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Model dependence of the cosmological upper bound on the Higgs-boson mass
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We consider an electroweak scenario for baryon asymmetry generation in an extended model with

two Higgs doublets. The upper bound on the mass of the lightest Higgs boson is obtained. It is

shown to coincide with that of the theory with one Higgs doublet, namely, mH & m„=45 GeV, if the

masses of all Higgs bosons do not exceed the mass of the 8'boson substantially. Otherwise the upper
bound is shown still to exist but is greater than m, „and depends on the actual values of the scalar-

field self-coupling constants.

I. INTRODUCTION

Observation of the Higgs boson and the top quark, the
necessary ingredients of the standard electroweak theory,
is a challenging problem of high-energy physics nowa-
days. To summarize the recent progress in the Collider
Detector at Fermilab' (CDF) and CERN LEP-I (Ref. 2)
one has the following lower bounds:

m, ) 77 GeV (95% C. L. ),
mH ) 24 GeV (95% C.L. ) .

At the same time a theoretical cosmological upper bound
on the Higgs-boson mass MH (Ref. 3) within the standard
electroweak theory has been reported recently:

mH (m„=45 GeV . (1)

The first inequality comes from the requirement that the
baryon asymmetry of the universe (BAU) which might
be created in an electroweak first-order phase transition
must not be washed out by the anomalous reactions with
B nonconservation (for a review see Ref. 6). Equation (1)
implies also an upper bound on the top-quark mass

m, & m,'". The value m,"comes from the vacuum stabili-

ty bounds which give in the one-loop approximation
m,"=80 GeV. The more detailed treatment of the full
renormalization-group-improved Higgs potential involv-
ing two-loop effects gives m,"=120 GeV. According to
Sher, ' for a top quark heavier than

m,"=95 GeV+0. 60 mH

the effective potential becomes unbounded from below.
The statement holds true for a Higgs-boson mass smaller
than 240 G-eV, just as in our case.

Suppose that in the near future the Higgs boson and
top quark with these properties will not be found. What
will be the meaning of this fact for the problem of 8 non-
conservation and BAU generation?

Let us first take the standard electroweak theory. With
the mass out of the range (1) electroweak baryogenesis

seems impossible. Therefore, one should invoke some
other mechanism for 8 nonconservation, say a grand
unified theory (GUT). In this case we should require also
8 —L nonconservation, because only the 8 —L part of
the asymmetry survives '" in the source of universe ex-
pansion due to the equilibrium character of anomalous
reactions. 8 —L nonconservation implies, in turn,
unusual proton decay modes, neutron and neutrino oscil-
lations.

The other possibility is to consider somehow an ex-
tended electroweak theory, where (1) may not be valid.
In particular, extension of the Higgs sector may have its
impact on both the experimental and theoretical con-
straints mentioned above. The reason is the appearance
of a variety of new decay modes which should be taken
into account in the experimental searches. As far as
theoretical bounds are concerned the additional scalar
fields in general imply new self-coupling constants, while
the relations between the mass spectrum of the theory
and Lagrangian parameters are modified.

In the present paper we consider the two-Hig gs-
doublet version of the electroweak theory in order to ex-
plore the model dependence of the cosmological bound
on the Higgs-boson mass. The question of the bound on
the top-quark mass mass due to vacuum stability in ex-
tended models was discussed recently by Sher, ' and the
bound (2) is weakened significantly if the scalars (or at
least some scalars) have masses greater than m ~.

An extended Higgs sector involving for instance two
doublets of the scalar fields is of particular interest since
it is a typical feature of supersymmetric versions of the
electroweak model. ' '

The paper is organized as follows. In the first section
we present the general framework of the derivation of the
cosmological upper bound based on the electroweak
scenario of the BAU production.

In Sec. II we review the general properties of the model
with two doublets.

The third section is devoted to the case of light Higgs
bosons. We find that in order for the BAU to survive
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after the electroweak phase transition the mass of the
lightest neutral Higgs boson must be bounded from above
by the same magnitude as in the case of one Higgs dou-
blet.

In the last section we consider theory with Higgs-
boson masses comparable to mw and larger. We show
that the mass of one of the Higgs bosons still should be
cosmologically bounded from above but this bound de-
pends crucially on the scalar self-coupling constants and
may be relatively large.

