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Hadron momentum spectra in ultrarelativistic heavy-ion collisions
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Deviations from local thermal equilibrium in ultrarelativistic heavy-ion collisions are shown to
arise when the hadronic collision rate cannot keep up with the rapid expansion. A method is pro-
posed for computing hadron momentum spectra that incorporates the eftect of finite collision rates.
The method predicts more hadrons with high momentum than expected from the equilibrium ap-
proach.

I. INTRODUCTION

I TR= »1.
p" d„T

(1.2)

This condition comes directly from the relativistic Boltz-
man transport equation for the one-particle distribution
function f(x,p):

p"ag=c[f l, (1.3)

where the collision integral C[f ] is an integral over the
momenta of the other particles in the collision. The dis-
tribution function which describes local equilibrium,

f, (x,p)=
exp(p u/T)+1 (1.4)

makes c[f,q]=0. It fails to make the left-hand side of
(1.3) vanish because of the space-time dependence of the
fiuid velocity u "(x) and of the temperature T(x). To
find the corrections to (1.4) one puts f=f, +5f. Then
c[f]= —(p u )I 5f, where I is the collision rate. The
transport equation becomes

5f „~ pu (1.5)

The most prominent feature of ultrarelativistic heavy-
ion collisions is the exponential fallo8' of the hadronic
cross sections with momentum p~ transverse to the beam
axis: '

deE
3

=exp( —p~/T, tt) .
d p

Normally, T,ff is considered a measure of the lowest, i.e.,
final, temperature of the rapidly cooling fireball. This is
correct if the temperature decrease is gradual in space
and time. But large thermal gradients can invalidate the
approximation of local thermal equilibrium. This paper
will show that realistic thermal gradients and collision
rates can seriously modify not just the coeKcient of (1.1)
but the value of T,ff.

The necessary condition for local thermal equilibrium
is that the hadronic collision rate I be large compared to
the thermal gradients:

with R given by (1.2). Thus 5f is a small correction to
the local equilibrium form provided R » 1.

The hadronic matter produced in an ultrarelativistic
heavy-ion collision may not satisfy R »1. Typically,
t3 T=50 MeV/fm=10 MeV, which is about the same

P
as T . Consequently R = I /E. Collision rates are in the
range I =100—300 MeV and decrease with E, so that at
high energies R cannot be large. Therefore high-energy
particles cannot stay in local equilibrium as the tempera-
ture falls.

The experimental implications of this are simple. Had-
rons that emerge with high energy are likely to come
from deep within the fireball, where T is large, not from
the surface, where T is smaller. This will produce an ex-
cess of high-energy hadrons so that the parameter T,ff in
(1.1) will be larger than expected from local equilibrium.

A. Standard model of hadron production at T~

The standard model for hadron production proposed
by Landau was put into a modern context by Cooper and
Frye. The model assumes that all hadrons are kept in
thermal contact by continual rescatterings until some
final decoupling temperature T&, after which the hadrons
are effectively free. Since diAerent hadron species have
difFerent collision rates they will consequently have
diA'erent freezeout temperatures. The space-time points
of the Auid that lie on isotherm TI define a three-
dimensional hypersurface with surface element do. . The
Aux of particles through this surface gives a Lorentz-
invariant hadron spectrum

d& d~aP 1=g
ITt ) (2')3 exp(p. u /TI )+1 (1.7)

where g is the degeneracy factor of the hadron species.
Figure 1 shows a typical isotherm in the r-t plane for a
spherically symmetric expansion (r =

~
r

~
). If there is no

fiuid velocity, u"= (1,0,0, 0), then the exponential can be

Since derivatives of p u are comparable to derivatives of
temperature, this relation is roughly

5f 1

f, R
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FIG. 1. Hadrons of a Axed momentum p emitted from a typi-
cal decoupling surface defined by the isotherm T&(r, t)=150
MeV. The dashed line shows the separation between the time-
like part of the surface and later t and the spacelike part of the
surface at earlier t.

FIG. 2. Hadrons of a fixed momentum p emitted from the
space-time volume between the inner isotherm of the hadron

phase, T; =200 MeV, and the outer isotherm T& =150 MeV.

brought outside the integra1 and the spectrum becomes
exp( E/T&). Wh—en there is a fluid velocity it is neces-
sary to integrate before comparing to the data. The
saddle-point approximation gives the behavior (1.1) with
T ff Tf exp( I) ), where I) is the maximum transverse
rapidity of the Quid on the decoupling isotherm. The sys-
tematic application of (1.7) using the equation of state
plus hydrodynamics has been developed in Refs. 8 —10
and is reviewed in Refs. 11 and 12.

