. (D6)] the F, terms may be cast in the form

kk~k 'k ' — (g 'k '+g" 'k ') u (k2)y, up(k, )
2

2
(k~e ' ' k P —ke ' ' P )u (k—~)vp(k, )+mg ' 'u (k2)[(k "k' ky")y, ]vp(k, ) .— (2.14)

While the last term is in fact the spin- —, case and goes into Fo, the first term has the same structure as in the spin-1 case.
Moreover, the Fo term can be rewritten as

u (kz)[(k„g —y„k )y, ]vp(k, )=ik~P e„i u (k2)y vp(k, ) .

Therefore this again shows that the P-violating terms have the P-wave factor.

(2.15)
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III. THE ANAPOLE OR TOROIDAL MOMENT'

As can be clearly seen from the covariant decomposi-
tion of the electromagnetic current of a Majorana parti-
cle and as has been noted in Sec. II, all the form factors
may be cast in the following structure:

JanaPo~e k k S k 2S
p, )M p (3.1)

where S represents some vector characterizing the Ma-
jorana particle and which can be expressed as a function-
al of the Majorana field and momenta.

The above structure leads to a contact interaction as
the piece k„does not contribute due to current conserva-
tion whereas k drops against the k from the photon
propagator. One way of seeing what is so peculiar about
this type of moment is to notice that it does not interact
with the external fields (i.e., F""or F"') but rather only
with the external current. The Lagrangian representing
the interaction of the "anapole current" with the elec-
tromagnetic field may be written as:

(3.2)

FIG. 1. A solenoid bent around a torus will generate an ana-
pole moment directed along the axis of the torus. The How of
the current is indicated by the arrow. (From Ref. 16.)

netic moment. The last term induces both a quadrupole
magnetic moment and an anapole moment. The latter
comes from the vector contribution which arises from the
case k =l and leads to the anapole-induced vector poten-
tial.

However from Maxwell equations one has

~efr g yext (3.3)

A anapo)e= )I d p' r j r =T6 R1 21 (3.6)

where 8'"' is the external current. There are some simi-
larities with the charge radius. However a truly neutral
particle such as a Majorana particle does not have any
charge distribution or charge radius associated with it. It
is also easy to see that by going to the Breit frame, '

which is the natural frame when studying form factors in
the static limit, the timelike component of the four-
current, i.e., the charge, is zero.

For instance, take the current contained in (1.12),

j„=k„e &
&P~k —k e

& „P~, (3.4)

A(R)= Jd r
R —rl

Jd r j(r)+B kf d r rkj(r)

+ —t)kt)& —Jd r rkrrj (r) . (3.5)

It is well known that the first term vanishes due to the
continuity condition while the second gives rise to a mag-

and consider its time component (charge), i.e., tM=O, in
the Breit frame. Since in this frame k has no time com-
ponent, kQ=O, whereas P has only a time component,
P,- =0, it is clear that jQ 0.

We have seen that the anapole current breaks some
fundamental discrete symmetries, either P or T and al-
ways C invariance, and leads to a contact interaction.
These are the main reasons one hardly finds any discus-
sion about this moment in textbooks. However to see
that such moments can arise, consider (part of the follow-
ing argument is borrowed from Khriplovich' ) the expan-
sion of the (three-)vector potential A(R ) generated by a
localized current density j of a stationary system at some
large distance R from the source:

T= 277 d 7 P" j T (3.7)

IV. MASSLESS CASE

If the Majorana is massless, its representing wave func-
tion will be subject to subsidary conditions and it is not
all obvious how we can take the massless limit in Eqs.
(1.12) and (2.11), a limit which may after all not exist.
We have already alluded to this difficulty in the Introduc-
tion, inherent to formulating a consistent covariant for-
mulation of high-spin fields (spin-s ) 1). Apart from this
difficulty one should expect that since the electromagnet-
ic Majorana couplings are C violating that the currents
which generate these couplings are not conserved. This
is especially true with P-violating couplings which are not
conserved or most often anomalous at the quantum level.

The presence of the delta function 6(R ) again is a mani-
festation of a contact interaction.

As first pointed out by Zeldovich a classical model of
the anapole can be pictorially visualized by a current
fiowing through a wire helix wound around a torus (Fig.
1). The anapole moment is a toroidal moment directed
along the axis of the torus (i.e. , the axial symmetry of the
system). The charge density p for this system is zero as is
the magnetic dipole moment. The interaction with a test
particle can only take place, however, if the particle
penetrates the torus.

