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(—)
An order-o. , calculation of p p ~ ZZ + X is presented. Results are given for the total cross

section and diAerential distributions for Fermilab Tevatron, CERN Large Hadron CoHider, and
Superconducting Super CoHider energies. The calculation utilizes a combination of analytic and
Monte Carlo integration methods which makes it easy to calculate a variety of observables and
to impose experimental cuts.

I. INTRODUCTION

Pair production of Z bosons at hadron supercolliders
is an important background to heavy-Higgs-boson pro-
duction. If the Higgs boson is heavier than twice the Z-
boson mass, it will decay almost exclusively into W- or
Z-boson pairs. The existence of the Higgs boson would
then be signaled by a peak in the invariant-mass distribu-
tion of the weak-boson pair. It is therefore important to
precisely calculate the continuum production of vector-
boson pairs in order to get a realistic estimate of the
signal-to-background ratio.

The main background to detecting a heavy Higgs boson
in the ZZ decay mode at hadron colliders is the contin-
uum production of Z-boson pairs. The major source of
continuum Z pairs is qq annihilation. Two other sources
are gluon fusion and weak-boson fusion. The gluon-
fusion production rate is 60—70% as large as the lowest-
order qq rate. 4 In weak-boson fusion the incoming quarks
radiate two vector bosons which subsequently scatter ofI
each other. This process is mainly of interest as a source
of Higgs bosons, with the Higgs boson appearing as an
s-channel resonance. Away from the Higgs-boson peak,
the weak-boson fusion production rate is only a small
fraction of the basic qq ~ ZZ production rate. Pair pro-
duction of Z bosons in association with jets has also been
calculated. 6

Until now ZZ production has been calculated only in
the leading-logarithm approximation and the order-o. ,
corrections to ZZ production have only been estimated
using the soft-gluon approximation. In this paper we
present a complete next-to-leading-logarithm (NLL) cal-
culation of hadronic ZZ production. At the parton level
this involves computing the contributions from the 2 —+ 3
real emission processes qq ~ ZZg, qg ~ ZZq, and

qg —+ ZZq as well as the one-loop corrections to the
2 ~ 2 process qg —+ ZZ. The focus of the present calcu-
lation is on the order-n, corrections to ZZ production.
Accordingly, the order-o, 2 gluon-fusion contribution has
not been included. However, this contribution should
eventually be included when calculating the full ZZ con-
tinuum background since it can be significant at the en-

ergy of the Superconducting Super Collider (SSC).
The NLL calculation presented here makes use of a

combination of analytic and Monte Carlo integration
methods. Similar methods have been used to per-
form NLL calculations for direct photon production,
photoproduction, symmetric di-hadron production,
and lV production. The Monte Carlo approach to NLL
calculations has many advantages over a purely analytic
calculation. The Monte Carlo approach allows one to
calculate any number of observables simultaneously by
simply histogramming the appropriate quantities. Fur-
thermore, it is easy to tailor the Monte Carlo calculation
to diA'erent experimental conditions, for example, detec-
tor acceptances, experimental cuts, and jet definitions.
Also, with the Monte Carlo approach one can study the
dependence of the cross section on the choice of scale, the
size of the NLL corrections for difI'erent observables, and
the variation of the NLL corrections in difI'erent regions
of phase space.

The remainder of this paper is organized as follows.
Section II describes the techniques used in the Monte
Carlo approach to NLL calculations. The NLL calcula-
tion of ZZ production is described in Sec. III. Results
are presented in Sec. IV and summary remarks are given
in Sec. V. Finally, there are four appendixes containing
details of the regularization of y5 and lengthy expressions
from the calculation.

II. MONTE CARLO FORMALISM

The Monte Carlo formalism for NLL calculations has
been described in detail in Refs. 9—11 so the discussion
here will be brief. The basic challenge is to design a pro-
gram which retains the versatility inherent in a Monte
Carlo approach while ensuring that all of the required
cancellations of singularities still take place. In order
to discuss the technique for isolating the various singu-
larities, let the four-vectors of the two-body and three-
body subprocesses be labeled by pi + p2 ~ p3 + p4 and
p~+p2 ~ p3+p4+p5, respectively, and define the Lorentz
scalars s;s —(p, +pz) and t;s —(p, —ps) . First, any ul-
traviolet (UV) singularities associated with the one-loop
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contributions are regulated using the method of dimen-
sional regularization~ and subtracted using the modified
minimal-subtraction (MS) scheme. i4 Similarly, dimen-
sional regularization is used to treat the infrared (IR),
soft, and collinear divergences. As noted in Sec. III 8,
there are no VV singularities in the current calculation.
Next, we introduce soft and collinear cutoA'parameters 6,
and 6, whose purpose is to allow the separation of phase
space into singular and finite regions. For the three-body
subprocesses, the soft singularities are associated with
the phase-space region where a final-state gluon becomes
soft. The soft region is defined to be the region where the
gluon energy in the subprocess rest frame becomes less