The neglect of particle emission from the interior of
the region, where T) TI, was checked numerically in
Ref. 13. The cascade code of Bertsch et ah. ' was used to
fo11ow individual trajectories of pions. For a decoupling
surface with a transverse radius of 4—5 fm, the last col-
lision point of the pions typically occurred anywhere
from 2—3 fm below the nominal decoupling surface to
2 —3 fm above it.

temperature of the hadron phase. The hadrons that
propagate with unchanging momentum p do undergo for-
ward scattering, which is accounted for as follows. The
hadrons propagate through a media of density N with a
complex index of refraction

n =1+ f(E,O),

where f(E,O) is the hadronic forward-scattering ampli-
tude. The probability of propagating a distance ds is re-
duced by

~exp(inp ds)~ =exp( —ds/k), (1.9)

where 1, '=N4mlmf(E, O)/p =No is the inverse mean
free path and o. is the tota1 cross section. This attenua-
tion represents the fact that after several mean free paths
most hadrons will have had their direction and/or their
energy changed. it can also be expressed as

exp( —ds/k)=exp( —I dt), (1.10)

B. Contributions from higher T

This paper is an attempt to improve on (1.7) by includ-
ing the eAects of I W~. The new feature is to include
hadrons that decouple at a higher temperature T) T&
and subsequently stream through the Quid without
changing their momentum. As shown in Fig. 2, such had-
rons can come from anywhere within the space-time
volume bounded by the isotherms T;, the initial tempera-
ture of the hadron phase, and TI, the final decoupling

where I =Uno. is the collision rate.
It is easy to make a crude comparison of the hadronic

production rates at a T slightly higher than TI. Assume
there is no Auid velocity. The contribution of high-
energy hadrons that are produced at the decoupling iso-
therm T& is proportional to

N( Tj ) =exp( E /T& ) . —

Hadrons of the same energy that come from an isotherm
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at higher temperature T& T& will be exponentially at-
tenuated:

X( T)=exp( —I dt )exp( E—/T ), (1.12)

where dt is the time required for the hadron to go from
isotherm T to isotherm T&. Despite the exponential at-
tenuation, %(T) can be larger than X(T&) when T is
large, i.e., when there is a large temperature gradient. A
hadron that moves from (t, x) on isotherm T to
(t+dt, x+v dt) on isotherm T&, experiences a tempera-
ture decrease of magnitude

dronic interactions take place. A hadron trajectory that
emerges from the decoupling surface with momentum p
can be followed backward in time until the point where
its momentum last changed (or to where the hadron was
created with momentum p). This last nonforward
scattering occurred at a space-time point x, which lies on
an isotherm T(x). Let P be the inclusive probability of
producing this hadron plus anything else. The probabili-
ty will depend on the type of hadron, on its energy-
momentum (E,p) and on the local temperature T(x ) and
fiuid velocity u "(x ). In the local equilibrium approxima-
tion

IdTI = +v VT dt= pi'
E P g

(2~)3 exp(p u/T)+1 (2.1)

Thus

r«=rEldTI/lpg a,TI (1.14)

with R defined in (1.2). This ratio is small if R )) 1 as re-
quired for local equilibrium and as assumed in (1.7). But
the ratio is large when R+1 and grows exponentially
with E /TI, thus invalidating (1.7).

This crude comparison of particle production from
di6'erent isotherms contains the essential physics to be
developed in this paper. In Sec. II the contribution from
each isotherm is summed to obtain a general formula for
the hadron momentum distribution that replaces (1.7). It
can be written as

dX f d x f'fd, E&
d p (2~) t E

EI
exp(E/T) —1

(1.16)

where E =p.u and the integration is over the space-time
volume of Quid between isotherms T; and T& as shown in
Fig. 2. The collision rate I depends on space time
through the temperature and the particle energy, E, in
the comoving frame. The result reduces to (1.7) in the
limit I ~~. Since the new formula depends not just on
the final isotherm T&(x) but on the earlier isotherms
T(x ) as well, one should really solve the hydrodynamic
equations for T(x) and u"(x). Instead of this, Sec. III
displays a pedagogical calculation of the hadron distribu-
tions using a simple analytic guess for the isotherms and
no Auid velocity. Section IV concludes with some discus-
sion of the functional dependence of the results on vari-
ous parameters. For simplicity all chemical potentials
have been omitted, but one can easily incorporate them.