The anapole current is a polar vector, but for a particle
at rest one only has the spin S, which is an axial vector.
This reflects the fact that C is violated. This violation is
responsible for a depolarization via the spin precession
leading to a helical spin structure in analogy with the
current around the torus.
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It is well known that the massless limit cannot be taken.
This occurs even for the spin-1 case. For instance the
study of ZZy which gives rise to an anapole shows '

that in y~ZZ one of the Z is longitudinal while the oth-
er is transverse. Now if the Z were massless it would not
have a longitudinal mode and we would expect y —+ZZ
not to exist in this limit. However, if one tries to take the
limit Mz~O one finds a singularity which reAects the
fact that the Z is coupled to a current which is not con-
served and hence the limit is not smooth. Therefore, the
massless case needs a separate treatment. There is a gen-
eral theorem by Weinberg and Witten' stating that a
massless but charged particle cannot acquire a nonzero
expectation value of the electromagnetic current if its
spin is higher than —,'. Here we extend the theorem to
neutral particles.

A. How many form factors for a non-Majorana particle?

However, before doing so and since the formalism we
will follow is well adapted, we would like to show that

l

the maximum number of form factors, without imposing
any C, P, or T invariance, for any particle (not a Majora-
na) of spin s is 6s+1. This only follows from angular
momentum conservation and should greatly help when
writing all the possible form factors in a phenomenologi-
cal approach. For instance it was first believed that the
number of independent invariants for the 8' O' Z or
the 8'+8' y vertex was equal to 9. However a subse-
quent careful analysis' showed that two of these invari-
ants were redundant by use of nontrivial relations. Re-
cently, ' there has been a study devoted to counting the
number of form factors associated with a conserved
current based on the multipole expansion approach. We
will see below how the helicity formalism can very easily
and directly give us this number.

Consider two particles in their center-of-mass (c.m. )

frame with total energy 8' helicity A, and A, 2, their rela-
tive momentum being specified by the angles 0, $. Using
the Jacob-Wick helicity formalism, we develop such a
state with a definite total angular momentum J, with the
result

J~)x) M= —J

2J+1
4m

1/2

e 'M&dMJ ~(e)l WJM (4.1)

dM &(8) are the usual rotation functions and

(4.2)

We first notice that the number of form factors or in-
variants representing the coupling of a vector boson to a
particle-antiparticle pair is restricted by the values of the
components of the independent d ' functions. We only
take the J=1 as, for the photon, the scalar part J=O
does not contribute in the c.m. frame due to current con-
servation, while for a general massive vector boson the
counting only concerns the vector part which is the case
of the Z in e+e, for instance, since its scalar part breaks
chirality and hence is negligible. Then since

(4.3)

we have either (a) A, &=A,2, which occurs 2s+1 times
(A, =O), or (b) A, , =A~+1, with each possibility occurring
2s times (A, =+1). Hence there can be at most 6s+1
form factors. This allows at most 4 independent form
factors for spin —,', as is well known, and 7 for spin 1, as
has been recently discovered. ' If the scalar part is im-
portant, for example if the spin-1 boson is not on shell or
if it is not coupled to a conserved current, then one just
1ooks at the J=O part. In this case only X&=A.2 is al-
lowed giving 2s+1 possible form factors. Then a11 in all
there can be at most (6s+ 1)+(2s+ 1)=2(4s+ 1).

B. Number of form factors for a massive Majorana

In the case where the two particles are identical with
spin s, one has to properly symmetrize (PS) the state, 23

l wept, A,,&,= [lw'0&k, k, &+P„(—)"lw8&R, A,, &]
2

(4.4)

1
+J

z&ps=
21~ A. M= —J

(P,z is the permutation operator ) with the result
1/2

2J+1
4m

e ™dM~(0)[l WJM, &~&2&+( ) I ~JM~~2~& & l . (4.5)

One of the consequences of (4.5) is that two identical
Majorana particles with the same helicity cannot be in a
state with odd angular momentum. For a spin-zero Ma-
jorana, X, =A,2=0, and hence no coupling with the pho-
ton is allowed whether or not they are massless.