than b, ~si2/2. If 6, is chosen to be sufficiently small,
then the relevant three-body subprocesses can be evalu-
ated using the soft-gluon approximation. The resulting
expression is then easily integrated over the soft region
of phase space. At this stage, the integrated soft piece
is a two-body contribution and the soft and infrared sin-
gularities cancel explicitly. Next, the collinear regions of
phase space are defined to be those regions where any
invariant (s;& or t,&) becomes smaller in magnitude than
b, s~2. If 6, is chosen to be suKciently small, then in each
collinear region the relevant subprocess can be evaluated
using the leading-pole approximation. The result is easily
integrated in N dimensions, thereby explicitly display-
ing the collinear singularities which are then factorized
and included in the relevant structure functions. At this
point, the remainder of three-body phase space contains
no singularities and the subprocesses can be evaluated in
four dimensions.

The calculation now consists of two pieces —a set of
two-body contributions and a set of three-body contri-
butions. Each set consists of finite parts, all singularities
having been canceled, subtracted, or factorized. At this
stage both pieces depend on the values chosen for the two
theoretical cutoA's 6, and 6, so that each piece by itself
has no intrinsic meaning. However, when the two- and
three-body contributions are combined to form a suit-
ably inclusive observable, all dependence on the cutoAs
cancels. It turns out that the answers are stable against
variations of these cutoA's over quite a wide range, which
is as it should be. The cutoA's merely serve to distinguish
the regions where the phase-space integrations are done
by hand from those where they are done by Monte Carlo
integration. When the results are added together, the
precise location of the boundary between the two regions
is not relevant. The results reported below are stable
to reasonable variations in the cutofFs, thus providing a
check on the calculation.

III. NEXT- TO-LEADING-LOGARITHM
FORMALISM

A. Born process

The two Feynman diagrams which contribute to the
Born amplitude for the reaction

&(pi) + &(p2): Z(») + Z(p4)

are shown in Fig. 1. The Born amplitude in N dimensions
1S

"" = b, „,e p ) g,' ' ~*„(ps) e'„(p4)V(p2)P, i
p' ' 2y" +p" ' 2y' U(pi),"~ (p —p.)' (p —p.)'

&

(2)

where 6;,;, is the color tensor (ii, and i2 are color indices for quarks I and 2), e is the electromagnetic coupling
constant, p is a mass parameter introduced to keep the couplings dimensionless, e„*(ps) and e'(pq) are the Z-boson
polarization tensors, and P„denotes the left-right projection operator P = 2(I + 7y5). The right- and left-handed
Z-boson —to—fermion couplings are denoted by g~~

f~f J'Zf 3
g+

~ = —Q~ tan e~, g~ ~ = —QJ tan 0~,
sin 0~ cos 0~

where Qy and T~ denote the electric charge (in units of the proton charge e) and the third component of weak isospin
of the fermion f, and 0~ is the weak mixing angle.

The squared amplitude summed over final-state polarizations and initial-state spins is

I~'""I' = &«'(p')' "Kg'")'+(g+"')'j(~-2)

CVr,'sx N —2 —+ ——Mz —+ — +8 +2 N —4 1
u t (t2 u2p tu

where N~ is the number of colors and the kinematic invariants are defined by

s —(pl+ p2) ~ —(pl ps) u —(pl p4)

The details for treating p5 in N dimensions are described in Appendix A. The algebra for this paper was evaluated
using the algebraic manipulation program FORM. Setting N = 4 —2e, the squared amplitude becomes
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l~'""I' = 4~ "/" K~'")'+ (~"')'1
t u 4

/'1 1) Mgs /, u 4/'1 1 1
x —+ ——M~4

~

—+ —
~
+ 4 ~ —~ —+ ——2M~4

~

—+ —+ —(2M) + s')
u /. gt2 u2) tu u / (t2 u2 tu

u 4
/'1 1) /' M~~l+" —+ ——Ms4

(

—+ —~+2]1—
u 4 it2 u2) i, tu )

which for later convenience we write as

~~Bo (2 ~~Bo ~2 + (~Bo (2 + 2 ~~Bo ~2 (7)

The Born subprocess cross section is

dgB (qq ~ zz) —————~~Bo ~~2 d
111 1

49228

where the factors —,—,and —are the spin-average, color-average, and identical-particle factors, respectively, and the
two-body phase space is

4M,'l"' '

8qr qs) I'(1 —e) q s )
v '(1 —v) 'dv,

with v = 2(1+ cos 0). Decomposing ~M '"~ as in Eq. (7), the Born cross section can be written

d&Born d&Born + 6 d&Born + 62dpBorn

This decomposition will be useful for writing the soft and virtual corrections. The leading-logarithm (1,1,) cross section
is obtained by convoluting the subprocess cross section with the parton densities and summing over the contributing
partons:

0' (pp —+ ZZ) = ) (gg ZZ)[aq/p(&1) M )Gq/p(&2) M ) + &1 &2]d&ld&2 ~

B. Virtual Processes

The order-o, , virtual corrections to qq ~ ZZ come
from the interference between the Born graphs of Fig. 1
and the virtual graphs shown in Fig. 2. We have eval-
uated the interference between these amplitudes in N
dimensions using the Feynman parametrization tech-
nique. There are two mitigating factors which simplify
the qq ~ ZZ virtual calculation. The first is that the
calculation does not contain UV singularities since the
graphs in Fig. 2 do not contribute to the renormaliza-

FIG. 1. Feynman diagrams for the Born subprocess qq ~
ZZ. The straight, wavy, and curly lines denote quarks, Z
bosons, and gluons, respectively.

tion of the strong, electromagnetic, or weak coupling con-
stants. The second is that the self-energy insertions on
the external quark lines vanish due to the cancellation of
the UV and IR divergences. Basically, what happens
is that the UV and IR poles cancel when one does not
distinguish between them.

Because the loop integrals associated with the four-
point function from the box diagrams in Fig. 2 are very
diFicult to evaluate when powers of the loop momenta
appear in the numerator, we first multiply the Born am-
plitudes times the virtual amplitudes and evaluate the
resulting traces. Next, the numerator of the resulting ex-
pression is rewritten, using momentum-conservation re-
lations, such that propagator denominator factors can-
cel with identical factors in the numerator. This way
the four-point functions with powers of the loop momen-
tum in the numerator are reduced to a four-point func-
tion with a constant numerator and three- and two-point
functions which are easier to evaluate. The loop intcgrals
can be reduced to a set of 11 integrals which are given in
Appendix B.

The order-o, , virtual contribution to the qq ~ ZZ
cross section is
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dbv 4&+2 I (I &) f 2 d&Born 2 d~Born 3 d&Born

2~ s I'(1 —2c) ~
~~ dv e dv e dv

(12)

p

p

p

where doon "" and doiB '" are defined by Eq. (10) and
C~ ——

3 is the quark-gluon vertex color factor. The order-
n, finite corrections are contained in the function F(t, u)
which is given in Appendix C. In the limit Mz ~ 0, the
expression for da."'""(qq ~ ZZ) agrees with the result for
do '"

(qq ~ pp) in Ref. 16.

P2

p

P2 p

C. Soft-Gluon Emission

The Feynman diagrams for the real emission subpro-
cess

q(pi) + q(p2): Z(&s) + Z(p4) + &(&s),

p

are shown in Fig. 3. The soft-gluon amplitude for this
subprocess is obtained by setting the gluon momentum

p5 to zero everywhere in the 2 —+ 3 amplitudes except
in the denominators which are singular as p5 —+ 0. In
this approximation the last two graphs in Fig. 3 do not
contribute and the 2 ~ 3 kinematics can be approxi-
mated by 2 —+ 2 kinematics. The soft-gluon amplitude
in N = 4 —2e dimensions is

p

P,

p p

p ~ p,

p p

p

p p p P2

FIG. 2. Feynman diagrams for the virtual subprocess
gg ~ ZZ.

FIG. 3. Feynman diagrams for the real emission subpro-
cess qq ~ ZZg.
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~""= 2 ~. »
' T;*;;,~~(p. )

xi
4 (pl —p5) '

A
P2 ~Born

(» 2 —»5)'
(14)

~~ oft~2 4 2 2 g i2 ~~B (2

Next we introduce a soft-gluon cutoA 6, and define the
soft region of three-body phase space as the region where

E5 & b,
2

where MB '" is the Born amplitude of Eq. (2) without
the b;,;, color tensor, g, is the strong coupling constant,
T,", is .an SU(3) color matrix (ii, i2 ——1, . . . , 3; i5
1, . . . , 8), and e&(»)5) is the gluon polarization vector.
Squaring and summing over final state polarizations and
initial state spins yields

Three-body phase space in N dimensions is given by

4M' &
'" ' t'4~'5 ' v-'(1 —v)- dv

d C's=II—
) 2' 'I'(I —2 )

xE5 ' dE5 sin ' |»i sin 't»2 d&i d82, (17)
and the soft-gluon contribution to the cross section is
given by

-soft ~~soft ~2 dW@
1

2s12

Integrating over the soft region of three-body phase space
(0 & E5 & b, gsi2/2) yields the two-body contribution

d(Ts f" doB " o, ('47f 2 $
' I'(I )

dv dv 2x i s ) I'(1 —2~)

x ———In(b', ) + 4 in(b, )
2 4 2

Expanding dcrB "" as in Eq. (10), this result becomes

dv

n, I'47fP2 I'(1 —t)
2' q s I'(1 —2f)

2 do. '" 2 d&Born d&Born )—2 In(b, )E' GV dv dv )
d~Born d" Born d~Born

+4 In(b, )' —4 In(b, )
' + 2

dv dV d5 (2o)