2X10 ' ~pi
g 7

with Mp] being the Planck mass. The final value of the
baryon asymmetry should coincide with the observations
6„„,&=A,b, =10 —10 ' . At the same time the largest
value of 6;„which may be generated within the standard
electroweak theory is 6;„=10 —10 . ' Therefore, we
require S[ „, ]

~ 10 . The last inequality was found '
H'

to imply

II. THE ORIGIN OF THE COSMOLOGICAL
UPPER BOUND ON THE HIGGS-BOSON MASS

g(m~, m, ) )45 (9)

Consider the standard electroweak theory with one
Higgs doublet following Refs. 3 and 7. Suppose that at
the moment of electroweak phase transition a nonzero
baryon asymmetry 6=6;„ is formed with 5=n~ /n
here n~ is a density of baryonic charge and n z is a densi-
ty of relic photons. The source of the baryon excess is
not important here in essence.

Immediately after the phase transition at temperature
T, the rate of anomalous fermion number nonconserva-
tion is still appreciable, if the value of the scalar field con-
densate u(T) is relatively small: u(T, ) «u0=250 GeV.
This leads to the dilution of real baryons. In the range of
temperatures

A2

Vr(P) = —
—,'p ( T)P oTP +—,'AP + CP—ln (10)

p (T)=p coT, ru——= —,'(2mii, +mz+2m, ),
6=— (2mii, +mz ),1

4~
(12)

with rather high accuracy due to the exponential behav-
ior of S in (6). Equation (9) is the origin of the upper
bound on the Higgs-boson mass versus top-quark mass.

To obtain the function g(m~, m, ) one should fix first
the temperature dependence of the scalar field condensate
u (T) The e. ffective potential Vz(P) of the scalar field at
high temperatures T ))gP, +X P looks like

miv(T) & T &
m~(T)

&w
(3) , (6m ~~+ 3m' —12m,'),

64m
(13)

where m ii ( T)=g ii, u ( T)/2, the ratio I of anomalous
electroweak fermion number nonconservation may be
evaluated semiclassically ' with the use of the sphaleron
configuration. ' In this approximation the leading
Boltzmann exponent and the preexponential factor given
by the determinant of small Auctuations around the
sphaleron may be represented in the form

I = 2 (T)exp[ E'~"(T)/T],— (4)

where E'""(T) is the temperature-dependent effective
sphaleron mass incorporating those terms in the preex-
ponential factor which are singular in the high-
temperature limit, A (T) is the rest of the determinant,
which was estimated in Ref. 14. According to Refs. 15
and S one has

,ph( )
4vru ( T)

(5)

where B =B (A, /gii, ) is a numerical coefficient:
B(0)=1.56, B(oo )=2.72. The rate I enters the kinetic
equation for the dilution of baryonic charge. The in-
tegration of kinetic equation gives the suppression factor
Sin the form '

T, =4@ /(2m', +mz+2m, ) . (14)

The corresponding value of the scalar field condensate is

u(T, )=6 T, . —6
(15)

It follows from Eq. (15) that the light Higgs boson implies
strongly first-order phase transition while the values)gw2 would imply the weak frst-order or the second-
order phase transition. ' Then in the region of coupling
constants,

4
2 gw

gw) k&
16~

(16)

where all the particle masses are expressed in the units of
uo and A is some number of order 1, P =—2(y y)„„.The
expressions (11)—(13) are valid in the case of relatively
light Higgs boson: m~ &&mw, A. &&gw.

The phase transition from the unbroken phase with
u=0 to the broken one with u&0 occurs when the barrier
separating those two phases disappears. It implies the
vanishing curvature of the effective potential at the ori-
gin, p (T, ) =0. The critical temperature is given by

S—= b,s„,i/6;„, S =exp[ —Qg exp( —g) ],
where

g—:E'""(T, )/T,

and the term Q is given by

(6)

(7)

the critical temperature satisfies (3), so the sphaleron esti-
mates are applicable. The last step is the combining of
expression (15) for temperature-dependent sph ale ron
mass (5) with inequality (9).

