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Using the topological part of restricted quantum chromodynamics, dyonic supermultiplets in
N =1 supersymmetry are obtained quantum mechanically as well as in the supersymmetric version
of the Georgi-Glashow model for vanishing linear momentum and in the Clifford vacuum. Con-
structing the Lagrangian density in such a model of restricted quantum chromodynamics, super-
symmetric dyonic solutions and the classical mass of the dyon are obtained. Deriving the eigenval-
ue equations of bosonic and fermionic fluctuations, the corresponding one-loop corrections to the
dyonic mass are calculated and it is shown that the classical mass of the dyon is not changed by

one-loop quantum corrections.

I. INTRODUCTION

Supersymmetric field theories have the remarkable
property that some of the perturbative effects are can-
celed between bosons and fermions and provide' a natu-
ral resolution of the gauge hierarchy problem of grand
unified theories (GUT’s). In most such theories, the
spontaneous breaking of symmetry at mass scale M,
(M, ~10"® GeV) leads to the presence of monopoles and
dyons. If supersymmetry breaks at a scale much less
than M, the monopoles and dyons must form supermul-
tiplets of approximately degenerate boson and fermion
states. The monopoles and dyons in N =1 supersym-
metric theories must be consistently represented by su-
permultiplets containing spin-0 (S monopoles) and spin-1
(monopolino) states. D’Hoker and Vinet? have presented
the N =1 superspace formulation for the dynamical su-
persymmetry of the Pauli system in the presence of
monopoles.

In the supersymmetric GUT’s, the monopole ground
state, in general, carries fractional electric charge as well
as color hypercharge.® This is a manifestation of fermion
fractionization® with the axial anomaly effect’ properly
taken into account. Supersymmetry provides the first
realistic testing ground for the idea of fermion fractioni-
zation and induced fermionic charge on a monopole. The
fractional charge of dyons arises for the Higgs-boson-
mass case (and not for the Dirac-mass case) and the non-
trivial topology of the background Higgs fields leads to
Jackiw-Rebbi zero modes* even in the supersymmetric
theories. It has been shown® that the monopole states
which are connected by Jackiw-Rebbi zero-mode opera-
tors must be embedded into the fundamental multiplet of
the N =1 supersymmetric Georgi-Glashow model, and
these modes exactly coincide with the supersymmetric
zero modes.” In general, it is very difficult to obtain the
explicit form of the Jackiw-Rebbi zero modes in super-
symmetric theories, and the dual nature of the fermionic
zero modes in N =2 super Yang-Mills theories leads to
several difficulties in dealing with the problem of mono-
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poles, dyons, and dyonic supermultiplets.

Analyzing the supersymmetric generalization of mono-
poles in the limit of Prasad and Sommerfield® and Bo-
gomolny® and using the supersymmetric version of the
Georgi-Glashow model with vanishing potential, it has
been shown!® that the quantum corrections to the mass of
a monopole are vanishing. However, some controversies
have been raised'!"'!? about the exact cancellation of per-
turbative effects between bosons and fermions,
Bogomolny-bound saturation, and quantum corrections
to the physical monopole mass in N =2 supersymmetric
Yang-Mills theory. Moreover, if the Jackiw-Rebbi zero
modes exist independently of supersymmetric zero
modes, the dyonic states are enriched by further degen-
eracy with different charge and spin states, and conse-
quently the supersymmetry becomes very much involved
and cumbersome. Unfortunately, an explicit demonstra-
tion of Jackiw-Rebbi zero modes is extremely difficult. In
the light of these difficulties associated with the existing
supersymmetric GUT’s, it becomes necessary to have an
alternative approach to understand supersymmetric
dyons.