II. INCLUSION OF HADRONS PRODUCED AT T ) Tg

A. General outline

Using this, the ratio of hadron multiplicities becomes

&(T) (1.15)

The single-particle current due to that particular iso-
therm is

d p aJ (x)=f p P. (2.2)

The integrand of (2.2) gives the current produced by had-
rons of a particular momentum p. Hadrons of momen-
tum p that subsequently undergo only forward scattering
will be attenuated exponentially:

d pA exp( B) p—P, (2.3)

where A and B are functions to be determined. The ob-
served number of hadrons N results from integrating over
the surface do. of each isotherm T, and then integrating
over all isotherms:

d p aN= f dT f do f p A exp( B)P . —
TI t T] E (2.4)

Here T, is the initial temperature at which the hadron
phase exists ( =200 MeV) and TI is the final temperature
at which they decouple (=150 MeV). The differential
multiplicity is

dNE = f dT f der p /I exp( B)P . (—2.5)
d p Tg I T]

In the limit that the collision rate I ~~, this calculation
must agree with (1.7). Thus we require

lim A exp( B)=5(T T&—) . —
I —~ oo

(2.6)

Before deducing the functions A and B, it is useful to first
discuss the purely mathematical problem of integrating
over the surface defined by an isotherm.

B. The isotherm surface element do

Each isotherm T(x ) defines a three-dimensional hyper-
surface on which the temperature is constant. ' One can
parametrize the hypersurface by three new coordinates

The space-time volume element in the new
coordinates is

It is convenient to first outline the argument leading to
(1.16). The isotherm T& defines the usual decoupling sur-
face and it is assumed that outside that surface no ha-

d x=JdTd g,
Bx Bx~ Bx" Bx
r)T

(2.7a)

(2.7b)
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'" ag' ag' ag'

For later use note that

(2.8)

do =Jd g and do . =0.Bx Bx
aT agJ

(2.9)

The normal to the isotherms is the covariant vector
aT/ax . One can directly demonstrate that do. is
parallel to this normal. First note that the set of covari-
ant vectors aT/ax and aP/ax (j=1,2, 3) are linearly
independent because

.,„.aT ag' ag' ag'
ax ax~ axe' ax

(2.10)

The vector do. can therefore be written as a linear com-
bination of these vectors:

3 g k

do =C + QDk
c)x p —) c)x

(2.11)

Any choice of coordinates is acceptable as long as J is
finite and nonzero. (In simple models the hypersurface
may have spherical or cylindrical symmetry and then it is
natural to choose those coordinates. )

To integrate over the three-dimensional surface at con-
stant T requires the integration element do. :

atE= p =u~
Bx

(2.15)

and the. magnitude of the hadron velocity U =p /E, where
(g 2 2)1/2

In accordance with (1.10), a hadron that propagates
through the Auid with only forward scattering will be at-
tenuated by exp( —B ) where

8= I dt. (2.16)

The collision rate I is a function of T(x) and the local
hadron momentum P(x ). (Hadrons which happen to be
moving with the Quid have p=0 and suffer no damping
because I =0.) Performing this integration directly is
impractical because, although the hadron trajectory is
straight in the laboratory coordinate,

dx =p dt /E, (2.17)

Bt Edt= dx =u dx =—dt .a- (2.18)

Thus B can be expressed as an integral over laboratory
time t:

it is curved in the locally comoving coordinate. Conse-
quently it is simpler to transform (2.16) to the laboratory
coordinates. The comoving time t is simply related to the
laboratory time by

Contracting this with contravariant vectors and using the
chain rule gives B(t,x)= I dt' IE (2.19)

C=do. , D =do.Bx Bx

By (2.9), C=J d pand D =0. Consequently

do. = Jd g.BT
Bx

(2.12)

(2.13)

The path of integration is as follows. The hadron is pro-
duced at (t, x) on an isotherm T. At a later time t' it will
be at position x'=x+v(t' t ). It will deco—uple at a time

tf determined by Tf=T(tf, x+v(tf —t)). Both the in-
tegrand and the decoupling time tf depend on the initial
t. Consequently,

This is a useful way of computing do. even for the stan-
dard model (1.7). The normal to the isotherms will usual-

ly be timelike on some parts of the surface and spacelike
on others as noted in Fig. 1. By contrast, the Quid four-
velocity u is always timelike. (In simple models such as
the Bjorken one-dimensional model' the normal is every-
where timelike and parallel to u, but this is not true gen-
erally. )

C. Attenuation in time

The attenuation exponent B that appears in (2.5) is to
describe hadrons that are produced on an isotherm T and
propagate through the Quid with constant four-
momentum p until decoupling at isotherm Tf. Each
space-time point in the Quid may be described either by
its laboratory coordinate x" or by the coordinate in
which the Auid is instantaneously at rest X ". The hadron
four-momentum in the locally comoving frame is

aB E
at z (2.20)