Note, that the obtained magnitude of the bound on the
Higgs-boson mass is insensitive to the value of the top-



43 MODEL DEPENDENCE OF THE COSMOLOGICAL UPPER BOUND. . . 371

P1V 1V 1 P2V 2V 2+930 1V 2+849 2V 1
2f 2f 2f 2f

+ 2~1(V1P1 + 2~2(f2%2) + 1(V I%2)(V2V1)

+h2( P1%'l)(V 2V 2)+ 2 h3[(% 1% 2) (V 2V 1) ] (17)

In order to eliminate Higgs-mediated Aavor-changing
neutral currents it is convenient to impose on the La-
grangian one of the discrete symmetries

l I
92 V2 R R& ' ' f (18)

quark mass and, moreover it does not alter after the cal-
culating of the renormalization-group corrections to the
scalar potential. The reason is that the expansion param-
eter a1V(m, /mii, ) in(p/vo) is small in the domain of
0'= vo.

To summarize, in order to get a cosmological upper
bound on the Higgs-boson mass we should find a sphale-
ron mass just after the first-order phase transition. Con-
sider electroweak theory with two SU(2) doublets of com-
plex scalar fields g, and y2 with U(1) hypercharge Y= l.
The most general scalar potential which spontaneously
breaks SU(2)L X U(1) down to U(1)EM looks like

around the vacuum (19) contains a charged particle H+
and three neutral bosons H12 3 with masses m+ and
Pl 1 2 3 respectively,

m =—'[A, v +A, v +[(A, v —A, v )+4v v D]'

m3= —2h3v, m+ = —(h, +h3)v

It is easy to prove the following inequality which will be
used later in Sec. IV:

min[ m 1 2 I
~ minI A, i, A.2] v

The theory under consideration should have a sphale-
ron solution. The upper bound on the sphaleron mass
may be derived in the following way. Let us construct a
noncontractible loop in the configuration space connect-
ing vacua with different topological numbers for the case
of two doublets with the use of one-doublet ansatz (see,
e.g. , Ref. 18). Namely, we take the gauge field to be the
same as in the standard model, while y 1

= ( v 1 /v )f,
y2=(v2/v) f, where f is the configuration for one-doublet
scheme. The contribution of the scalar self-interaction to
the energy of gauge-Higgs configuration is determined by

where uR stands for the up quarks and nf is the number
of generations, or

4
V= f (f 2)(k, c +A—2s +2hc s ),

8
(24)

0'2~ 9'2 ~

The first symmetry implies that the y1 field gives masses to
down quarks and leptons while y2 is coupled only to up
quarks. The second means that all fermions couple to the
same doublet and none couple to the other. In fact, the
choice of discrete symmetry is irrelevant in our discussion.
The coupling constants in (17) are real due to the Hermiti-
city of the potential. Note that discrete symmetry requires

p3 p4 0. The relevant minimum of the effective poten-
tial is of the form (see general discussion of the extrema in

Ref. 10)

V =A, ic +A,2s +2,hc s (25)

In particular for p, =p2 one has X' =y:

D
X +X 2h

(26)

where c =—cosp, s =sinp, tanp=v2/v, . All other contri-
butions are the same as in the one-doublet case. This
means that the sphaleron energy in the case of two dou-
blets is not bigger than that of one doublet [see Eq. (5)]
with the numerical coefficient B =B(V /a~ ), where

0
~ 0 1 ~vac /Q2 ~ (0 2)vac

V1

0
v, /V'2 (19) One can show that y )0 as far as D) 0. Note also that y

is the minimal value of A,
' (p).

The following conditions guarantee that the vacuum (19)
with v1 and v2 being real and positive is stable:

IV. PHASE TRANSITION WITH LIGHT HIGGS BOSONS

A1) 0, k2) 0,
h —=h, +h2+h3 ) —QA, ,A2,

h2+h3 &0, h3 40 .

The explicit expressions for v1 and v2 are

v, =2(A,2p,
—h p2)/D,

v 2 =2(A, ,p2
—hp, )/D,

D =X,X,—h')0,

(20)

(21)

Consider first the case when all scalar particles are
lighter than the 8' boson. Our final aim here is to find
the BAU suppression factor S defined in (6). As ex-
plained in Sec. II one has to determine for this end the
effective sphaleron mass right after the electroweak phase
transition.