D. Hard Collinear Corrections

The 2 ~ 3 real emission processes have hard collinear singularities when f15 —+ 0 or f25 ~ 0. These singularities
must be factorized and absorbed into the initial state parton distributions. The collinear regions of three-body phase
space are defined to be those regions where any invariant (s;i or t,z) becomes smaller in magnitude than b, si2, where
6, is the collinear cutoA' parameter defined previously. If the collinear cutoA' is made suKciently small, then in the
collinear region the three-body process can be evaluated using the leading-pole approximation. In this form it is
easy to integrate the logarithmically singular term in N dimensions. The resulting pole in e must then be factorized
and absorbed into the appropriate structure function. This procedure is discussed in detail in Ref. 9. After the
factorization is performed, the remnants of the hard collinear singularities take the form

d" Born 1—b," (qq-zz)=, ' " ' a„,(.„M')
' —"' a„, (

—",~') p„(.)+a„, (
—', ~') p„(*)

X2

+Gq]p(Z2, M )

with

p~z(z) = p; (z) ln
z(

— bz) —p, (z) —,Ar(z( ) .

(22)

and can be written

&i(z ~) = I'~j (z)+ fpg( ) (24)

P,~(z, ~) = [z'+ (1 —z)2 —~],
2 1 —t'

(23)

The Altarelli-Parisi splitting functions in N = 4 —2~
dimensions for 0 & z & 1 are

1+ "
pzz(z, z) = az —z(l —z))

which defines the P,'. functions. The functions I'"&& and

F&& depend on the choice of factorization convention and
the parameter A specifies the factorization convention;
A = 0 for the universal (MS) convention and A = 1 for
the physical [deep-inelastic-scattering (DIS)] convention.
For the physical convention the factorization functions
are
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1+z' 1 —zb 3 1
Fqq(z) = C~ ln

I

—— + 2z+ 3
1 —z z r 21 —z

1 ~ 2 (I—z)
Fqq(z) = — [z +(1—z) ]ln

I
I
+8z(1—z) —1

2 z

In the interval 0 ( z ( 1 the Altarelli-Parisi splitting
function is

I' 1+z' 3
Pqq(z) = Cp +-b(1 —z) I

&(1 — )+ 2 r
and the factorization-dependent function is

The parameter M is the factorization scale which must
be specified in the process of factorizing the collinear
singularity. Basically, it determines how much of the
collinear term is absorbed into the various parton dis-
tributions.

The upper limit on the integrals appearing in Eq. (21)
is determined by requiring that the hard collinear term
not overlap with the soft region previously discussed. If
such an overlap were to occur, then that region of three-
body phase space would be counted twice.

ln(l —z)
Fqq(z) = C~ (1 + z )

3 1

2 (1 —z)+
1+ z2

ln(z) + 2z+ 3
1 —z

(9-I-+—lb(1- )
g2 3) (28)

The ( )+ distributions in Pqq and Fqq are defined in terms
of their integrals with an arbitrary function f(z),

E. Soft Collinear Subtraction Term 1
f(z) dz:—

1 z +

'f() —f()d
1 —z

The M2-dependent subtraction piece which is used to
absorb the collinear singularity into the parton distribu-
tion functions involves an integral over splitting functions
with the upper limit corresponding to z = 1, not 1 —b, .
Therefore, there is one last piece to be subtracted which,
for the t~5 case, takes the form

1

I:f(z) —f(1)l,

Inserting Pqq and Fqq into Eq. (26), integrating, and us-

ing the expansion

da ~s dgBn~n o f 47rp~ ) I'(1 p)

dv dv 2qr g M2 ) I'(1 —2e)

dz ]
x — Pqq(z) +—&—Fqq(z) I Gq(p(ztz) .

Z

(4~@')' (4m''l'
(

s

E

(26) yields

do

dv

a, t'4m@''t' I'(I —~) I 3 'I d& "" f3 l 8

)
de ""

2 ( r I'(1 —2) 2
'

r d (2 '
r M' d

d&Born0"y
+ d.

t'9 n. 3 d~B own

+A
I

—+ —+ —ln(b, ) —ln(b, )'
I(2 3 2 ) dv

In obtaining this result we have discarded all terms which are proportional to a power of the soft cutofF b, . The soft
collinear singularity in the t25 —+ 0 region yields an identical result.

F. Next-to-Leading-Logarithm Cross Section

The NLL cross section, which consists of two- and three-body contributions, can now be assembled from the pieces
described in the previous sections. The two-body contribution is

do.NL
0'q~~~z(pp ~ ZZ) = ) dvdzq dz2 Gq~p(zq, M ) Gq~p(z2, M ) (qq ~ ZZ) + (zz ~ z2) +

ddv )
(32)
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where the sum is over all contributing quark flavors,
do/dv is defined in Eq. (21), and

d~NLL d~Born d~virt

dv
(qq ~ ZZ) = +

dV dV
d&soft d&15

+
dv dv

dO

= ) J dz(zb ZZz)( G, (z(zi, Mz) Gg(z(zz, Mz)

+(zi ~ z2)]dzi dzg, (34)

where the sum is over all partons contributing to the
three subprocesses qq ~ ZZg, qg ~ ZZq, and qg ~
ZZq. The squared matrix elements for these subpro-
cesses are given in Appendix D. The integration over
three-body phase space and dz1dz2 is done numerically
by standard Monte Carlo techniques. The kinematic in-
variants 8;z and 4;z are first tested for soft and collinear
singularities. If an invariant for a subprocess falls in a
soft or collinear region of phase space, the contribution
from that subprocess is not included in the cross section.