Therefore since the case A. &=A.2 does not occur when
coupling to a spin-1, and since the previous equation

shows that there is a A, &~A,2 symmetry, the maximum
number of form factors in the case of identical Majorana
reduces to just 2s, which again confirms the results of our
covariant decomposition as well as the results of the mul-
tipole expansion which we carried out in a previous pa-
per. For the spin-1 which is not coupled to a conserved
current, taking into account the J=O part tells us that
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now A. , =k2 is allowed giving an additional 2s+1 form
factors.

C. Massless Majoranas

tromagnetic current: (MMIJ„(0)IO). We take the Ma-
jorana particles in their c.m. so that k„=(k0,0). From
current conservation we see that the spin-0 part of the
current, Jo, has a vanishing matrix element

For a general massless Majorana of spin s, only two
helicity states may exist

k„J"= koJo =O (4.10)

ki =+S

hence, either

ki =A2=+s

or

A, 2 =+S

(4.6)

(4.8)

and since we have just shown that the spin-1 part does
not couple to a massless Majorana particle if its spin is
difFerent from —,', then the only massless Majorana parti-
cle which may have an electromagnetic structure has spin
l
2'

For a nonconserved current, J=0 contributes and one
has to take (4.7) which allows two more form factors.

lkl =2s ~ J . (4.9)

Therefore a vector particle cannot decay into two
massless Majorana particles unless they have spin
This theorem embodies Yang's theorem which states
that a vector particle cannot decay into two photons.

Now consider more specifically the case of the elec-

For J odd, (4.7) is ruled out whereas the d~ z functions
in (4.5) impose that opposite helicities can form a spin J
only if

V. PRGBUCTION OF A MAJORANA PAIR

A. Production of two particles

Consider the production of an arbitrary spin-s Majora-
na pair with helicity k, and X2 by two particles a and b
with helicity A,„kb. Denoting by 8'the c.m. total ener-

gy, by 0 the scattering angle, by P the azimuthal angle,
and by T the transition matrix, the amplitude for the pro-
cess is

fg g g g (~, 4)=ps& ~~4~(~pl Tl ~00~.~b &
= g -e' dg g(( )Tg p

~J+ 1 ill eJ J
J ~ min(]z[ [X'[)

(5.1)

with

Ar2p k Ag kb

B. Production via a vector boson V in e+e

and where according to (4.5) we must have

J J J

This combined with

(5.3)

(5.4)

In this special case, we are exchanging a particle with
J=1. In the high-energy limit chirality is conversed at
e+e V ( V can be y, z, . . . , and e+e generically stands
for an ff pair) and hence, using the previous notation
only

shows that

(5.5)
(5.7)

o q q (0, P) =oq, (~—0,$+~) . (5.6)

and that the differential cross section summing over the
final helicities has the property occur giving A. '=+1. Also in (5.1) only J= 1 contributes.

Without loss of generality we may set (t =0. Summing
over final helicities we get

2

=X ld). , )(~)l T), , (~, —() ~.),, T~, ().,
—() ~,~, +I"J.

,
)((9)l T().

,
—()~, , ~, ~, &(),, —))~, , ~.)., (5.8)

(k) =A2 does not occur). Using (5.3) with J= 1 and the explicit form of the dz ) for A, '=+1 gives

2
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This shows that e+e ~ V —+MM has the unique angular
distribution 1+cos 0 regardless of the spin of the Ma-
jorana particle. This result has been explicitly verified for
s = —,

' (Ref. 24) and s = 1.

VI. APPLICATIONS FROM GAUGE FIELD
THEORIES: FORM FACTORS OF

ELEMENTARY MA JORANA PARTICLES

The preceding analysis has shown that a y*MM vertex
where M is a Majorana particle of any spin leads to a
contact interaction. In other words, since M carries no
electric charge this coupling cannot be generated by a
minimal gauge prescription nor can it be induced
through the use of the electromagnetic field tensor I'" .
Therefore in any renormalizable field theory if a y*MM
is to exist, it will only be induced at the loop level and
hence may be considered of a purely quantum origin.
Moreover, since T violation is only extremely weakly bro-
ken, the anapole which one might encounter in current
field theories will most certainly be parity violating. This
already tells us that if one wants to calculate the induced
y*MM one must look for P-violating (or C-violating) con-
tributions.

A. Spin 0

Neutral spin-0 particles, either scalar particles such as
the minimal standard model Higgs boson or pseudoscalar'
such as the neutral pion, do not have any single-photon
electromagnetic coupling at any order of the loop expan-
sion in any theory regardless of whether or not C is
violated.