D. Attenuation in temperature

9T + d & BT dt
(jt QxP E (2.21)

Thus we can express B as an integral over isotherms:

B(T,g)= I dT' I, P=p"—, E BT'
ax~

(2.22)

In (2.19) B is written as a function of the space-time
point (x, t) where the hadron is produced. The same
space-time point can also be labeled by the curvilinear
coordinates T and g. As the time changes from t to
t+dt, the hadron moves from x to x+vdt and experi-
ences a temperature change of

ax~ .
P

Bx

In particular, the hadron energy in this frame is

(2.14) The function g was already encountered in (1.14)
Because the integrand does not depend on the initial

temperature T,
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()B
BT

(2.23)

lim ——I exp( B)—=6(T TI)—.E
r- (2.24)

The previously undetermined function A in (2.5) is
E—I /g and satisfies

reasonable qualitative properties:

b~

t +a(r ro—)
(3.1)

where a =1.6, b =9.0, and ro=6.0 fm. The extreme iso-
therms, T; =200 MeV and T&=150 MeV are shown in
Fig. 2. One can also write (3.1) as

The explicit form of (2.5) is a(r —r )=t t ——b
0 T

(3.2)

E = f dT f do p I ex—p( B)P—. (2.25)dX E
d p

Even for finite I one can relate (2.25) to the usual result.
Because of (2.23) one can integrate by parts on tempera-
ture to get

For definiteness the momentum distributions will be
those of pions, although neither the mass nor the statis-
tics is important when E is large. Different species
would, of course, have different values for I, T&, and pos-
sibly for T; ~

E =f do. p P+OT,dX
8p~ f~

(2.26) A. Standard calculation

where the first term is the standard surface contribution
(1.7), independent of I . OT denotes the two other terms
resulting from the integration. One term is positive and
one negative. Their sum OT can have either sign in gen-
eral.

E. Space-time simplification

dTdop=dT . p Jd g=gdT Jd g
Bx

because of (2.13). By (2.7) this can be changed to a
space-time integration:

dTdo p =qd'x . (2.27)

The complete four-dimensional integral (2.25) for the
hadron spectra looks quite formidable. To actually com-
pute it, the function g must be expressed in terms of T
and g. Surprisingly, all these complications will disappear
by using the mathematics of Sec. II B. The integration
element is

Since there is no Quid velocity, the usual surface for-
mula (1.7) becomes

dW 1 1

d p (2~)' exp(E/T&) —1
QcT~ p (3.3)

der = — Jdgo;

=(1, rX)r sinO—dr d0dg, (3.4)

where X=(c}T/Br)/(BT/Bt). The region of the surface
that has a spacelike normal, i.e., ~X~ ) 1, is indicated on
the isotherm in Fig. 1. Here the 0 integration eliminates
dependence on X and gives

4~r,'/3
d 3p (2~)~ exp(E /T& ) —1

(3.5)

Because of the spherical symmetry it is convenient to
choose (g', g, g ) = (r, 8, P ). The surface element normal
to the isotherm is

When this is substituted into (2.25) the function P cancels
and the result can be written as an integration over the
space-time history of Auid:

B. Calculation of hadrons produced at T ) T~

Because the fiuid velocity is zero, one can write (2.28)

E =fd xEI exp —f dt' I P. —dX t~

0 p E (2.28)

This is straightforward to compute given the space-time
dependence of T(x ) and u "(x ).

dN
d

d I- ( B) 1

(2~)3 exp(E /T) —1
(3.6)

III. SAMPLE CALCULATION

To understand how (2.28) differs from the usual treat-
ment it is helpful to discuss a specific calculation. For
simplicity suppose there is no quid velocity
u"=(1,0,0,0), and that the isotherms depend only on t
and the radial coordinate r=~x~. Such isotherms are
characteristic of a collision in which the heavy ions are
completely stopped and the fireball expands spherically.
Instead of attempting to solve the hydrodynamic equa-
tions, I will just adopt a simple analytic form that has

B =1 [t&(r, cosO, t) —t I,
where tI is determined by

(3.7)

In this integration, r and t must lie within the extreme
isotherms shown in Fig. 2. The collision rate I generally
depends on p and T. For simplicity I will instead use a
constant value. From ~~ scattering' the momentum
averaged rate is I =T /12f . For T=200 MeV this
gives I =350 MeV = l. 8 (fm/c) '. For T = 150 MeV this
gives I =85 MeV=0. 4 (fm/c) '. A reasonable inter-
mediate value is I =1.0 (fm/c) ', corresponding to a
mean free path A. =v/I =1.0 fm. For constant I the
damping integral is
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10

10

10'-

b
&[&o Ix+v(&f r)l ] rf rf-

f
(3.8)

and 0 is the angle between x and the fixed velocity v.
Figure 3 shows a comparison of (3.5) and (3.6) for the

case I =1.0 (fm/c) '. The main feature, anticipated in
Sec. I, is that the high-energy particles are more abun-
dant than predicted by the surface model. The slope of
the surface model gives T,z= T& = 150 MeV, whereas the
volume integration gives T,&= 180 MeV.