IV. RESULTS

The I/e and I/e poles cancel when the terms in Eq. (33)
are summed [see Eqs. (9), (12), (20), and (26)j.

The three-body contribution to the cross section is

(Tsboqy(&p ~ ZZ + X)

previously been estimated using the soft-gluon
approximation. The assumption in this approach is that
the or~ terms are the dominant part of the O(n, ) correc-
tions. Futhermore, the approach assumes that all of the
O(n, ) n terms are found by considering only the most
singular contributions when the real- or virtual-gluon mo-
mentum k" ~ 0. Thus, the idea is to examine all graphs
that give I/e~ poles and deal with them in the infrared
limit. The QCD corrections are thus expressed as a mul-
tiplicative I& factor times the lowest-order cross section.
The soft-gluon A' factor derived in Ref. 7 is K = 1+—mn, .

The NLL total cross section for Z-pair production is
shown in Fig. 4 as a function of the center-of-mass en-
ergy. The predicted cross sections for the Tevatron, the
CERN Large Hadron Collider (LHC), and the SSC are
also given in Table I. Also given are the LL predictions
with and without the soft-gluon K factor, I~ = 1+ gem, .
Both the NLL and LL plus K-factor results show a signifi-
cant increase over the pure leading-logarithm calculation.
Furthermore, the results indicate that the soft-gluon K-
factor estimate is in reasonable agreement with the NLL
result for this particular observable. This point will be
discussed in more detail below.

One of the motivations for performing NLL calcula-
tions is that the results often show a less dramatic de-
pendence on the renormalization and factorization scale
choice than the LL result. This is true for the present
calculation. As an example, consider first the total cross
section at the Tevatron. Here the LL result is nearly in-

The numerical results presented in this section have
been obtained using the HMRSis set 8 parton distribu-
tion functions with A4 ——0.190 GeV. These distribution
functions have been fit at the NLL level using the uni-
versal (MS) convention. Thus the factorization defining
parameter A in Eqs. (22) and (31) should be A = 0. [If one
instead uses the DFLM parton distribution functions,
which are NLL fits defined in the physical (DIS) scheme,
then one must set A = 1.I A single scale Q2 = Mz2&,
where M~@ is the invariant mass of the Z pair, is used
for the renormalization and factorization scales. The two-
loop expression for n, has been used and A@en adjusted
whenever a heavy-quark threshold is crossed so that n,
is a continuous function of Q . For the heavy quark
masses we use m, ~

——5 GeV and m~ ——140 GeV. The
soft and collinear cut-oK parameters were taken to be
b, = 5 x 10 and b, = 10 . We use the standard-
model parameters Mg ——91.17 GeV, M~ ——80.0 GeV,
and n(M~) = 1/128. These mass values are consistent
with recent measurements at the Fermilab Tevatron,
the SLAC Linear Collider, and the CERN e+e col-
lider LEP. For comparison we also give LI predictions
which have been obtained using the two-loop expression
for n, . Using the two-loop running coupling for both the
LL and NLL results provides a consistent expansion pa-
rameter so that one can judge the degree of convergence
of the results.

The O(e, ) corrections to ZZ production have

10

10 I I I I I I I I

5 10

Vs (Tev)

I I I I I I I

50 100

FIG. 4. The total cross section for pp ~ ZZ + X as a
function of the center-of-mass energy. The solid line is the
NLL result, the long-dashed line is the LL result, and the
short-dashed line is the LL calculation with a A'-factor A =
I + —,

' n.a, .
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TABLE I. Predicted cross sections for ZZ production with no cuts.

Collider

Tevatron
LHC
SSC

~s (TeV)

1.8
16
40

NLI
( b)

1.08
13.3
35.6

o""(A = 1 + ~s s n, ) (pb)
1.08

13.5
35.2

o""(K= 1) (pb)
0.854

10.7
28.0

dependent of the scale choice, decreasing only by a factor
of 0.94 as Q~ is varied from 0.5M&2& to 2M&2&. At this
energy, ZZ production via pp interactions is dominated
by valence-quark interactions with z values in a range
above a lower limit governed by Mz j+s which is about
0.05. For these values there is little Q2 dependence in
the valence distributions. On the other hand, at the SSC
the relevant z range is smaller by a factor of twenty and
sea-quark interactions dominate in the pp process. These
distributions show a significant increase with Q in this
z region. Over the same range of Q2 the cross section
now increases by a factor of 1.14. When the NLL cal-
culation is examined in a similar way, the cross section
at the Tevatron also shows a slight decrease, the factor
being 0.96. On the other hand, the cross section at the
SSC increases by a factor of 1.03. Hence, there is a less-
ening of the scale dependence in the NLL results, with
the eKect being most noticeable at the higher energy of
the SSC.