Keeping these motivations in view, in this paper, dyon-
ic supermultiplets in N =1 supersymmetry are obtained
quantum mechanically in the topological part of restrict-
ed quantum chromodynamics.!®!* Starting with the rep-
resentation of supersymmetric algebra described by dyon-
ic states, in the supersymmetric version of the Georgi-
Glashow model, +4 and —1 spin states are constructed
from the spin-0 state, and the dyonic supermultiplets are
obtained for vanishing linear momentum as well as in the
Clifford vacuum. Constructing the Lagrangian density in
the N =1 supersymmetric version of restricted quantum
chromodynamics (RCD) (topological part) in terms of the
isotriplet gauge field and its fermionic superpartner, su-
persymmetric dyonic solutions are written and the classi-
cal mass of the dyon is obtained by minimizing the back-
ground potential of the theory. Separating the bosonic
part of this Lagrangian in the dyonic background gauge
and adding the gauge-fixing and Faddeev-Popov ghost
terms to it, the eigenvalue equations of bosonic fluctua-
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tions are derived and the corresponding one-loop correc-
tion to the dyonic mass is calculated.

II. DYON SUPERMULTIPLETS

In supersymmetric theories, dyons must exist in the
form of supermultiplets together with their fermionic
partners. Let us demonstrate, quantum mechanically,
the existence of dyonic supermultiplets in the minimal su-
persymmetric theory, where the monopoles and dyons
form the representations of supersymmetric algebra:

{QaiQB} {Qa’QB} )
2.1)
{Qa;Q'} 20’;(11);1, .

Only isovector fermions are relevant in the simple super-
symmetric version of the Georgi-Glashow model. Let us
consider the four-component Majorana spinor ¥ defined
as

(2.2)

Under parity P, the component of the left-handed spinor
¥, and its right-handed complex conjugate ¥, transform

as
Py (x) =i 4 —

and (2.3)
Py 4x)=—i,(—x)P

The supersymmetric generators Q, and —Q-a also trans-

forms under parity in an exactly similar way. The other

discrete symmetry of Georgi-Glashow model is G parity.

Though P parity and G parity are spontaneously broken

in the Higgs vacuum, the product PG is unbroken and we
have

(PG)Q,(PG) '=iQ ¢
and (2.4)
(PG)Q(PG) '=—iQ, .

Let us now introduce the states |p,q ) characterized by
the momentum and charge of the dyon. The simplest an-
satz for realizing the dyons at rest in a supersymmetric
theory consists of a set of supermultiplets constituted by
the spin-O states |0,q) for different charge labels such
that

0,10,g)=0. (2.5)

Applying the supersymmetric operators on these states
we get the spin-O states |0, ) and spin-1 states |+1,q)
and |—1,9). States with nonzero momentum can be
constructed by applying Lorentz transformations. All
these states correspond to the same classical solutions. In
other words, these states constitute dyonic supermulti-
plets. The four states [0,g), |1,4), |—1,9), and 10,q)
are embedded in the complete supermultiplet in N =1 su-
persymmetric theory. This supermultiplet can be gen-

eralized by introducing the Clifford vacuum |Q,q ) with
charge g =1, which is annihilated by supercharge Q,, i.e.,

Q,19,4)=0. (2.6)

The other members of the multiplets are generated by the
application of Q,.

The embedding of spin-1 dyons in this manner is much
more nontrivial. In order to judge whether this embed-
ding is done by taking the spin-1 dyons as the Clifford
vacuum and constructing the supermultiplets or by incor-
porating them into the spin-1 part of the fundamental
multiplet in the N =1 supersymmetric theory, the only
available way is to add a soft-supersymmetry-breaking in-
teraction for observing the response to the main spectrum
of the theory. The purpose of softly broken supersym-
metry is to protect scalar mesons from quartic mass re-
normalization below the unification mass scale. Let us
introduce the gauge-invariant perturbation ¥ which soft-
ly breaks the supersymmetry. In the presence of this per-
turbation, the fermion states |1,¢) and |—1,g) remain
degenerate with mass M”. In the basis [0,¢ ) and [0,q ),
the mass matrix for spin-O states may be written as®!®

(F)
MPB = My v 8, % 2.7)
- (F) __ ’ .
q d, M —A, +28,
where
F)_ 2 —_ P
MP=(1,qlH|L,q)=(—1,qlH|L,q), (2.8)

with H as the rotationally invariant total Hamiltonian of
the dyon-isovector fermion system. The mass-splitting
parameters A, d,, and Bq may be obiained in the follow-
ing form by retaining linear order in V:

1

8= 377 °0,41{04: (24, V110,90 2.9)

dqz“—<0 ql{0%10,,V1}10,q) , (2.10)

6‘7 32M2<0q|{ a’ Qa {Qd,[Qa’ﬁ]}]HO,q) 5
2.11)

where averages have been taken over the states |1,¢ ) and
|—1,9). For deriving selection rules which restrict the
form of mass splitting, we write the following transforma-
tions by using relations (2.4):

(PG)|0,q9)=10,—q)
and (2.12)
(PG)|0,¢)=10,—¢q) ,

showing that the electric charge is odd under the PG
transformation.

If V' is PG invariant, we have the following relations by
applying the PG transformation to the spin-1 states

1,g)and |—1g):
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(F) — pg(F) R SN A

M =M, (2.13a) V,= lej‘m 4] mXx9,Mm (3.1)

d, :d-q* ’ (2.130) describes the dyonic flux of color isocharges and the re-

and stricted one describes the flux of topological charges. In

8,=8_,=3(A,+A_,), (2.13¢)
where the last relation plays a crucial role in determining
the right supermultiplet structure.

Another unbroken symmetry of the Georgi-Glashow
model is defined as follows in terms of R-symmetry
charge:'®17

[R,Q,]1=—0Q, >
— — (2.14)
[R,Q,]1=0, -
Using the relations given by Eq. (2.4), we have
(PG)R (PG)"'=—R . (2.15)

If the soft perturbation V is chosen such that
AR=0,

then d, =0 and states |0,g ) and |0,q ) are not mixed by
perturbation. For the perturbations which make
|AR| =2, we have

d,=6,=0 (2.16)
and then the mass-squared sum rule (2.13c¢) is satisfied.
In this case we obtain the following values of boson
masses as the eigenvalues of mass matrix (2.7):

(B) = Aq(F)
MP=mPxld,| . .17

For all other perturbations with any other values of AR,
all the corrections to the masses vanish.

Taking various choices of perturbation, the mass split-
tings have been evaluated®'® leading to various draw-
backs such as model dependence of fermion fractioniza-
tion, the question of independent origin of dyon degen-
eracy due to fermion fractionization and supersymmetry,
the origin of Jackiw-Rebbi zero modes as a consequence
of hidden supersymmetry'®!® and their explicit forms in
supersymmetric theories (which involve a large number
of fields), and the existence of induced color charges on
GUT dyon, etc. Because of these reasons, some skepti-
cism has been expressed?’ about these phenomena and it
is therefore worthwhile to explore an alternative way to
understand supersymmetric dyons. In the following sec-
tion we shall make an attempt to construct the alterna-
tive supersymmetric theory of these dyons.

III. SUPERSYMMETRIC DYONS
IN RESTRICTED GAUGE THEORY

Dyonic color charge and the color spin induced by fer-
mion fractionization in Georgi-Glashow model in the
presence of an isovector fermionic field can be incor-
porated in the restricted quantum chromodynamics
(RCD),!>!* where the unrestricted part of the gauge po-
tential

this theory the restricted potential, containing color elec-
tric and magnetic potentials in a dual symmetric manner,
has been constructed by using magnetic symmetry on glo-
bal sections where color direction has been chosen by
selecting color electric potential of Cartan’s subgroup.
The generalized field strength of gauge fields in this re-
stricted chromodynamics describing non-Abelian dyons
has been obtained as

6,,=G,, T 1gl(V,XV,) . (3.2)

In Egs. (3.1) and (3.2), the V, vector is the isotriplet of
the generalized four-vector and fi is isotriplet with con-
stant length

A2

m2=const=v%/2 . (3.3)

In the external four-dimensional space, the multiplet m
behaves as a massless scalar field, components m“ of
which in internal SU(2) space constitute the isotriplet m,
where a =1,2,3.