B. Spin 2

case and its contribution vanishes for no mass splitting
between the squarks. This process has been considered in
Ref. 26. In both cases, when considering for instance
e+e ~gg there is a P-wave factor and the distribution is
indeed verified to be (1+cos 0).

C. Spin 1

One typical example is that of the standard Z particle.
The ZZy is generated at one-loop order via a fermion tri-
angle. * ' One can also draw loops involving the
charged 8' but since the trilinear and quadrilinear
vector-boson couplings in SU(2) X U( 1 ) are C conserving
this particular contribution must be zero. In the fermion
triangle only one axial coupling (only one y~ at a time)
contributes to the trace so that one gets a C-violating
contribution. These calculations have been considered by
one of us, confirming our general previous results. It is
also interesting to note that one can in principle generate
a gyes vertex, but in the minimal standard model this will
only be induced at the two-loop order. Moreover our
theorem about massless Majorana particles tells us that
at least two of the photons will have to be ofI'shell.

D. Spin—

Here also one needs a massive particle. One obvious
candidate is the gravitino in a theory which breaks C in-
variance. The theory which comes to mind is X= 1 bro-
ken supergravity. However even with a maximal break-
ing of supersymmetry we have recently shown that at
one loop no gravitino form factor can be generated, at
least for on-shell gravitinos. This may be partly due to
the very constraining conditions the on-shell gravitino
field is subject to.

This is the first most interesting case which has re-
ceived wide attention. In this most simple case one may
tlllllk of M Rs belllg R glulllo (g ), fol lllstRIlce 111 R sllpel-
symmetric theory. Parity violation in such a theory may
not only come from the weak sector as in the standard
model through the SU(2)„„„gauge couplings but could
also occur if the two opposite-chirality squarks corre-
sponding to the same partner quark have difI'erent
masses. For ygg only the parity-violating part of the tri-
angle diagram involving quarks and squarks contributes,
the total contribution being proportional to the squark
mass splitting. This is confirmed by explicit calcula-
tions. "

One can extend some of these conclusions to the case
Z~gg. Here, however there is also parity violation from
the axial-vector coupling of the Z to the quarks. The
case of the vector coupling is analogous to the photon

E. Spin 2

One can think of the graviton but since it is massless
any attempt to calculate its single-photon interaction will
lead to a null result.
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APPENDIX A

We want to show that

k k
k„k kP — (g„kfI +g„fI k ) e P I„P kl'=(k e P I P k~ kF. P I„P ) k kP —— g

This derivation relies heavily on the use of Schouten s identity:
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(A2)gaA, ~pvpo gap vpoA, av~pok, p+g apso. k.pv+~ao. ~Apvp
=

We only need to transform the term in k of the left-hand side (LHS) of (Al). To this end, use of the previous relation
leads to

gp 6apg P k =g 6'pg pP k +g p Cg P k +P E'pp pk +k Ep pgP (A3)

One should note that the first term on the RHS of (A3) does not contribute to the trace condition (1.2), in the second
term one can interchange e& and a2 due to the symmetry of the wave function, and in the third term one may replace
[in view of (1.3)] P by k

We can then write

(g„kp +g p k )e p] P k/'= 2k —kp e„p &P +g p(k pe& „P k/' ke—], p P k/') .

Another use of Schouten's identity permits one to transform the last term in (A4) into

(A4)

(A5)

The first term vanishes (k P =0) while the last term cancels against the one in the previous equation. Replacing in
(A4) lead to (Al).

We want to show that

k kPu (kz)(k k —y„k )youp(k])

APPENDIX 8

(81)

can be written as a combination of Fo and Fz. For this we write the second term as

k kP (kz)y„y5 p(k])=kPk (k, )g y„y5 p(k])
k~k k~k

2
u (kz)(y"y +y,y )y„,y5up(k, )= u (kz)(y y y„)y~vp(k])

2

(where we used u (kz)y =0). Now we use the identity

'Vv'Ya'Yp 'VA ap 'YA pv+'VpNav+'XS&vappX

to write

k kPu (kz)y„y5up(k] ) =kpg„u (kz)gy5vp(k] )
—ik'kPE„u (kz)y/'up(k] ) .