The structure of the NLL calculation given in this pa-
per makes it clear that there is significant cancellation
between the positive-definite 2 ~ 3 contribution and the
sum of all the 2 ~ 2 contributions. Indeed, the latter
quantity is not positive definite, as can be seen by exam-
ining the results presented in Ref. 9, for example, where
the individual cross-section contributions in the case of
direct photon production are shown. In the cases where
essentially all of the recoil gluon phase space are inte-
grated over, it appears that the cancellation just men-
tioned is such that the remainder is well approximated
by the soft-gluon K factor. However, suppose that one
was interested in an observable defined in such a way that
the integration over the recoil gluon was severely limited.
In this case one might expect to see departures from the
soft-gluon I&-factor estimate.

Consider, for example, the inclusive transverse-
momentum spectrum of the Z bosons, as shown in Fig. 5.
The inclusion of the 2 —+ 3 real emission processes in the
NLL calculation shifts events in the distribution from
lower to higher values of transverse momentum since the
Z pair can now recoil against a gluon. The shape change
becomes more pronounced at higher center-of-mass ener-
gies as is seen by comparing parts (a) and (b) of Fig. 5
which are for the Tevatron and SSC energies, respec-
tively. Including the K factor in the LL result only scales
up the overall normalization and does not predict any
shape change.

A similar efI'ect is shown in Fig. 6 for the ZZ invariant-
mass distribution. Again, the greater phase space for the
recoiling gluon in the higher-energy case results in an in-

crease of the NLL calculation over the approximate one.
Consider, however, what would happen if one required
that there be no accompanying jet with pT(jet) ) 30 GeV
and ~q(jet) ~

( 3. The results are shown in Fig. 7 and one
can see that this restriction has no efIect on either the
LL or approximate soft-gluon calculations. However, the
NLL curve is significantly reduced since a large segment
of the positive-definite three-body part has been elimi-
nated by the choice of cuts. The point which we wish to
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FIG. 5. Inclusive Z-boson transverse-momentum distri-
bution: (a) is for pp ~ ZZ+ X at ~s = 1.8 TeV, (b) is for
pp —+ ZZ+ X' at ~s = 40 TeV. The labeling conventions are
the same as Fig. 4.
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I I I I I— emphasize is that the cuts imposed at the analysis stage
may be such as to invalidate the use of a simple over-
all I~-factor estimate with the result that the full NLL
calculation should be used.
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V. SUMMARY

A complete next-to-leading-logarithm calculation of
(-)

pp ~ ZZ has been presented. The calculation was
done using a combination of analytic and Monte Carlo
integration methods which make it easy to calculate a
variety of observables and to impose experimental cuts.
It is interesting to note that for the total ZZ cross sec-
tion, the NLL corrections were reasonably approximated
by including the soft-gluon I~ factor, I~ = 1 + geo, „
in the LL calculation. On the other hand, when typical
experimental cuts were imposed, significant differences
between the soft-gluon I~" factor and the full NLL cal-
culation were noted. This is consistent with results ob-
tained previously for direct photon production and jet
photoproduction which showed that the size of the NLL
corrections depends on the observable being studied. An
overall multiplicative A' factor is incapable of reproduc-
ing this amount of detail.

Note added. After completing this work we learned of
a recent order-a, calculation of the total cross section for
hadronic ZZ production by Mele, Nason, and Ridolfi.
We have compared results for the total cross section and
found them to be in agreement.
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FIG. 6. Invariant-mass distribution for the Z pair. The
labeling conventions are the same as Fig. 4.
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FIG. 7. Same as Fig. 6(b) but no jets are allowed in the
final state. The jet criteria are: pT(jet) ) 30 GeU and

lg(jet)l ( 3.

APPENDIX A: REGULARIZATION OF g5

The implementation of p5 in dimensional regulariza-
tion requires a prescription for defining y5. We use the
definition proposed by Chanowitz et a/. , who define y5
by the following properties.

(~) (Vs V") =O ~ =o i
(~) &s = ~

(3) Tr(ps'" p"p"p') = 4i e"" ' +O(N —4) x ambiguity
when p, v, cu, 7, are in the four-dimensional subspace
p, v, u, r = 0, 1, 2, 3. The Adler-Bell-Jackiw anomaly
is related to the fact that the ambiguous term cannot be
explicitly defined.

The ambiguous terms are discussed in Ref. 25, where it
is shown that they can be discarded. The three defining
properties plus the fact that there are not enough vectors
to form a nonzero contraction with ~"" allow one to
eliminate traces containing p5.