The unrestricted part of the gauge potential V ,, intro-
duced by Eq (3.1), has the Abelian origin, and it has been
ignored as being unnecessary in our recent work,!® where
only the restricted part of this potential has been shown
responsible for quark confinement through the mecha-
nism of dyonic condensation. The dyons appear in the
restricted chromodynamic theory only through this part
of the potential. As such, ignoring the unrestricted part
here also, Eqgs. (3.1) and (3.2) reduce to the form

1

VH=~mr’hX8#ﬁl (3.4)
and
6= ﬁ(zeabcaym,,avmc +m “6bc‘imba#mcavmd ),
(3.5)
where
lgl=(e?+g*)!'"? (3.6)

is the dimensionless coupling constant made up of elec-
tric and magnetic coupling strengths e and g, respective-
ly. Here the massless isovector field V, has been con-
structed out of the isotriplet scalar i and hence the in-
dependent bosonic degree of freedom is only 1. As such,
the supersymmetric generalization of RCD may be ob-
tained by modifying the Lagrangian density into the form

L=—164 6+ 1X%"D A, + 1D, m D¥m,
4 puv-a 2 pra 2 p

+Lgle e m Ry A —V(mm*) , (3.7

where A? constitutes the isotriplet of fermionic field, y#
are Dirac matrices, ¥s=V,Y,Y3Y4 and the covariant
derivative D, is defined as

DH=0t+qVHX (3.8)
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with the symbol X for cross product in internal SU(2)
space. The background potential V(mm?*) in Eq. (3.7)
has been constructed in the form

V(imm*)=|q| [((m*mX ) —(mm)(m°my)] . (3.9)

Using Eq. (3.4) for the topological gauge potential in Eq.
(3.8), we have the following expressions for the covariant
derivatives of isotriplet fermionic field A and isotriplet

J

scalar field m:

D, A =3, A+ (md,m hy —m®3,mL,) , 510
D, ,m*=3,m*+(md,m°m,—m"d,mm,) .

Substituting these equations along with Eq. (3.5) into Eq.
(3.7), we get the Lagrangian of the topological part of the
restricted gauge theory in the form

uvbe __ puveb 1 bed, a uvjk 1 pabe j vkl 4 1 cbed j ki
[T s (T YO+ S €“m my Ty TH5 + 1€ € ymam T, THY + 1€7%€ jiym,m T, TH]

+1x “yHlo,A, +(maaumbkb—~mbaﬂmakb)]+%[aum”+(m“aym bm, —m ba#m “m,)]*

L == — —12.
lql
+1lgleqem Ay A=V (mm*)
where T, has been written for 8,m,y,m_; p, v are the

indices in the four-dimensional space and a, b, c, etc., are
those in internal isospace. In this Lagrangian, A? are su-
perpartners of the isotriplet gauge field ¥}, [or in turn the
superpartners of isotriplet scalar multiplet m“ through
Eq. (3.4)]. Since the theories which transform as linear
representations of supersymmetry must have the same
number of bosonic and fermionic degrees of freedom, the
Lagrangian (3.11) should be supersymmetric. In order to
check the supersymmetric invariance of this Lagrangian,
let us apply the following supersymmetric transforma-
tions:

dmé=aysA®,

a 1 -

Vi =— meabva(hx,,a#mc +myys9,h.)

SA= LOt(f‘“'( 2e%r
lql

b

N a
iaysy,mmyytm?® .

(3.12)

a bed
uvbe +m myé€ F,uvcd )

Under these transformations,

8.L=0 (3.12a)

provided we assume the supersymmetry conditions

As(AXd, m+mxd A)=—ilgly X,
Yo " " (3.13)

[mb’a]zoa [mb,y5]=0 ’

which give a generalization of the Majorana condition
and the Weyl condition.?! Condition (3.12a) shows that
the Lagrangian density given by Eq. (3.7) is supersym-
metric for the topological part of restricted gauge theory
constructed in terms of magnetic symmetry.

