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We investigate the modified lattice gauge Hamiltonian proposed by Guo, Zheng, and Liu, whose

vacuum wave function is known exactly. The result strongly suggests that the Hamiltonian does not

have the correct continuum limit in either (2+1)-dimensional or (3+1)-dimensional space-time.
We also show that the modified Hamiltonian cannot be improved so as to make its difference from

the standard Kogut-Susskind Hamiltonian negligible in the continuum limit under the condition

that its exact vacuum wave function is the product of the functions of a single plaquette variable.

One of the important problems in understanding the
low-energy properties of non-Abelian gauge theory is to
know the structure of its vacuum. Recently, a modified
Hamiltonian was proposed by Guo, Zheng, and Liu, '

whose vacuum wave function is known exactly to be the
product of the functions of a single plaquette variable.
They claimed that the difference b,H between their Harn-
iltonian and the standard Kogut-Susskind Hamiltonian
Hp (Ref. 2) is irrelevant in the continuum limit. This
would be, if correct, a significant advance in this region.

The operator AH contains the square of the difference
of neighboring plaquette variables and the proof of their
claim assumes that it can be replaced by the square of the
derivative of the field strength in the continuum limit. It
was pointed out, however, by Roskies that, in the case of
(2+ 1)-dimensional space-time, the difference cannot be
replaced by the derivative of the field strength because
the exact vacuum wave function of the modified Hamil-
tonian describes a completely independent fluctuation of
the color-magnetic field at each plaquette. In fact,
Roskies evaluated the vacuum expectation value of AH to
be divergent in the continuum limit in 2+ 1 dimensions.

Guo et al. later gave a counterexample to Roskie's
Comment, in which the addition of an operator to the
Hamiltonian does not affect the low-energy behavior of
the system in the continuum limit, even if the vacuum ex-
pectation value of the added operator is divergent. But it
should be noted that, in the example, the vacuum expec-
tation value (or the zero-point Auctuation) of the added
operator is less singular in the power behavior with
respect to the lattice spacing than that of the original
Hamiltonian.

In 3+1 dimensions, on the other hand, at first glance
there seem to be no problems pointed out by Roskies
since their exact vacuum wave function implies that
color-magnetic fields in neighboring plaquettes are
strongly correlated in the continuum limit due to the Bi-
anchi identity in this dimension and it seems that the

square of the difference of neighboring plaquette variables
may be replaced by the derivative of the field strength.
Then, after naive power counting, AH tends to zero in
the continuum limit. In fact, Duncan and Roskies agree
with this argument, although they suppose that the effect
of the term AH would be enhanced nonperturbatively.

In this paper we analyze the modified Hamiltonian
proposed by Guo et al. and the result indicates that it
does not have the correct continuum limit in either 2+1
or in 3+1 dimensions. We first point out that, in 2+1
dimensions, the expectation value (b,H )p with the exact
vacuum wave function of the modified Hamiltonian has
the same order of magnitude with respect to the lattice
spacing as the divergent vacuum expectation value
(Hp )p of the Kogut-Susskind Hamiltonian in the contin-
uum limit. We next evaluate (b.H )p in 3+ l dimensions
and show that it also has the same order of magnitude as
(Hp )p up to a logarithmic factor. Here, each of the vac-
uum expectation values (Hp )p and (b,H )p comes wholly
from the quantum fluctuation of the gauge field. From
these it is implausible that the operator hH is an ir-
relevant operator in both 2+1 and 3+ 1 dimensions; i.e.,
the operator AH would affect the low-energy behavior of
the system in the same order of magnitude as the Kogut-
Susskind Hamiltonian Ho does. We further show that
one cannot improve the modified Hamiltonian in either
2+1 or 3+1 dimensions so as to make AH less divergent
in the continuum limit as far as the exact vacuum wave
function is the product of the functions of a single pla-
quette variable.

The modified Hamiltonian proposed by Guo, Zheng,
and Liu for the SU(N) lattice gauge theory has the form
of

2

g exp( —R )Et'exp(2R )Et'exp( —R )
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+
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~+ & =exp(R)~0&,

where ~0) is defined by

E;in&=0.

It has the exact ground-state energy

(2)

where R is a gauge-invariant function of plaquette
variables. We have added the constant term
(I/ag ) g Tr(2), which was omitted in Ref. 1. It does
not affect the property of the system at a11. The exact
ground state

~ %0 ) for the Hamiltonian is

stant term to the original modified Hamiltonian. ) From
these it is implausible that the operator AH is an ir-
relevant operator, since there is no reason to expect that
the operator AH does not give any effect on the property
of the low-lying states such as mass gap and string ten-
sion while the operator Ho does give various effects, in
spite of the fact that the quantum vacuum Auctuation of
the gauge field gives contributions to both of the opera-
tors in the same order of magnitude.

Next we consider the case of 3+ 1 dimensions. We es-
timate the continuum limit of the vacuum expectation
value of AH, for which we evaluate the vacuum expecta-
tion value of the dimensionless quantity g&

..

The Hamiltonian can be rewritten as

H =Ho+AH,

where

2

Ho = (EJECT [EI', [E—i', R]]),
2

hH = — [Ei', R ][Ei',R ] .