The temperature-dependent one-loop effective poten-
tial for the vacuum expectation values (VEV's) defined by
(19) is of the form

VT( v1, v2 ) ——
—,'Pi( T)v 1

—
—,'P2( T)v 2

—6Tv

2

+ ~1v 1 + ~2v 2 +—'hv 1v 2 +Cv ln

and vo
—=v, +v2=(250 GeV) .

The spectrum of the physical-Higgs-boson excitations (27)
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where u—:(v, + v2 ),

p2(7 )
—p2 ~ 7 2

co(: ~ (2m ~+mz )

co~—:—,'[2m~+mz+2m, u (0)/u~(0)],

(28)

At the moment of phase transition the curvature of the
effective potential (27) vanishes in some direction.
Without loss of generality suppose that p&(T, )=0 and

p2(T, )
—= b,p &0. Then the extrema of the effective po-

tential satisfy the equations

C and 5 are defined in accordance with (12) and (13) with
substitution m, ~m, (u2/v)[v(0)/v2(0)], where u, (0) are
VEV's at zero temperature. The coeKcient C is numeri-
cally unimportant and will be neglected in what follows.

u, (A, ,u, +hu2 —65T,u)=0,

u2(A~ u~+hv, —66T, v —2hp )=0 .

There are three solutions to the system (29):

(29)

6T,
(u„O): u, =6

1

6T, 5T,
(Ov~) v2=3 + 3 +

2 2 2

(30)

(31)

( u, =u, cos/3„u z
=u, sin/3, ): sin /3,=, v, = 3

1

3 +26@
y D

(32)

I
~p'I 9 &' 9

2 2 ~1~2 2 y2~2 X1
(33)

The second and third extrema exist provided the follow-
ing constraints are satisfied:

found to correspond to the global minimum. Evaluating
the spectrum of small fluctuations around the minimum
(32) one may easily show that this minimum exists as far
as the vacuum (19) is realized at T=O. One has

A, as in (16) one concludes the extrema (31) and (32) exist
only for very small values of Ap:

6
u, =6 T„sin /3—, = (37)

/Ap'[ gw

P1
2

(34)

which implies in particular that the angle P, coincides
with its zero-temperature value and A,

' in (25) is A,';„=y.
Therefore, instead of (36) we have

For the most natural case the Lagrangian parameters
p, &

and p, 2 are diff'erent and (34) does not hold true. The
only extremum at the moment of the phase transition is
given by Eq. (30). Equation (30) allows one to obtain the
effective sphaleron mass (5) and (7) at the moment of
phase transition:

y& —Ba~ . (38)

Now for p& =pz (we neglect corrections to this equality
coming from the r quark) one can derive from Eq. (21):
2p =y'u0. In the case under consideration (by =0) the
masses of the two neutral Higgs bosons (22) look like

4~
w Tc

(35) m f 2 =(2p, 2p (1—h /y)) . (39)

Then the requirement (9) that the suppression of the
baryon asymmetry should not be too large yields a con-
straint on the combination of coupling constants of the
form

'7T'

A, & —Bn1 5 W (36)

We need to convert (36) into the constraint on the
Higgs-boson masses. For this end we use inequality (23)
which gives exactly the same upper bound on the
neutral-Higgs-boson mass m

&
as in (1).

Suppose now that due to some reasons Ap is small
enough so that a11 three minima coexist. In what follows
we shall neglect corrections of the order of

~ Ap ~ /p, && 1

so one should take hp =0 as well. The extremum (32) is

So we again recover the old upper bound on the Higgs-
boson mass m, &45 GeV.

To summarize, in the two-doublet version of the elec-
troweak theory with a small Higgs self-interaction we ob-
tain an upper bound on the mass of one neutral Higgs bo-
son which coincides numerically with that in the case of
one Higgs doublet.

V. THE MODEL WITH HEAVY HIGGS BOSONS

In the case of one Higgs doublet the region of
m~ ~ m ~, A. ~ g ~ corresponds to the parametrically
small value of the scalar condensate at the moment of
phase transition u(T, )-g~T, which implies the weakly
first- or second-order phase transition. Then all the
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baryon asymmetry produced at the phase transition is
washed out. In this section we shall consider the model
with relatively heavy Higgs bosons. Namely, we will sup-
pose that scalar self-couplings are not small compared
with g~.