The background potential given by Eq. (3.9) has two
types of minima:

m?=0 and m":T/szx“

(3.11)

For both these cases the value of potential is zero, as re-
quired by supersymmetric theories. For the second value
of m*, the symmetry SU(2) breaks down to U(1) and the
dyonic solutions occur with the following Julia-Zee??
time-dependent solutions:

. abi
Va!:—TéT‘eTib[l_K(r)] ’
Sa
V0=~—|);|rJ(r) ’
(3.14)
‘/_ a_— X a—
2Rem‘?= |q|rH(r) , Imm?=0,

where X?=x“/r is unit vector in the internal space.
These solutions satisfy the coupled differential equations

r’H"=2HK?,
r’K"=K(K*—1)+K[H>-J?], (3.15)
riJ"=2JK* .
A solution of these equations is given by
J(r)=alcr coth(cr)—1],
H (r)=p[cr coth(cr)—1], (3.16)
K (r)=cr /sinh(cr) ,
with the condition
a?—pi=—1. (3.17)

From the Lagrangian density (3.7) we get the following
form of energy-momentum density tensor
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TW=D!m,D"m°+16/"65"

—g™ —-%G,?G;j—k IX%Y' DA, + iD;m “Dim

a

+Llglepem APy A=V (mm*)] . (3.18)
Setting u=v=0 in this relation, integrating T over
three-space, and using relations (3.14) and (3.16), the clas-
sical mass of the dyon comes out to be

M———\q\— (3.19)

classical
showing that the dyons appear in the theory only
through the restricted part of the potential (3.1), which
carries the topological charges. A one-loop correction to
this mass may be obtained by calculating the energies of
Bose and Fermi fluctuations:

Mp=33wp (3.20)

Ly=Lp—3(D,8V)I*+ LD, 8V, ND"8VH)*—
—3(D,8m)(D*8m,)

+1Llgle®* (D m,)*8V b Me +Llgl’[ [(8V,,m© )?

where £ ;, is the dyonic background Lagrangian given by

Lp=—=36,,p6:5"+ 3D, ,mp)NDtmp,)—V(mpmp,)

(3.24)

and D* is the covariant derivative given by Eq. (3.8) with
V, replaced by V#%. To this Lagrangian let us add the
following gauge-fixing term and Faddeev-Popov ghost
term.

(i) Gauge-fixing term: Under an infinitesimal transfor-
mation 8, which keeps the background configuration Vip
and mp fixed, we may write the following variations of
8V}, and m ® up to the lowest order in 6:

6Vﬁ"=—ﬁe"bc(ﬁmfa#mc—i—mbayﬁmf)
—_ a 1 cpa 1 apb
= 8Vﬂ—mm %] a#mc—mmba#m 0
—imbm“aueb (3.25)
lq]
and
dm%=8m+e"m,0, , (3.26)

where the background gauge has been defined by the con-
dition

Fe=(D*8V, )"~ |qle®**m,dm,

such that

(3.27)

+gl? 18V,
—3glew (D, ,m ) V*#om + Ligle,. ( (D, 6m )8V *Ho8m ©
_(SV#b
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and

—1S 0 . (3.21)
Let us choose the dyonic background gauge field defined
by Eq. (3.14), where the fluctuation equation is given as
the normal eigenvalue equation. This choice of gauge is
necessary because the fluctuation equation takes a partic-
ular form in this gauge. Moreover, one may calculate
one-loop diagrams with exact propagations of all parti-
cles in the background of a dyon.

In the dyonic background fields

=vi-sve,

mp=m°—8m*? (3.22)

which satisfy Eq. (3.14), the bosonic part of the Lagrang-
ian density (3.11) may be written as

V e )lz—lRe Iq|eachavD V*ubSV*w]

(my ], (3.23)
f
%=lq%’[D“(m"a#mb+mbaum")
+glH(mm, —m?8%)] . (3.28)
Thus the gauge-fixing term is given by
—3ffa
— LD, 8V*7+|gle® (D, 8VH),m,om,
+1ql2(mm, —m?28%)8m, 6m® (3.29)

(ii) Faddeev-Popov ghost term: This term is given by
Lpp=—c X(8f°/86°)¢c , , (3.30)

where Faddeev-Popov fields denoted by ¢ and ¢ * are vec-
tors in isospace. Using Eq. (3.28), we may write this term
as

*

Legp=c wll—[D“(m”aumb+mbaum“)]

lg

+ g2 (mm>—m?6%) |c (3.31)

Using Eqgs. (3.23), (3.29), and (3.31), the total Lagrangian
for the bosonic part may be written as
L=Lp+ Lo+ Lpp . (3.32)

In these equations for Ly, L, and Lgp, we may use the
following matrix notation for the covariant derivative
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— : D
D#—8H+zlq|VﬂaT“ (3.33)
in the dyonic background where T'¢ are usual generators
of the internal gauge group SU(2).