If one takes the following form of R as
r

R=gaTr(U +U ) a= 1

P P 2( 4

then Ho is exactly the standard Kogut-Susskind Hamil-
tonian:

Ho= QEpEi'+ QTr(2 —U —U ) .
2a ag1 p

p p

If the effect of the remaining term
1

b,H=
8C~g a

So we consider Euclidean lattice gauge theory in three-
dimensional space-time for a moment. The continuum
limit of U can be expanded as

U~
= I+ie a Fi +O(a ), (13)

where a, e, and F are the lattice spacing, the invariant
gauge coupling, and the field strength, respectively, in
three-dimensional Euclidean lattice gauge theory with
gauge coupling g (g =a e ). Then the quantity gi be-
comes

dU ylexp 2R
(y, ),= f [d U]exp(2R }

with respect to g . Note that it is exactly the same as the
vacuum expectation value of g& in the Euclidean lattice
gauge theory in three-dimensional space-time with the
coupling constant g =C&g /2 as

f [dU]y&exp g(1/2g )Tr(U +U )

f [dU]exp g (1/2g )Tr(U + U„t)
p

p, p'Dl
Tr[A'( U —U )]Tr[A'( U, —U, }]

(10)
g& =(ie a B&Fiz )

and the naive dimensional counting gives

(14)

would vanish in the continuum limit, at least on the low-
energy behavior of the system, one could say that the
modified Hamiltonian is the correct one.

We first concentrate on the case of 2+1 dimensions.
The vacuum expectation value of AH is evaluated by
Roskies to be divergent like —V/a with respect to the
lattice spacing a in the continuum limit. On the other
hand, the vacuum energy

, QTr(2)=(H, ),+(AH),
ag

is also divergent like V/a, using the relation g =ae,
where e is the invariant gauge coupling. This means that
( b H )0 has the same order of magnitude as ( Ho )0 in the
continuum limit. Note that each of the vacuum expecta-
tion values (Ho)o and (b,H)0 comes exclusively from
the quantum fluctuation of the gauge field, because the
classical ground state, in which FI'=0 and U =1, gives
Ho=0 and AH=0. (To make HO=0 in the classical
ground state is the reason why we have added the con-

(15)

18

(aH &, a4
(17)

Thus, the vacuum expectation value of AH is proportion-
al to —Vg' /a, which diverges like —V/a ( —lna) in
the continuum limit, using the relation

a =AL 'exp( —constXg )

The reason why we can now use the naive dimensional
count is that, in the expectation value (12), the correct
vacuum wave function in (2+ 1)-dimensional gauge
theory is generated automatically by the (path) integra-
tion of the link variables from the infinite past to the
infinite future in the Euclidean time. Finally, we obtain

(xi &0 "g ""g",
and, going back to the original (3+ 1)-dimensional
theory, it gives
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in (3+ 1)-dimensional theory. On the other hand,
the vacuum energy (1/ag ) g Tr(2) diverges like

V( —lna)/a . These imply that the vacuum expectation
value of AH diverges in the same order of magnitude
with respect to the lattice spacing a as that of the Kogut-
Susskind Hamiltonian Ho in the continuum limit up to
the logarithmic factor and it strongly suggests that the
operator AH is also relevant in 3+ 1 dimensions.

Next let us consider the modified Hamiltonian in 2+1
and 3+1 dimensions with the more complicated form of
R as

n [(n +1)n —2](2N)" a„= 1

n=1
(21)

n (2N)" 'a„=0 .
n=1

(22)

Equations (21) and (22) give

We further impose the condition that the leading term of
AH [the rhs of (7)] with respect to a or g should vanish.
It gives another constraint

R = g g a„[Tr(U + U~)]" .
p n=1 n (n —1)(2N)" a„= 1

71 =2
(23)

This would give the most general vacuum wave function
that is the product of the functions of a single plaquette
variable as

(19)

2 4
U =1+iga F~ — Fi~+O(a ),

where g should be replaced by the invariant gauge cou-
pling e in 2+1 dimensions. Then the condition that Ho
[the right-hand side (rhs) of (6)] should approach the
standard Hamiltonian in the continuum limit gives a con-
straint

(20)

taking into account the requirement that the vacuum
wave function should be gauge invariant and translation-
ally invariant. Now we will ask whether we can choose
an appropriate set of parameters [a„I so that the vacu-
um expectation value of AH be less divergent in the con-
tinuum limit. In fact, Guo et al. tried this issue in 2+1
dimensions because in this dimension, AH diverges even
in the naive classical continuum limit. '

We assume that the continuum limit of U can be ex-
panded as

The left-hand sides of Eqs. (22) and (23) are just the first
and the second derivatives, respectively, of R with
respect to Tr( U + U ) at the configuration I U = 1 I, and
the two equations imply that the vacuum wave function
exp(R) is not peaked at [U =1], instead the
configuration I U =1] gives its local minimum. This is

inconsistent with the expansion of U around the
configuration [ U =1] as in Eq. (20).

The above consideration implies that one cannot im-

prove the modified Hamiltonian so as to make AH less
divergent in the continuum limit under the condition that
its exact vacuum wave function is the product of the
functions of a single plaquette variable as in Eq. (19).
This would indicate that the exact vacuum wave function
of lattice gauge theory in (2+ 1)- and (3+1)-dimensional
space-time should involve more extended operators such
as two plaquette variables.
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