After the ambiguous terms have been discarded and
the traces containing y5 have been eliminated, we can
evaluate the traces in N dimensions using the algebra
manipulation program FORM. All p-matrix algebra was
done in N dimensions and the results were checked in four
dimensions.
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AP PENDIX 8: LOOP INTEGRALS

('4~1 ' r(1 —.)
q s y I'(1 —2«) (4~)~

(B1)

Integrals I5, I6, I7 are infrared and ultraviolet finite and
can be evaluated in four dimensions; however, the other

The loop integrals from the virtual graphs of I'ig. 2 can
be reduced to a set of 11 integrals which are given in this
appendix. They are written here with a common overall
factor

integrals are singular and must be regularized. Dimen-
sional regularization was used to regularize these inte-
grals, with the number of space-time dimensions set to
N = 4—2c. In all cases the integrals were evaluated using
the Feynman parametrization technique. Integrals I5'
and I6 are only needed for the cases where the indices
are contracted with p~„p~, and p~„, respectively. The
one-point function is defined to be zero in dimensional
regularization. The integrals are most conveniently writ-
ten in terms of functions denoted E; and B;. The E;
functions are

)—(ai —»)'l —a,' ~ ( —(ai —»)' ' (—ai)'Eo= 1nl
l

—1n ' —— »l —1nl
s s

r' —a —(a1 —b1)'
E1 a1 1 —«»

l

' —(a1 —b1) 1 —«ln
8 8

(82)

(—a t' —(ar —b1)'
Ep —a1 1 —«»

l

'
l

—(a1 —b1) 1 —«1n
s )

and the B; functions are

1 . 1 —zi (1 —z ( s
B7 —— — —4Lig l+2ln

l

—1nl ~ l

+-
z 2 p g 2 qM~) 3

where z = gl —4M&/s and Liq(z) is the dilogarithm function

Lip(z) =— dt .z'
1n(1 —tz) —= )t k2

The eleven integrals are

d k 1

(2yr)~ k~(k+ pr)~(k+ p1 —ps)z(k —pg)~

.F 1 2 f M~I 2x—+ —1I1 +
St «« —2B1(t, u)

IPP
2

k"k

(2~)~ k'(k+ a, )'(k+ b, )'
a", b", + b", a; gpv

a", a, Eo — ' —' ' '(a', Eo+E,)+ (1/«+3)E,
4a1 b1. 2ag bg 2

+ ' '
z [a, (2/«+ 3)Eo+ a1(4/«+ 10)E1 —(1/«+ 2)Ezj, a, j 0, b, = 0)

2a, b, '
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I4 =

d~k k~

(2ir)N k2(k + al)2(k + bl)2

~
aiEp — [ai(1/e+ 1)Ep+ (1/e+ 2)E1] ~, ai g 0, bi ——0,

2a 1 ' 1 a 1 ' 1

d It; 1 iF Ep

(2ir)N k (k+ ai)~(k+ bi) 2ai bi

rP&Pl p Pl p ~ 5 = Pl pPl gg

d~k

(2~)" (k+»)'(k+ pi —»)'(k —»)'
.Fs Mg~ f' (Mg —t)2 u —t Mg —t (t —u)3 s

s —4M& p

d~k k&

(2&) (k+ pi)'(k+» —p3)'(k —p2)'

.F Mg —t Mg u —t u —t ( s=i—B7 + 2
—

2 in~
2 s s s —4M' s —4M~2 (M~2 p

PPl„I6 =—Pl„

d~k 1 =i —B7,
(2ir)N (k+ pi)2(k+ pi —ps)2(k —p2)' s

( s 2M) —s 10M' —s (t —u) u —t M~ —t ) (t —u)

(Mg s —4M) s (s —4M))~ s s —4M) J s(s —4M'~)

IP8

10—

d~k k"
(2~)N k2(k + p )2(k p2)2

=i-(pi -p2) -+2

d~k 1 1

(2ir)N k2(k + p )2(k p )2 s c2

d~k & —(ai —bi)')
i —(a", +b", ) ——+2 —ln

~

(2x)N (k+ ai)2(k+ bi)~ 2

d~k 1 1 1—(ai —bi)= iF —+2 —ln
~(sz)~ (b+ ai) (b+ b&) ~ ( s )

APPENDIX C: FINITE VIRTUAL CORRECTIONS

The finite virtual corrections for the subprocess qq ~ ZZ are contained in the function F(t, u):

F(t, u) =
A i (t, u) Bi (t, u) + A3(t, u) ~ + ln

~

—ln
fs Mz

(M,'l+As(t, u) ln
~ ~

+ A4(t, u) ln
~
+ A5(t, u) ln

~ ~
+ As(t, u)ir + A7(t, u)B7 + As(t, u)&-t) s )

The B; functions are given in Appendix B and the A, are functions of s, t, u, and M&.
M4 M' M4

Ai (t, u) = 4 + 4—+ 2—+ 16 —8 —4 —16
u t tu t t u

M2 uM' M' M' M' u

Mg2 —t g u u t2 t~u t2 ts t tu t j
MZ2—8

u MZ4
A3(t, u) = 4+4—+4—+ 12

u t tu
( t Mg+ '3——5

—8 —8
g2 u

uM' m' m4 m' u M4
4 Z

Q
Z 4 z 8 Z 1O 7 Z
u t 't t Eu
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M4
A4(t, u) = 6 + 3—+ 3—+ 5 —8 —3 —10

t2

(
A5(t, u) =, 4

Mz —t

t Mz+3—+
u tu

t2

(s —4MZ)2

Mz Mz + —4 —1+——2 +4-+2u

s —4Mz2 u t2 t2 t t )
+ —+8

(C2)