Let us construct a three-vector B” in the dyonic back-
ground as

BP=le, 6P%T, (3.34)
and identify the spatial part 8V; and temporal part SVJQ
of 8V} as vectors in isospace. Then we may straight
away get the following equations of motion from the La-
grangian density given by Eq. (3.23):

[D,D*—lg|’m*>—2l|qlo, BP*18E=0, (3.35)

[D,D*—|ql*’m?18V,=0, (3.36)

[D,D*—|qI*’m?]c=0, 3.37
where we have chosen

8 =8m +io'dV! (3.38a)
and

m2=(Tm,)* . (3.38b)

For getting the eigenvalue equations for the Bose fluctua-
tions, let us take the following Fourier transform with
respect to time ¢,

8= 8E %expliwpt) ,

@p

SVi= ZSVSexp(ia)Bot) ,

w
By

(3.29)

Oc?=8¢ “explingt) .
@G
Then Egs. (3.35), (3.36), and (3.37) may be written in the
following manner:

(D7 —lqI’m?+2|q| T VP*)8E = — w0} 8 , (3.40a)
(D} —1gI’m*)8Vy= —w} 8V, , (3.40b)
(D —lgI’m?)c=—wkt , (3.40c)

where wp, wp are bosonic fluctuation frequencies and wg

is the ghost term frequency. From these fluctuations, the
one-loop contributions to dyonic mass can be written as

AMBose:AMBZZwB_'_%EC‘)BO_‘ECOG , (3.41)

where the negative sign for the ghost contribution
denotes the anticommuting nature of ghost fields. Since
Sop=3ws=ZTwp , we may write Eq. (3.41) as

MBose = %2‘03 . (3.42)
Fermi fluctuations may be obtained from the following

fermion equation of motion which follows from the fer-
mionic part of the Lagrangian (3.7):

YD, A+ |glemyy k. =0 , (3.43)

where the covariant derivative has been defined by Eq.
(3.33). Using Majorana representation and taking the
Fourier transform of A with respect to time ¢ as

I=y%xp(—iwgt), (3.44)
Eq. (3.34) reduces to
(D?—lqIPm?u=—wku , (3.45)

where u is a vector in isospace with its components given
by u“?. The contribution of this fluctuation to the dyon
mass is

AMp=Mgemi = — 7 20F - (3.46)

Combining Egs. (3.42) and (3.46), we get the following
one-loop quantum correction to the dyonic mass:

AM =AMy +AM =1 [sz—sz (3.47)

In other words, the dyonic mass up to one-loop quantum
correction is given by
M=M (3.438)

1
classical + 2

20p~ 2 0F } ’

where the classical mass of dyon (M ,i..1) iS given by
Eq. (3.19).

Because of the similar nature of second-order
differential equations (3.40a), (3.40b), and (3.45), the bo-
sonic and fermionic fluctuations have the same spectrum
of nonzero eigenvalues,

Qop=3wp .

The equality between wp and wj leads to the result that
the mass of the dyon is not changed by quantum correc-
tions. In other words, in the supersymmetric limit, the-
non-Abelian theory of dyons in RCD falls apart, in the
correct way, into degenerate supermultiplets.