A, , h ~g~ (40)

1 T Tr[M (y)]
127'

(41)

We will show, that this case provides us with the oppor-
tunity to have both the first-order phase transition which
preserves BAU and a heavy enough Higgs bosons which
guarantees the stability of the vacuum.

If the Higgs bosons are heavy (40) the contribution of
the scalar loops to the effective potential should be taken
into account. In general, it modifies the structure (27) of
the one-loop effective potential at finite temperature. In
particular, the term linear in the temperature becomes a
function of v

&
and v z separately whereas it was a function

of combination ( U 1
+ U z ) before. It is given by expression

does not alter, while the coefficients p;(/3), 5(p), C(p) re-
ceive additional terms proportional to the scalar self-
coupling constants.

In order to have a first-order phase transition and un-
suppressed baryon production, the vacuum expectation
value v should be of order of T, . Let us consider first the
case when both temperature-dependent masses are equal
to zero at critical temperature.

Again, we have in general three solutions of the type
(30)—(32), where the third type of solution is the global
minima. To get U ( T, ) —T, we have to demand that

CC g (42)

while other combinations of coupling constants should be
big enough (say, l(, =gII, ) to ensure a stable Higgs poten-
tial. With this choice of parameter, solutions of the type
(30) or (31) give a parametrically small value of the scalar
condensate U, —(g14 ll, )T, —gII, T, and are, therefore, ir-
relevant.

To obtain the solution Ui = U, cosp„UI = v, sinp„we
notice that after a change of variables,

where M is the mass matrix of scalar fields in the pres-
ence of scalar condensate. However, if we consider a
definite direction in the space of Higgs fields ui =U cosp,
U2=U sinp the structure (27) of the effective potential

w, =y icosp+ cp~sinp,

wp = gpslnp+ gpcosp

the zero-temperature effective potential becomes

(43)

V = Pl(P)w lwl P (P2) 2w3 P3(P) 1 3 P4(P) 2 1 I 1(P)(w iw1 ) +
2 X2(P)(w2w2 )

+h, (b)(wiw2)(W2wi)+h2(P)(w iwi)(w2wq)+ —,'h3(P)[(w, w~) +(wzwi ) ]

+ [ 2
E'1(p)w IW I +E'2(p)W3W2]( W IWp+ w pw 1 )1 (44)

The evaluation of the rotation-dependent coupling con-
stants shows thai

6~
l(,I(P, )

A, I(PO) =A, ' =y, ei(PO) =0,

=—'arccos

(45)

~=5+ —[3(1+&3)[i(,I(P, )] ~

24~v'2

+ [h (P, )] +2[h~(P, )]

+ [h (P, )
—2h 3(P, )] (48)

Then if we choose P, =Pa[1+0(giv)], the coupling con-
stants are

~1(P, )=7'[I+O(gI'4 )] gI'I &I(P. ) gw . (46)

Then the minimum of the high-temperature effective po-
tential is

cosP, = —[3(1+&3)[A,I(P, )]'
16(Ir&2

+[h(P, )]'i +2[h3(P, )]'

+ [h (P, )
—2h, (P, ) ]' (49)

0
w, (p, )=

C

(47)

We use the fact that M (g) becomes diagonal after the
rotation (43). Now (9) implies the upper bound on the
Higgs-boson mass:

W2(p, ) =0, p, =po(1+Itg~),
where the numerical coefficient g and r/ are the functions
ofX;~gw h ~gw.

Expressed in the terms of the constants of the potential
(44) the function g' like

8~B
min[m, , m2] (

45 g
Vo (50)

Note, however, that Ic is a function of A, , as in (5). Thus
the numerical value of the upper bound on the Higgs-
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boson mass depends on the choice of the coupling con-
stants of the scalar potential. For example, the critical
mass of the lightest Higgs boson in the theory with cou-
pling constants A|=F2=4g~, h = —4gn ( I —0.25g~),
h2 =5g~, h3 = —9g~, pI =p2=45 CseV is equal to 67
CieV.

The treatment of the case when at the transition tem-
perature only one of the masses is equal to zero is in corn-
plete analogy with the previous one. If, say, )Lt, (T, )=0
then the coupling X, has to be of the order g~. This also
implies the upper bound on the lightest Higgs boson, but
it differs from (1) due to contribution of other Higgs bo-
sons to linear in temperature term in efFective potential.