+4—+6 —14 +4 + 16 —16 —6 —20 +22uMZ4 Mz Mz uMz Mz
t tu t t3 t3u t3 t2 t2u t2

A. (t, u) = —
l

—6 —7——16 '+28 '+4 t2r '

A7(t, u) = ——4 —3-+ 2 + 4 +4——8
t Mz2 t Mz4 Mz2 t Mz2

su su s st s u t
2Mz2 t2 t Mz2 t Mz2 t M2

+ +4 + +s —4Mz2 su su s s u t (s —4Mz2)2 s q u)

AB(t, u) =
2

—4—+ 28 —4 —70 + 22 —2

+ 1 —— +6+3 —6 +5 —8
s —4Mz2 ur tu t t2 u

APPENDIX D: REAL EMISSION PROCESSES

The six Feynman diagrams which contribute to the amplitude for the real emission subprocess

g(P1) + g(P2): ~(PB) + ~(P~) + g(P5) (D 1)

are shown in Fig. 3. The squared amplitude summed over final state polarizations and initial state spins can be
written

l~" 'l' = 16am, e4[(g' ') + (g+ ') j ) M;, ,

i=1,6
j=i', 6

(D2)

where the M;& term corresponds to the squared amplitude from the product of the ith and jth Feynman diagrams in
Fig. 3. The M;z are functions of the momenta and the Lorentz scalars s;z ——(p, + pz) and t;z —(p; —p&)2:

32P] 'J 5 2 32P2'I 5
Ml1 —

2 2 (2p2 p4p4'p5 p2 p5Mz) ) M'33 —
2 2 (2pl pBpB p5 pl'p5MZ)''

15 24 t13t25

4
(pl p2Mz 2pl pBp'2 p3Mz +'4pl pBp'2 p4pB p4 2'pl p4'p2'p4'Mz) )

t13t24

128J'g.J'5J'2.J'
M12 —— (P2 PB + P2 P4 —PB P4)t 15t23t 24
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64
Mg3 —— [(Pl P2)'(PB P4 —»3» 5 —»4»5)

+Pl 'P2(Pl P4'P3 PS + Pl P3P'2 P5'Pl 'P4P2 P3'+ Pl P4'P2 P5'Pl P3'P2'P4)

+Pl P2('P1 P5P'2 P3 '+ Pl P5P'2'P4 Pl PSP'3 P4 '+ P2'PBP4 P5 'P2 PsP'3 P4)'

+Pl P3P'2 P5('P2 P4 'Pl P4)'+ Pl P5P'2 P4('P1 PB 'P2'P3)] )

128py.p2
Mg4 —— (»l -»4) (»2 »4—)(»l —»5) (P2 —»5),

«i4«i5«2 «25

64
M15 —

2 [(pl 'p3 + pl 'p5 —p3 p5)(2pl P4P2'p4 p'l P2MZ)] ~

64
Mg6 ——— (»».»2)'(PB.PS —»3 P4 —P4 »5).

«14«15«23«24

+Pl P2(P1''P3P2 P4 Pl P3P2 P'5 + P'l PBP4 P'5 + P'l P4P2 PB + P'l P4P2'P'5)

+Pl P2(P1 'P5P2 'P4 Pl P5P2 PB''Pl P4P3 PS P'2 P4P3 P5 + P2 P5P3 P'4)'
+Pl P5P2 P'4(P2 P'3 P'l P3) + Pl P4P2 P'3(P1 'P5 P'2 PS) + P'l P2Mz(P1 P2 Pl P3 P'2'P5)

+ (Pl P2P3 P5'+ Pl'P3P2 P5'Pl 'P5P2'P3)
2

The remaining M;& expressions are related to the above expressions by interchanging parton momenta:

M22 —Mll(pB ~ p4),
M23 = Ml4(PB»4),
M26 ——MlS(pB ~ p4),
MBS ™15(pl~ P2~ P3

M45 = Mls(» l »'2)

M44 ™33(PB P4) M66 ™55(PB P4)
M24 ——Mls(ps P4), M25 = Mls(PB»'4)
M„= M„(p, p, ),

p4), M36 = Mls(»» P2, PB P4)

M46 ™15(pl~ P2) ~ M56 ™14(PB PS)

The squared amplitudes for the processes qg —+ ZZq and gq ~ ZZq can be obtained from the qq ~ ZZg squared
amplitude by crossing p~ + —p5 and p~ ~ —p5, respectively. Furthermore, one has to correct for an overall minus
sign and change the color average from —x —to —x —.

3 3 3 8
The subprocess cross section in 4 dimensions is

do. (qq ~ ZZg) = —A~ — ~~~ d 43,
1 1 1 2 4

4 2 28gg

where the factors 4, At-, 2
are the spin-average, color-average, and identical-particle factors, respectively.
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