One can write a similar relation by transforming k~ instead of k . Adding the two gives

k kPu (kz)y„youp(k] )= —,
' [[u (kz)I/'y5up(k])](k gP+kPg„")+iu (kz)y vp(k, )(kPk e/„' kk'e/'P)] . —

The last terms containing the Levi-Civita tensors can be rewritten using Schouten s identity. For instance,

—k k e„p~ =k"k up~ +k~k eg „+k e „p+k~k e ppg .

Noting that the last term in (86) does not contribute because of current conservation one has

u (kz)ypy5vp(k])k k = ,']][u (kz)ky5vp(—k])](k g~p+k g„)+iu (kz)y vp(k, )(k„E /' k" kEp ~)) . —

This enables us to write

2

k kPu (kz)k„[(k' —y k )y5]vp(k])=u (kz)k'y, up(k, ) k„k kP (k gP+kPg—„)2

+i u (kz)y up(k])(k„e P/' k„ke„PP) . —. k

(82)

(83)

(84)

(86)

(87)

(88)

The last trick we use is to transform the Levi-Civita tensor in (88) to a y5. For this we use this relation combined with
(83),

~.(kz)y y'y vp(k])=~. (kz)(y g" y'g"'+—y'g'+iy5~""y~)y5up(k]»
to be able to write

g Pu (kz)y y, up(k] )=i@ P /'u (kz)y up(k] )

(89)

(810)
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[where we used u (kz)y =y~u&(k, ) =0] so that, at last,

k k~u (kz)[(k"k —k y")y~]v&(k, )=2mu (kz)y5v&(k, ) k"k k~ —(k g"~+k~g" )
k

k
g ~u (kz)(k"g —k y")y5vp(k, ) . (Bl 1)

The first term is of the F2 type while the last one is of the
Fo type.

APPENDIX C

We want to show that the first anapole term of lowest
order, i.e., the one that ~ould appear in the spin- —,

' case,
can be reexpressed in a form similar to that of the spin-1
case, i.e., in terms of the Levi-Civita tensor.

We start by using

u (kz)k„ky~v&(k, )=2mk„u (kz)y~vp(k, ) . (C 1)

=u (kz)[m(k„—my„)y, +ik~kze „zy )vg(k, ) .

(C2)

We next use identity (B3) to transform the product
k, y~kz which permits ns to write

u (kz)y„y5 —m v&(k, )
k
2

F = (k c Pl' k P ke—P" P )u (kz)v&(k, )

1

2' (k"e ~~ k P —k e ~"~)u (k )o k v (k ) .p 0 (Z 2 PV P 1

(D3)

The first term is obviously the anapole as is the spin-1
case. So we just concentrate on the second term

F'=(k"e ~~ k P ke ~"~—)u (kz)o k v&(k, )

=(k e~~~ k —k~e "I' k )u (kz)o,k v&(k, ),
(D4)

where Schouten's identity has been applied as in Appen-
dix A.

Next we introduce a new Levi-Civita tensor via the
identity

PV y ~PVA T~l

52

Therefore, this leads to the desired relation

u (kz )[(k k' —y„k )y, ]v&(k, )

=ik~P e„z u (kz)y vp(k, ) .

APPENDIX D

(C3)

and replace it in the previous equation to be able to con-
tract the antisymmetric tensors. The o. Dirac matrices
which appear have at least an a or a /3 index which we
expand in order to use conditio~ youp(k, )=u (kz)y
=0, so that

2F'= —2 k"k k~ (g" k~+—g"~k ) u (kz)y5vp(k, )

(D5)
Consider the Fo term in the fermion case (in the fol-

lowing the indices a and P which appear everywhere but
as indices of the spinors stand for any a; and P;):

Fo=g ~u (kz)[(k"k —k y")y, ]vp(k)) . (D 1)

u (kz )y~(u&(k, ) = u (kz )(P~+i cr~"k )v&(k, )
2m

giving

We then use identity (810) together with the Gordon
identity

Therefore

Fo=g ~u (kz)[(k"k —k y")y, ]vp(k, )

2P1
(k"e P~ k P —k e ~" P )u (k )v (k )p 0 cr a 2 P 1

1+ k~k ki' — (g~ ki'+g~% )
fPl 2

Xu (kz)y'~v&(k, ) . (D6)

So indeed the equivalent term of the spin-1 case is a
combination of the Fo and F, form factors.
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