We conclude that if the neutral Higgs boson will not be
observed experimentally in the mass interval 24—45 GeV

it may still be consistent with the cosmological upper
bounds on the Higgs-boson mass necessary for elec-
troweak BAU generation. The price for that is the exten-
sion of the standard model.

ACKNOWLEDGMENTS

The authors are grateful to J. Ambj5rn, S. Khlebnikov,
V. A. Kuzmin, L. McLerran, V. Rubakov, and I. Tka-
chev for the interest in the work and helpful criticism.
A.B. is grateful to L.A.P.P. where a part of the work has
been done for hospitality and to P. Binetruy for useful
discussions. One of us (M.S.) is indebted to Niels Bohr
Institute, Copenhagen, where this work was completed,
for the kind hospitality.

*Permanent address: Institute for Nuclear Research of the
U.S.S.R. Academy of Sciences, Moscow 117312,U.S.S.R.

iP. Sinervo, in Proceedings of the XIVth International Symposi
um on Lepton and Photon Interactions, Stanford, California,
1989, edited by M. Riordan (World Scientific, Singapore,
1990).

2ALEPH Collaboration, D. Decamp et al. , Phys. Lett. B 241,
141(1990)~

3M. E. Shaposhnikov, Pis'ma Zh. Eksp. Teor. Fiz. 44, 366 (1986)
[JETP Lett. 44, 465 (1986)]; Nucl. Phys. B287, 757 (1987);
8299, 797 (1988).

4A. D. Sakharov, Pis'ma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP
Lett. 5, 24 {1967)];V. A. Kuzmin, ibid 12, 335 (19.70) [12, 228
(1970)];A. Yu. Ignatiev, N. V. Krasnikov, V. A. Kuzmin, and
A. N. Tavkhelidze, in Neutrino '77, proceedings of the Inter-
national Conference on Neutrino Physics and Neutrino As-

trophysics, Baksan Valley, U.S.S.R., 1977, edited by M. A.
Markov, G. V. Domogatsky, A. A. Komar, and Tavkhelidze
(Nauka, Moscow, 1977), Vol. 2, p. 293; Phys. Lett. 768, 436
(1978); M. Yoshimura, Phys. Rev. Lett. 41, 281 (1978); 42,
476(E) (1979); S. Weinberg, ibid. 42, 850 (1979); A. Yu. Igna-
tiev, V. A. Kuzrnin, and M. E. Shaposhnikov, Phys. Lett.
878, 114 (1979).

5V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys.
Lett. 1558, 36 (1985).

V. A. Matveev, V. A. Rubakov, A. N. Tavkhelidze, and M. E.
Shaposhnikov, Usp. Fiz. Nauk 156, 253 (1988) [Sov. Phys.
Usp. 31, 916 {1988)].

7A. I. Bochkarev and M. E. Shaposhnikov, Mod. Phys. Lett. A
2, 417 (1987).

sN. V. Krasnikov, Yad. Fiz. 28, 549 (1978) [Sov. J. Nucl. Phys.
28, 279 (1978)]; H. D. Politzer and S. Wolfram, Phys. Lett.
828, 242 (1979).

M. Lindner, M. Sher, and H. W. Zaglauer, Phys. Lett. B 228,
139 (1989); R. A. Flores and M. Sher, Phys. Rev. D 27, 1679
(1983).

M. Sher, Phys. Rep. 179, 273 (1989).
V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov,
Phys. Lett. 8 191, 171 (1987).
R. N. Cahn, Rep. Prog. Phys. 52, 391 (1989).

' J. F. Gunion and H. F. Haber, Nucl. Phys. 8272, 1 (1986).
' P. Arnold and L. McLerran, Phys. Rev. D 36, 581 (1987).
~5F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30, 2212

(1984).
~ J. Ambj@rn, M. Laursen, and M. E. Shaposhnikov, Phys. Lett.

B 197, 49 (1987); Nucl. Phys. 8316, 483 (1989).
A. D. Linde, Phys. Lett. 708, 306 (1977); D. A. Kirzhnits and
A. D. Linde, Ann. Phys. (N.Y.) 101, 195 (1976).

'8T. Akiba, H. Kikuchi, and Y. Yanagida, Phys. Rev. D 38,
1937 (1988).