As argued in Sec. I, the two calculations must agree
when I ~~. It is interesting to see in practice how large
the collision rate must be for agreement. Figure 4 shows
a comparison of (3.5) and (3.6) for I =10.0 (fm/c) ' cor-
responding to a mean free path k=v/I =0. 1 fm. The
agreement here is already quite good; T,z= 150 MeV vs
158 MeV. For still larger I =50.0 (fm/c) ', the two ap-
proaches are indistinguishable.

IV. CONCLUSIONS

FIG. 3. Comparison of the hadron momentum spectra: (a)
the standard emission from the decoupling surface shown in
Fig. 1; (b) the result of including emission from the region be-
tween the isotherms shown in Fig. 2 with a collision rate I = 1.0
(fm/c) '. Fitting to exp( —p/T, &) gives T,&=150 MeV for (a)
but T,&=180MeV for (b).

0 1

1
-2

10-3

10 '
0'
0-7

1
-8

FIG. 4. The same as in Fig. 3 but with such a large collision
rate, 1"=10.0 (fm/c) ' in (b), that the two models give very
similar results: T,ff=150 MeV for (a) and T,&=158 MeV for
(b).

The sample calculation demonstrates that the slope pa-
rameter T,z is not determined just by the behavior of the
hadronic Quid on the decoupling isotherm. It can depend
crucially on the hydrodynamic history of the fIuid and on
the hadronic collision rates. In this example, the iso-
therms T(x ) as well as T, and Tf are presumed to be
known. Then there are two extreme approaches to un-
derstand a slope T,z) T&. The conventional approach is
to include only surface emission. Then a large Auid ve-
locity is required to explain T,z) T&. This is indeed the
correct explanation if I is large [=10—50 (fm/c) ' for
the Sec. III calculation]. The new possibility is that I is
smaller, = 1 (fm/c), and the Quid velocity is not so im-
portant.

Of course the simplicity of the sample calculation is
misleading. In reality, the shape of the isotherms T(x)
and the value of T, and TI are not so certain and may
have to be deduced from the data. ' The Aow velocity
u (x ) is certainly not zero and should be determined from
hydrodynamics to the extent possible. Fortunately, the
momentum spectrum (2.28) depends rather sensitively on
the various inputs.

Thermal gradients. When gradients are large, the new
formula supersedes the surface emission. This fact is hid-
den in the space-time form (2.28), but the temperature
formulation (2.22) shows that the attentuation factor is
small when g=p" BT/Bx" is large. This is also apparent
in (1.14). The integrand of (2.22) agrees with the estimate
(1.15) since I E//=RE/T .

Initial temperature T;. Increasing T, will increase the
multiplicity because it adds hadrons that are produced
deep within the fireball without changing anything else.

Final temperature T&. The multiplicity is not mono-
tonic in T&. It has a maximum at some value T&. For
smaller T& the multiplicity is less because the hadrons
sufi''er more exponential attenuation. For larger T& the
multiplicity is also less because the production volume
decreases.

Collision rate I . The multiplicity is also quite sensitive
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to I, having a maximum at some value I '. A I larger
than this produces more attenuation and decreases the
multiplicity (as in going from Fig. 3 to Fig. 4). However
a I smaller than I * also decreases the multiplicity be-
cause of the explicit 1 factor in the integrand of (2.28).
The above remarks hold at each value of p. Actual col-
lision rates are functions of momentum and decrease at
large p. This can produce a momentum spectrum that is
concave up on a semi-log plot [as if Fig. 4(b) were used
for small momenta and Fig. 3(b) for large momentaj.

Fluid velocity u. The dependence on the fluid velocity
has not been investigated at all. The geometry of the col-
lision (e.g. , spherical versus cylindrical expansion) re-
quires examination and can aA'ect the hadronic rapidity

distributions.
The fundamental problem of how to systematically

treat the hadronic Auid when it is not in local equilibrium
remains unsolved. This paper focuses on a simple,
though important, consequence of R+l. The sensitive
dependence on the various inputs may make the momen-
tum spectra a more stringent test of the underlying
theory than expected.
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