(3.48a)

IV. DISCUSSION

The dyonic states with spin *1 constructed from the
spin-0 states have been shown to constitute the dyonic su-
permultiplet for vanishing linear momentum. When
there are no spin degeneracies beyond those required by
supersymmetry, it is not necessary to include larger angu-
lar momenta in the dyonic multiplets. Actually, the su-
permultiplets containing higher spins arise as bound or
scattering states of dyons and other particles. Introduc-
ing a soft supersymmetry-breaking gauge invariant per-
turbation in N =1 supersymmetry, the mass matrix for
spin-0O states has been obtained in Eq. (2.7) in terms of
mass splitting parameters given by Egs. (2.9), (2.10), and
(2.11). Equation (2.17) gives the relation between the
masses of bosons and fermions in dyonic supermultiplets.
This relation shows that the embedding of spin-1 dyons is
done by incorporating them in the spin-1 part of funda-
mental multiplet in N =1 supersymmetry, and hence the
dyons in this theory can be consistently represented in su-
permultiplets containing spin-0 and spin-J states. The
supermultiplets of dyons in N =2 theory are similar to
those in N =1 theory except that the fermionic dyons
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lose their electric charge and became neutral monopoles.
The Lagrangian density given by Eq. (3.7) is supersym-
metric under the transformations (3.12), subject to the
condition (3.13), which are a generalization of Majorana
and Weyl conditions.?! It leads to supersymmetric dyonic
solutions with classical mass given by Eq. (3.19) when the
symmetry SU(2) breaks down to U(1) by minimizing the
potential (3.9). This value of dyonic mass agrees with
that predicted by Julia and Zee.?” This result shows that
the dyons appear in the theory (RCD) only through the
restricted part of the potential given by Eq. (3.1). Only
this part, carrying the topological charges, is relevant in
dyonic theory, while the unrestricted part of this poten-
tial, which is Abelian in nature, does not contribute any-
thing to dyonic solutions. We have also demonstrated in
our recent work!3 that it is only the restricted part of this
potential which is responsible for quark confinement in
RCD through the mechanism of dyonic condensation.
On the other hand, the unrestricted part of the potential
becomes confined as a result of condensation of topologi-
cal charges. Due to these reasons the unrestricted part of
the potential has been ignored in Eq. (3.4) while writing
the supersymmetric Lagrangian (3.7) which carries only
one bosonic degree of freedom and one fermionic degree
of freedom. In case this unrestricted part of the potential
is not ignored, one will have to introduce two fermionic
degrees of freedom in this Lagrangian. It will not lead to
any new physics and the mathematical calculations will
become unnecessarily cumbersome, leading to difficulty
in constructing the background potential of Eq. (3.9).
Choosing the dyonic background field defined by Egq.
(3.22), the bosonic part of the Lagrangian of supersym-
metric theory in the gauge restricted by magnetic symme-
try has been obtained in the form given by Eq. (3.23).
Equation (3.40) gives the bosonic fluctuations with the
same frequency for the spatial bosonic field, temporal bo-

J. M. S. RANA, H. C. CHANDOLA, AND B. S. RAJPUT 43

sonic field, and the ghost field, which lead to total one-
loop fluctuations and a correction to the dyonic mass in
the form given by Eq. (3.42). The fermionic part of the
Lagrangian (2.28) leads to the equation of motion (3.43),
which in turn yields the fermionic fluctuation (3.44) in
the one-loop approximation. Because of the similar na-
ture of second-order differential equations (3.40a), (3.40b),
and (3.44), the bosonic and fermionic fluctuations have
the same spectrum of nonzero eigenvalues. Equations
(3.46), (3.47), and (3.48) show that the classical mass of
the dyon is not changed by quantum corrections, and
hence it may be concluded that, in the supersymmetric
limit, the non-Abelian theory of dyons in the restricted
chromodynamics falls apart, in the correct way, into de-
generate multiplets. In other words, in the supersym-
metric generalization of RCD, the physical dyonic mass
does not receive quantum corrections. The introduction
of the supersymmetric dyonic model in this way and the
vanishing of quantum corrections may be used for prov-
ing the interesting conjecture proposed by Montonen and
Olive.?® All these results of the supersymmetrized ver-
sion of RCD agree with conclusions drawn by D’Adda
et al.'® by using dimensionally reduced supersym-
metrized pure Yang-Mills theory in six dimensions. Us-
ing this method of dimensional reduction, we may get a
two-dimensional theory from the four-dimensional super-
symmetric theory presented in the preceding section by
interpreting two of the spatial dimensions as internal de-
grees of freedom.
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